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Abstract—In a world with an overgrowing elderly population,
there exists a critical need for a greater number skilled indi-
viduals in the nursing industry. AI-based systems can be useful,
compared to traditional ones with require in-person assistance,
to accurately identify nursing activities and assess the nursing
trainees to help them become proficient. This paper addresses
classifying activities in one such procedure, endotracheal suction-
ing, using skeletal keypoint data of the subject performing the
procedure. A multi-step structured prompt engineering method
was established and utilized on several LLMs to select or calculate
key features from the data. Then the features are passed onto
several tuned machine learning models to obtain results. A tuned
XGBoost prevailed across all models, achieving 90% accuracy on
the validation set.

Index Terms—Human Activity Recognition, Large Language
Model, Generative AI, Machine learning, Nurse-care

I. INTRODUCTION

In the context of nursing education, accurate recognition
of training activities is essential for effective skill assessment
and feedback. Traditional methods for activity recognition
often rely on manual observation and annotation, which can
be time consuming, subjective, and prone to errors [1]. To
overcome such limitations and to reduce the need for manual
intervention, accurate AI-based human activity recognition
systems are needed. However, the complexity of certain nurs-
ing activities like in endotracheal suctioning (ES) procedure,
involving intricate body movements and interactions with
medical equipment poses formidable challenges to accurate
action recognition [2]. Furthermore, occlusion due to limita-

tions of camera frames and positions, as well as the presence
of background non-primary subjects compounds this problem
[3]. Recent developments in artificial intelligence (AI) and
computer vision technologies have shown promising results
in classifying realistic human motion data, including using
skeletal keypoints in a time frame to classify actions [6] [7].
This classification is aided by the insurgence of generative AI,
particularly in large language models, over the past few years,
which can be prompted to perform complicated data analysis
and detect and suggest underlying trends and features [4].

Endotracheal suctioning (ES) is a crucial intervention per-
formed in patients requiring mechanical ventilation to clear
airway secretions and maintain optimal respiratory function.
This multi-step procedure involves the insertion of a suction
catheter into the endotracheal tube to remove mucus and
debris, reducing the risk of airway obstruction and improving
gas exchange. Proper technique, timing, and monitoring are
essential to minimize complications and ensure patient safety
during endotracheal suctioning procedures [8]. So far, there
has not been any significant research or system pipelines
proposed for the use of AI in automating assessment of the
procedure.



Fig. 1. Flowchart of the proposed methodology.

Recent advancements in natural language processing, par-
ticularly in the realm of large language models (LLMs)
has allowed the usage of natural language or ”prompts” to
tune these models to accomplish specific tasks [5]. In this
paper, conversational models like Claude 2.0 and GPT 3.5 are
prompted in a step-by-step logically structured approach called
Chain-of-thought strategy to obtain suggestions for feature
extraction based on the skeletal data [12]. In this paper, we
propose an approach for activity recognition of nurse training
activities in ES procedure using skeletal data as illustrated
in Figure 1. Specifically, we focus on the following key
contributions:

1) Prompting LLMs to suggest a subset of relevant features
based on our raw data.

2) Developing a machine learning model to accurately
classify nurse-care activities.

3) Ameliorating the obstacles posed by imbalanced datasets
by oversampling minority classes.

The remainder of this paper is organized as follows: Section

II presents related work, Section III shows dataset information,
the classification processes used on the activity, and the data
pre-processing information. Section IV discusses the methods
utilized in the classification task. Section V presents the results
obtained from our approach.

II. RELATED WORKS

Endotracheal suctioning is a procedure involving the re-
moval of pulmonary secretions, which is necessary to ensure
sufficient oxygen reaches the patients lungs, specially in inten-
sive care units. To ensure this procedure takes place smoothly,
nurses need to be trained well to ensure they are aware of
correct techniques [11]. This can be ensured by the help of
proper activity recognition systems, allowing nurses to learn
such practices long before it is ever applied in life threatening
situations. Endotracheal suctioning, though uncomfortable, is
deemed necessary by patients to ease breathing [10].
On the activity recognition side, much progress has been
made. Specifically for using skeletal data for nursecare activity
recognition, multimodal transformer based network can be
used to bring out features from skeletal joints and acceleration
data to perform nurse care activity identification [2]. Besides
this, deep learning models have been found to be better
adapted to the field of multimodal datasets compared to hand
crafted features [6].
Joint position data can be utilized for action recognition. Previ-
ous studies have explored using statistical features like mean,
minimum, and maximum joint positions as well as applying
principal component analysis (PCA) to the joint position data
to extract relevant features for action classification [19].

Previous approaches to action recognition have also utilized
Fast Fourier Transform (FFT) on the time series of joint
positions. Specifically, the first five FFT components extracted
from the joint position sequences are used as a feature vector,
which is then passed into a neural network for action clas-
sification. However, this did not perform well in recognizing
complex actions involving different body parts [20].

In the realm of skeletal data in nursing, most existing
skeletal data models operate in one of two ways: (1) They
utilize manually calculated features, which are then inputted
into an ensemble of decision trees [21] or neural networks
[22], or (2) they directly feed the data into sequential models
[23]. A few models use convolutional neural networks (CNNs)
to extract features from raw data [24]. However, none of
such models extract features in relation to the characteristic
nature of the data and the relevance of its contents. This paper
is distinctive as we use LLMs to obtain prompted feature
suggestions which is prompted to take into account both the
peculiarities of the dataset and the context of the information
it represents.

III. DATASET

A. Data Collection

The dataset used for this paper consists of ten nurses
and twelve nursing students performing the procedure for



endotracheal suctioning (ES) on the simulation system, ESTE-
SIM. The camera was positioned directly in front of the nurse
performing the procedure on a mannequin laid on a hospital
bed. Due to the lack of multiple camera positioning, only one
perspective of the activity performed could be captured, and
often led to occlusion due to the nurse often moving out of
the camera frame.

Each of the twenty-four subjects involved performed the ES
procedure twice as follows: tracheal suctioning, positioning
from the right decubitus to the supine position, lung ausculta-
tion, tracheal suctioning, and lung auscultation - resulting in
44 videos.

Written consents were collected and the ethical approval of
the data collection was obtained from Hokkaido University,
Faculty of Health Sciences. . The video camera used in the
experiment was SONY HANDYCAM HDR-PJ680 with the
focal length of 1.9-57.0mm. The frame per second of video is
30 and the image size is 1920×1080.

B. Data Description

Each activity performed for this dataset is labeled by num-
bers in Table I. The ”Others” tag represents activity that does
not fall under any of the designated 8 activities. It can be seen
from Figure 2 that the dataset is quite imbalanced with Activity
4 (”Catheter Disinfection”) occurring the most frequently and
Activity 6 (”Positioning”) occurring the least. From Figure
3, it can be deduced that the time required for each activity
differs widely with Activity 0 (”Catheter Preparation”) taking
the most time in total.

TABLE I
ACTIVITIES OF ENDOTRACHEAL SUCTIONING (ES) PROCEDURES AND

THEIR RESPECTIVE LABELS

Activity class id Activity name
0 Catheter preparation
1 Temporal removal of an artificial airway
2 Suctioning phlegm
3 Refitting the artificial airway
4 Catheter disinfection
5 Discarding gloves
6 Positioning
7 Auscultation
8 Others

Fig. 2. Number of Instances of Activity Labels

Fig. 3. Total Time of Activity Labels

C. Data Splitting and Processing

All of the videos were passed through YOLOv7 to extract
the keypoint data of the video subjects. From each frame of
each video, 17 keypoint sets of x and y coordinates of the main
subject and their respective confidence scores were obtained.
Data was processed to remove any background subjects. The
keypoints are as follows: nose, pairs of eye, ear, shoulder,
elbow, wrist, hip, knee, ankle. Among the 44 videos obtained,
12 videos ( 27%) were kept for testing and 6 videos ( 13.6%)
were kept for validation. The rest of the 26 videos were used
for training the models.

IV. METHOD

The following section details our approach to prompting
LLMs for feature extraction, and using those features to
develop a machine learning model for activity classification.

A. Preprocessing

For the purposes of simplification, speed, and limited data
storage capability, the keypoint data for body parts below
the torso were removed during preprocessing. As the videos



portrayed the main subject’s body occluded by a mannequin
from the waist down, the keypoint data for coordinates of
knees and ankles were deemed unnecessary. Similarly, the
confidence scores were also removed. To lessen the noise and
random fluctuations in the data and to make the apparent data
trends more visible, the data was smoothed by taking the mean
of every 3 seconds. Figure 4 shows an example of the x and
y coordinate values of the left wrist of a subject before and
after smoothing was performed.

Fig. 4. Data of left wrist keypoints of a sample subject before and after
smoothing.

B. Feature Selection Using Prompt Engineering

LLMs were used throughout the course of this approach,
for generating subsets of potential features. To ensure control
across the LLMs, they were guided through a strictly me-
thodical process step-by-step to infer and suggest the most
relevant features from the keypoints data. Initially, the LLMs
were prompted to suggest general features that may be relevant
to human activity recognition. After that, a 4-part structured
process to prompt the details of features to be used in the
model:

• Introduction, I
• Context, C(xi)
• Chain of Thought (CoT), T
• Question, Q

In this prompting process, the LLMs were first prompted with
the introduction, I , of the problem which was to analyze the
keypoint descriptors and activity label annotations, and select
features to distinguish each activity. Then the keypoint data
and annotations were fed as context, C(xi) where xi was
a data point. We, then, prompted the LLMs to analyze and

determine which movements in particular (e.g. which joint
angles or distances) and its relevant parameters are important
for classification, and to determine their respective roles under
each activity label. This was a multi-step process and methods
from Chain-of-Thought (CoT) prompting were utilized [12].
Lastly, we directed the LLMs to choose the activity labels,
from 0 to 7, which matches the activity most closely. The
ones that could not be classified were marked as Others (label
8).

The described prompt is represented as shown in Equation
1.

E(xi) = {I,C(xi),T,Q} (1)

The feature set, F , is obtained from passing the prompts
through LLMs, where each structured output is as shown in
Equation 2.

fi = LLM(E(xi)) (2)

The features obtained can be grouped into following cate-
gories:

• Basic statistical features: For each frame, the following
are calculated: mean (arithmetic), variance, standard de-
viation, maximum value, minimum value, median, sum.

• Velocity, acceleration, and jerk: These help to under-
stand the rate of change of movements across several time
frames.

• Joint angles: Angle between two joints, a and b, were
calculated using the equation for dot product as repre-
sented in Equation 3.

θ = arccos

(
a · b
|a||b|

)
(3)

In total, nine angles were obtained from prompting LLMs
as illustrated on Figure 5.

• Joint distances: The distances are calculated using Eu-
clidean formula for distances, x and y as represented in
Equation 4.

d =
√
(x)2 + (y)2 (4)

In total, ten distances were obtained from prompting
LLMs as illustrated on Figure 5.

Joint angles and distances in combination builds spatial
representation of the skeletal data and help to understand the
movements and changes in joints and body parts with each
distinctive activity [6]. As joint distances differ significantly
amongst individuals, they had to be normalized using spine as
the reference [13]. Due to the absence of keypoint data, the
spinal distance was estimated from the center of the shoulders
to the center of hips, which was calculated by taking the
midpoint of the left and right hip point data. Overall 861
features were extracted for each frame.

C. Model Tuning

To classify actions based on the generated features, four
classical models and one deep learning model were tuned and
tested on the dataset.



Name of the Feature Description of
Importance

Suggested by
GPT
3.5

Claude
2.0

Basic
statistical
features

Joint
angles

Joint
distances

Velocity

Acceleration

Jerk

Mean Arithmetic average of
data in each frame

Variance Measure of spread of a
feature of a frame

Standard deviation Squared root of variance

Maximum value Maximum value of a
frame

Minimum value Minimum value of a
frame

Median Median value of a
feature of a frame

Sum Sum of all values of a
feature of a frame

Between elbow, shoulder
and hip (for both left and

right side)

Change in angles of
certain joints across

frames provides spatial
understanding of an
activity and helps to

differnetiate one activity
from another.

Between wrist, elbow and
shoulder (for both left and

right side)

Between left elbow, left,
and right shoulder

Between right elbow,
right, and left shoulder

Between right shoulder,
nose, left shoulder

Between hip center,
shoulder, elbow (for both

left and right side)

From shoulder to wrist
(for both left and right

side)

Similar to joint angles,
particular joint distances

provide information
about particular

momental
characteristics of each

acitvity and helps to
differentiate between

multiple acitvities.

From hip center to elbow
(for both left and right

side)

From hip center to wrist
(for both left and right

side)

From right wrist to left
wrist

From right hip to left hip

From hip side to wrist (for
both left and right side

Calculated as the rate of
change of movements in

a frame

Calculated as the rate of
change of velocity in a

frame

Calculated as the rate of
change of acceleration

in a frame

Fig. 5. Features obtained from prompting LLMs.

1) Classical Models: By prompting the LLM’s repeatedly,
we attained sets of possible hyperparameter values for each
classical model. Then through searching through the possible
combinations of hyperparamter values (using grid search and
randomized search), we obtained most suitable values for each
model. The models, hyperparameter options and their tuned

hyperparameters are shown in Table II.

TABLE II
CLASSICAL MODELS USED WITH THEIR HYPERPARAMETERS SET

Model Parameters
Tuned

Tuning
Selections

Tuned
Value

Random
Forest
Classifier

n estimators [10, 50, 100, 250] 100
max depth [5, 10, 20] 20

Support
Vector
Machine

C parameter
[10**-2, 10**-1,
10**0, 10**1,
10**2]

10**2

class weight
[None, 0:1,1:5,
0:1,1:10,
0:1,1:25]

0:1,1:5

Logistic
Regression

C parameter
[10**-2, 10**-1,
10**0, 10**1,
10**2]

10**1

class weight
[None, 0:1,1:5,
0:1,1:10,
0:1,1:25]

None

XGBoost

max depth [5, 10, 15] 5
min child weight [2, 5, 10, 30] 2
subsample [0.8, 0.5] 0.5
colsample bytree [0.7, 0.5] 0.7
learning rate [0.1, 0.01, 0.001] 0.1

n estimators [100, 350, 500,
900] 900

2) Deep Learning Model: A simple Long Short Term
Memory (LSTM) model was run on the dataset. The LSTM
consisted of one hidden layer, followed by a Dropout layer,
followed by a Dense layer with ReLu activation function [14],
before being passed off to the output. Each of the keypoint
skeletal part, arranged sequentially, were fed into the model
with a window size of 3 seconds.

D. Testing Feature Subsets

Each subset of features found from each LLM was tested
against the tuned model which returned the best result. The
entire set of features and no features were also run on the
model to analyse the differences in impact on results based
on the features suggested by LLMs.

E. Handling of Class Imbalance Data

As seen from Figure 2, the instances of each activity labels
vary greatly. Activity 4 (’Catheter Disinfection’) and 8 (’Oth-
ers’) occur the most whereas activity 6 (’Positioning’) occurs
the least. Due to such imbalance, the model has less data of
the lower-occurring classes to learn from which might lead
to misidentification and overall lower accuracy. So, Synthetic
Minority Over-sampling Technique (SMOTE) [15] from the
imblearn package in Python was used to generate synthetic
data points, and rectify the problem of large class imbalance.

F. Performance Evaluation

The performance of each model is primarily evaluated with
respect to their F1-score. Precision is the ratio of true positives
and all positive values [16]. Recall is the ratio of true positives
and all relevant values (true positives and false negatives). F1-
score is calculated by taking the harmonic average of precision
and recall. Macro average is calculated by finding the mean
of all F1-scores across activity labels. Accuracy (or micro



average) is found by finding the global F1-score across all
classes. Weighted average is found by averaging the activity
labels with support instances as weights of each activity label.

V. RESULTS AND DISCUSSION

A. Classical Models

From the results on the validation set, as illustrated in
Table III, it can be seen that the XGBoost performed best
with an accuracy of 0.89, while logistic regression performed
the worst. The baseline Random Forest model provides an
accuracy of 0.64, and is eventually tuned to 0.85. It can
be inferred that tree-based models like Random Forest and
XGBoost performed much better than the others. This may
be because our principal data source is tabular and tree-based
methods are well-known for being effective on any kind of
structured data because of their ability to handle non-linear
relationships and because of their robustness to irrelevant
features, and variables [17].

TABLE III
CLASSICAL MODEL PERFORMANCE.

Model Accuracy Macro
Average

Weighted
Average

Logistic Regression 0.73 0.63 0.72
Random Forest (Tuned) 0.85 0.75 0.83

Random Forest (Baseline) 0.64 0.59 0.63
XGBoost 0.89 0.80 0.89

Support Vector Machine 0.73 0.64 0.73

Fig. 6. Confusion Matrix of tuned XGBoost Model.

1) Results from Feature Subsets: When each feature subsets
obtained from each LLM were passed onto the model with
the highest accuracy, it resulted in Table IV. Combination of
feature subsets obtained from both LLMs result in the highest
accuracy of 0.89. This is a significant improvement compared

TABLE V
COMPARISON BETWEEN XGBOOST MODEL WITH AND WITHOUT SMOTE

DATA.

Activity Label XGBoost SMOTE with XGBoost

F1 score Support F1 score Support

0 0.90 526 0.90 555

1 0.65 33 0.76 34

2 0.94 148 0.94 168

3 0.76 51 0.72 52

4 0.82 285 0.89 352

5 0.70 49 0.82 56

6 0.86 47 0.81 50

7 0.96 501 0.94 540

8 0.90 109 0.87 136

accuracy 0.89 1749 0.90 1943

macro average 0.80 1749 0.85 1943

weighted average 0.89 1749 0.90 1943

to results (62%) where no LLMs were utilized to extract
features. It is also noticeable that feature subset obtained from
GPT 3.5 was able to achieve an accuracy of 0.75 with 342
features, while Claude 2.0 achieved a marginally higher result
of 0.77 with more than twice the number of features.

TABLE IV
RESULTS OF FEATURE SUBSETS PASSED THROUGH XGBOOST.

Feature extraction
method

Number of features
extracted Accuracy

No LLMs - 0.62

GPT 3.5 342 0.75

Claude 2.0 702 0.77

Both GPT 3.5 and
Claude 2.0 861 0.89

2) Results with SMOTE: From the confusion matrix of
XGBoost in Figure 6, it can be seen that the model performed
the worst on labels with the lowest support instances, namely
labels 1 and 5. This is due to the model having fewer
examples to train and learn from to give provide optimal
classification. To rectify such imbalance of labels, SMOTE
was used, resulting in the outputs in Figure 7.

It is noticed from Table V that the accuracy with SMOTE
marginally increased, especially for low-instance labels due to
larger number of support instances due to synthetic generation,
thus increasing the macro average from 80% to 85%.

Overall, it is noticed that the accuracy and weighted aver-
ages are more than the macro averages across all models and
sampling techniques. This is because macro average calculates
each class independently and averages to give the final score.
It treats each class equally, regardless of its support. In
this imbalanced dataset, since the minority classes have poor



Fig. 7. Confusion Matrix of tuned XGBoost Model on SMOTE data.

performance (low precision, recall, etc.), they drag down the
macro average [18].

B. Deep Learning Model

The LSTM model was run 10 times, and resulted in a cumu-
lative accuracy of 65.12%, which was not nearly comparable to
the accuracy we obtained from decision trees. The accuracy
can be increased if the architecture is finetuned to include
more layers, it’s learning rate, sequence length, batch size,
and hyperparameters are optimized.

VI. CONCLUSION

Due to the imperative need of automated systems in nurse-
care services, leveraging machine learning models becomes
essential for enhancing efficiency, accuracy, and patient out-
comes. In this paper, we propose a machine learning model,
with features selected through prompt engineering conversa-
tional large language models (LLMs) to classify the activities
in endotracheal suctioning (ES) procedure with 90% accuracy.

Our research was limited due to the low number of subjects
in our dataset resulted in a smaller sample size for training.
Moreover, since YOLOv7 was used to extract skeletal key-
points of human subject from videos, the data was limited to
coordinates of 17 points, with no points for hip center and
spine - parts that we had to interpolate by taking average of
adjacent points. In the future, models with more coordinate
points can be used for more accurate predictions.

Since the dataset is heavily imbalanced, SMOTE is used
which resulted in marginally improved results. However,
SMOTE generated synthetic examples based solely on the
existing minority class instances, potentially losing valuable
information present in the original data. This could have
resulted in the creation of mostly noisy or irrelevant synthetic

samples. Furthermore, it may not have been as effective as the
class imbalance may have been caused by inherent differences
in the class distributions (i.e. a certain activity may just occur
less).

Although we used four classifiers and a sequential model
for classification, the challenge can be extended across other
classifiers and neural networks. This study can also be ex-
tended across different and more updated conversational LLMs
like GPT 4.0. For future endeavors, advanced models like
transformers can be used to sequentially model different
joints and use attention networks to weigh the importance of
different parts of the input. Furthermore, generative adversarial
networks (GANs) can be used to overcome occlusion posed
by image subjects being out of frame. This can assist in recon-
structing the entire skeletal morphology of the subject which
can lead to better feature extraction and model prediction.
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Rodrı́guez, ”Action recognition system based on human body
tracking with depth images,” Advances in Computer Science:
an International Journal, vol. 3(1), pp. 115–123, 2014. URL:
https://api.semanticscholar.org/CorpusID:6122142

[21] D. A. Adama, A. Lotfi, C. Langensiepen, K. Lee, and P. Trindade,
”Human activity learning for assistive robotics using a classifier en-
semble,” Soft Computing, vol. 22, no. 21, pp. 7027–7039, Jul. 2018.
doi:10.1007/s00500-018-3364-x

[22] E. Mathe, A. Maniatis, E. Spyrou, and P. Mylonas, ”A deep learning
approach for human action recognition using skeletal information,”
Advances in Experimental Medicine and Biology, pp. 105–114, 2020.
doi:10.1007/978-3-030-32622-7 9

[23] R. Cui, A. Zhu, G. Hua, H. Yin, and H. Liu, ”Multisource learning
for skeleton-based action recognition using Deep LSTM and CNN,”
Journal of Electronic Imaging, vol. 27, no. 04, p. 1, Aug. 2018.
doi:10.1117/1.jei.27.4.043050

[24] S. K. Yadav, K. Tiwari, H. M. Pandey, and S. A. Akbar, ”Skeleton-
based human activity recognition using CONVLSTM and guided feature
learning,” Soft Computing, vol. 26, no. 2, pp. 877–890, Oct. 2021.
doi:10.1007/s00500-021-06238-7 ]


