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SUMMARY

Target of Rapamycin Complex 1 (TORC1) signaling
promotes growth and aging. Inhibition of TORC1
leads to reduced protein translation, which promotes
longevity. TORC1-dependent post-transcriptional
regulation of protein translation has been well stud-
ied, while analogous transcriptional regulation is
less understood. Here we screen fission yeast mu-
tants for resistance to Torin1, which inhibits TORC1
and cell growth. Cells lacking the GATA factor Gaf1
(gaf1D) grow normally even in high doses of Torin1.
The gaf1D mutation shortens the chronological
lifespan of non-dividing cells and diminishes
Torin1-mediated longevity. Expression profiling and
genome-wide binding experiments show that upon
TORC1 inhibition, Gaf1 directly upregulates genes
for small-molecule metabolic pathways and indi-
rectly represses genes for protein translation.
Surprisingly, Gaf1 binds to and downregulates the
tRNA genes, so it also functions as a transcription
factor for RNA polymerase III. Thus, Gaf1 controls
the transcription of both protein-coding and tRNA
genes to inhibit translation and growth downstream
of TORC1.

INTRODUCTION

The conserved Target of Rapamycin (TOR) signaling pathway is

a key regulator for cellular growth andmetabolism in response to

nutrients and energy (Gonzalez and Rallis, 2017; González and

Hall, 2017; Valvezan and Manning, 2019; Wei et al., 2013). TOR

generally functions via two multi-protein complexes, TORC1

and TORC2, which coordinate distinct aspects of growth and

associated processes (Hartmuth and Petersen, 2009; Ikai
3240 Cell Reports 30, 3240–3249, March 10, 2020 ª 2020 The Autho
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et al., 2011). TORC2 is not required for cell proliferation in fission

yeast (Schizosaccharomyces pombe) but is required for sexual

differentiation, stress response, and actin function (Matsuo

et al., 2007; Weisman and Choder, 2001). TORC1 activates

protein synthesis and other anabolic processes and inhibits

autophagy and other catabolic processes. Active TORC1 func-

tions on lysosomes, or vacuoles in yeast, in response to growth

signals (Binda et al., 2009; Chia et al., 2017; Po€us and Codogno,

2011; Valbuena et al., 2012).

In all organisms tested, TORC1 promotes aging and shortens

lifespan (Gonzalez and Rallis, 2017; González and Hall, 2017;

Kaeberlein, 2010;Wei et al., 2013). Lifespan is influenced bymul-

tiple TORC1-dependent processes, including mitochondrial

activity (Hill and Van Remmen, 2014), autophagy (Saxton and

Sabatini, 2017), and protein translation (Bjedov and Partridge,

2011; Rallis et al., 2013). Protein translation is controlled post-

transcriptionally by TORC1 via phosphorylation of ribosomal

S6 kinase (S6K) and the translation factors eIF2a and 4E-BP

(Ma and Blenis, 2009). Inhibition of S6K can extend lifespan in

several organisms (Bjedov et al., 2010; Rallis et al., 2014; Roux

et al., 2006; Selman et al., 2009).

Besides post-transcriptional mechanisms, TORC1 promotes

translational capacity and aging via transcriptional regulation

(Valvezan andManning, 2019). It stimulates transcription of ribo-

somal RNAs via RNA polymerases I and III (RNA Pol I and RNA

Pol III) (Iadevaia et al., 2014), although mechanisms are poorly

understood. TORC1 may regulate RNA Pol I transcription via

general transcription factors (Hannan et al., 2003; Mayer et al.,

2004). TORC1 also regulates the conserved Maf1 factor, which

inhibits RNA Pol III (Cai and Wei, 2015; Graczyk et al., 2018; Mi-

chels et al., 2010; Shor et al., 2010; Wei and Zheng, 2010; Wei

et al., 2009). RNA Pol III transcribes the highly abundant 5S ribo-

somal RNAs and transfer RNAs (tRNAs), which are central for

translation, besides other small RNAs (Arimbasseri and Maraia,

2016). Given the focus on protein-coding gene transcription,

the regulation of RNA Pol III transcription is less well understood.

A recent study shows that RNA Pol III activity limits the lifespan
r(s).
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downstream of TORC1 (Filer et al., 2017). Altogether, these find-

ings suggest that TORC1-mediated control of RNA Pol III

transcription is universally important for translation and aging.

However, no specific transcription factors have been identified

that bind to RNA Pol III-dependent promoters and thus mediate

translational control and lifespan.

The conserved S. pombe GATA transcription factor Gaf1 reg-

ulates responses to nitrogen limitation downstream of TORC1

(Laor et al., 2015). Gaf1 can regulate gene expression either

positively or negatively (Kim et al., 2012). Here we show that

Gaf1 is required for growth suppression upon TORC1 inhibition.

Gaf1 binds not only to the promoters of certain protein-coding

genes but also to the RNA Pol III-transcribed tRNA genes, which

leads to their repression. Mutant cells lacking Gaf1 feature a

shortened chronological lifespan. Our results uncover a

transcription factor downstream of TORC1 that directly inhibits

transcription of the tRNA genes, providing a mechanism for

transcriptional control of global protein translation that prolongs

lifespan.

RESULTS AND DISCUSSION

Genes Required for TOR-Mediated Growth Inhibition
TORC1 and TORC2 can be inhibited by Torin1, an ATP analog

that blocks cell proliferation in S. pombe (Atkin et al., 2014;

Thoreen et al., 2009). Using a low Torin1 dose (5 mM),

S. pombemutants have been screened for resistance and sensi-

tivity to reduced TOR signaling (Lie et al., 2018). Here we

screened mutants under a four-fold higher Torin1 dose

(20 mM). This dose blocked cell growth (Figure 1A) and reduced

the size of both cells and vacuoles (Figure 1B). Global protein

translation was also reduced by Torin1, as reflected by reduced

phosphorylation of ribosomal S6 protein and increased total and

phosphorylated eIF2a (Figure 1C). Altogether, these phenotypes

look like those triggered by caffeine and rapamycin that block

TORC1 function (Rallis et al., 2013). We conclude that Torin1

leads to phenotypes that are diagnostic for TORC1 inhibition.

We screened for deletion mutants that can suppress the

strong growth inhibition by 20 mM Torin1 (Figure 1D). Overall,

19 mutants were resistant to Torin1-mediated growth inhibition

in all 4 repeats (Figure 1E; Table S1), 9 of which were identified

in the previous screen (Lie et al., 2018). We independently vali-

dated these 19 mutants, both by PCR and by backcrossing to

a wild-type strain. The backcrossed mutants were spotted on

Torin1 plates to confirm linkage of the drug-resistant phenotype

to the deletion cassette. Although wild-type cells did not grow in

Torin1, all 19 mutants managed to grow to various extents in

different concentrations of Torin1 (Figure 1F). Four mutants

were resistant to Torin1 at all concentrations, showing similar

growth as on untreated medium (Figure 1F, red frames).

Some mutants feature resistance to multiple rather than spe-

cific drugs (Dawson et al., 2008). To exclude this possibility for

the Torin1-resistant mutants, we assayed their growth in four

other drugs; this analysis showed that all mutants were at least

as sensitive to the other drugs as the wild-type control (Fig-

ure S1A), indicating that their Torin1 resistance does not reflect

multi-drug resistance. To exclude the possibility that resistance

simply reflects that mutants cannot take up Torin1, we tested
whether the Torin1-resistant mutants still showed other pheno-

types of TORC1 inhibition (Figures 1B and 1C). The mutants still

showed reduced ribosomal S6 protein phosphorylation after

Torin1 treatment, except aca1D (Figure S1B), and decreased

cell size (Figure S1C). These results indicate that Torin1 is taken

up by the mutant cells, which differ in sensitivity to different

TORC1 functions. Moreover, in all but the aca1D mutant, the

growth resistance to Torin1 may be independent of translational

control by ribosomal S6 phosphorylation.

The 19 genes identified in our screen function in limited cellular

processes (Figure 1G; Table S1). Vesicular transport and vacu-

olar functions were associated with 13 genes, 6 of which encode

components of endosomal sorting complexes required for trans-

port (ESCRT). Many of these proteins are part of the Nbr1-medi-

ated vacuolar targeting (NVT) autophagic system (Liu et al.,

2015). The NVT pathway does not contain core Atg proteins

but depends on ESCRTs and the multi-vesicular body to deliver

soluble cargoes to the vacuole. How might vesicular transport

and the NVT pathway relate to TOR signaling? Disruption of

vesicle-mediated transport at the endosome triggers a meta-

bolic signature similar to TORC1 inhibition (Mulleder et al.,

2016). It is possible that TORC1 controls the NVT pathway or

that some of our mutants affect TORC1 localization to the vacu-

ole, thus rendering the system resistant to Torin1 inhibition. A

gene from the screen encodes the GATA transcription factor

Gaf1. In budding yeast, components of Golgi-to-vacuole traf-

ficking are required for TORC1-responsive regulation of GATA

factors (Fayyadkazan et al., 2014; Puria et al., 2008). Given our

interest in TORC1-dependent gene regulation and the strong

Torin1-resistance of gaf1D mutants (Figure 1G), we further

analyzed the function of Gaf1.

Gaf1 Is Required for Normal Lifespan and Lifespan
Extension by Torin1 Treatment
TORC1 inhibition through nutrient limitation or rapamycin pro-

longs chronological lifespan in S. pombe (Rallis et al., 2013,

2014), defined as the time post-mitotic cells remain viable in sta-

tionary phase. Given that Gaf1 is required to arrest growth upon

TOR inhibition, we hypothesized that Gaf1 may also play a role

in chronological lifespan. Indeed, gaf1D cells were shorter lived,

with median and maximum lifespans of 3 and 16 days, respec-

tively, compared with 5 and 20 days for wild-type cells (Figure 2).

Thus, Gaf1 is required for the normal lifespan of non-dividing cells.

Torin1 increases lifespan in flies (Mason et al., 2018) and sup-

presses senescence in human tissue cultures (Leontieva and

Blagosklonny, 2016). To analyze the effect of Torin1 on chrono-

logical lifespan in S. pombe, and any role of Gaf1 in this condi-

tion, we pre-treated exponentially growing wild-type and gaf1D

cells with Torin1 and tested for subsequent effects on lifespan

during the stationary phase. Torin1 substantially prolonged life-

span in wild-type cells, with median and maximum lifespans of

18 and 33 days, respectively, compared with 5 and 20 days in

untreated cells (Figure 2A). In gaf1D cells, Torin1 also prolonged

lifespan but to a lesser extent than in wild-type cells, with median

and maximum lifespans of �13 and 30 days, respectively (Fig-

ure 2A). To quantify the role of Gaf1 in Torin1-mediated longevity,

we calculated the areas under the curve (AUCs, measured

as days 3 percentage of survival from lifespan assays). In
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Figure 1. Screen for Torin1-Resistant Mutants

(A) Torin1 blocks cell proliferation. Top: ten-fold serial dilutions of wild-type (WT) cells spotted on rich solid medium. Bottom: growth profiles in rich liquid medium

using a microfermentor, in the absence (control) and presence of Torin1.

(B) Torin1 leads to decreased cell and vacuole sizes. Sizes of septated WT cells (top) and vacuoles (bottom) during Torin1 treatment.

(C) Torin1 alters phosphorylation status of translational regulators. Phosphorylated (P) and total amounts (T) of ribosomal S6 and eIF2a proteins in WT cells

following Torin1 treatment in rich (YES) or minimal (EMM2) media.

(D) Design of genome-wide screens to identify mutants resistant to Torin1-mediated growth inhibition. We screened Bioneer version 2 (3,005 mutants) and

Bioneer version 5 (3,420 mutants) of deletion libraries (Kim et al., 2010) in two independent repeats each, using 20 mM Torin1 on rich solid medium (YES).

(E) Example of deletion library plate with Torin1, containing 1,536 colonies with each mutant printed in quadruplicate. Red boxes indicate three Torin1-resistant

mutants.

(F) Torin1 sensitivity test using spotting assays for a WT control and the 19 resistant mutants identified, using different Torin1 concentrations as indicated.

Red frames: 4 mutants showing strong resistance to all Torin1 concentrations tested.

(G) Cellular processes associated with the 19 genes (red) required for Torin1-mediated growth inhibition.

See also Figure S1 and Table S1.
wild-type cells, the lifespan was prolonged from an average AUC

of 1,044 to 2,689 (increase of 1,645), whereas in gaf1D cells, the

lifespan was prolonged to a lesser extent, from an average AUC

of 681 to 1,709 (increase of 1,027) (Figure 2B). We conclude that

Gaf1 is also required for the full lifespan extension resulting from

Torin1-mediated TOR inhibition during cell proliferation. Howev-

er, Torin1 still can prolong lifespan considerably without Gaf1,

indicating that other factors contribute to this longevity. Indeed,
3242 Cell Reports 30, 3240–3249, March 10, 2020
we have identified several proteins required for lifespan exten-

sion when TORC1 is inhibited, including the S6K protein Sck2

(Rallis et al., 2014).

Gaf1-Dependent Transcriptome Regulation following
TOR Inhibition
Given that Gaf1was essential for growth inhibition by Torin1 (Fig-

ure 1G), we further analyzed its function in this condition. Gaf1
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(A) Chronological lifespan assays in WT and gaf1D cells grown in EMM2 in the absence or presence of 8 mMTorin1. Error bars represent SDs from 3 independent

cell cultures, each measured 3 times per time point.

(B) AUC for lifespan assays of WT and gaf1Dmutant cells without or with Torin1 treatment. Vertical bars: Torin1-mediated increase in average AUC values for WT

(black) and gaf1D (red), with the p value reflecting the significantly larger lifespan increase in WT than in gaf1D cells.
accumulated in the nucleus within a few minutes following treat-

ment with Torin1 (Figure 3A) or with caffeine and rapamycin (Fig-

ure S2), drugs that inhibit TORC1, but not TORC2 (Rallis et al.,

2013). Consistently, Gaf1 is known to translocate to the nucleus

during nitrogen limitation, which also inhibits TORC1, and

biochemical analyses have shown that Gaf1 localization and

phosphorylation depend on TORC1 activity (Laor et al., 2015;

Ma et al., 2015). This regulation of GATA transcription factors

is conserved: budding yeast Gln3 and Gat1 (Broach, 2012) and

mammalian GATA6 (Xie et al., 2015) are also sequestered in

the cytoplasm by active TORC1 and translocate to the nucleus

upon TORC1 inhibition.

In S. pombe, Gaf1 activates genes functioning in amino-acid

transport but represses ste11, encoding a master regulator for

meioticdifferentiation (Kimetal., 2012;Maetal., 2015). Tosystem-

atically identify Gaf1-dependent transcripts, we performedmicro-

array analyses of wild-type and gaf1D cells, both before and after

Torin1 treatment. Before Torin1 treatment, wild-type and gaf1D

cells showed similar expression signatures (Figures 3B and 3C).

Weconclude that inproliferating cells,Gaf1playsnooranegligible

role in gene regulation, consistent with its cytoplasmic localization

when TORC1 is active (Figure 3A; Laor et al., 2015).

However, Torin1 treatment resulted in substantial transcrip-

tome changes in both wild-type and gaf1D cells, but in gaf1D

cells, the expression signature markedly differed from the signa-

ture in wild-type cells (Figures 3B and 3C). Overall, 90 and 108

genes consistently showed R1.5-fold higher or lower expres-

sion, respectively, in gaf1D relative to wild-type cells after Torin1

treatment (Figure 3B; Table S2). Cells treated with caffeine and

rapamycin, which inhibit TORC1, but not TORC2 (Rallis et al.,

2013), showed similar expression signatures as Torin1-treated

cells in both wild-type and gaf1D cells (Figures 3B and 3C).

This result indicates that the Torin1-mediated expression signa-

tures in wild-type and gaf1D cells reflect TORC1 inhibition. We

conclude that after TORC1 inhibition, Gaf1 affects the expres-

sion of �200 genes, either positively or negatively.

We performed functional enrichment analyses for these Gaf1-

dependent genes using AnGeLi and g:profiler (Bitton et al., 2015;
Raudvere et al., 2019). The 90 genes that were expressed higher

in gaf1D than in wild-type cells (i.e., genes repressed by Gaf1)

were typically downregulated in Torin1-treated wild-type cells

but less so in gaf1D cells (Figure 3B). These genes were enriched

in anabolic processes such as biosynthesis (61 genes, p = 9.43

10�10), ribosome biogenesis (19 genes, p = 1.6 3 10�3), and

cytoplasmic translation (31 genes, p = 1.0 3 10�16), including

25 genes encoding ribosomal proteins. In budding yeast and

worms, genetic inhibition of ribosomal proteins leads to lifespan

extension (Hansen et al., 2008; McCormick et al., 2015). Fig-

ure S3 visualizes all Gene Ontology (GO) biological processes

enriched among the 90 genes. Many of these genes are also

repressed as part of the core environmental stress response

(43 genes, p = 1.4 3 10�20; Chen et al., 2003) and are highly ex-

pressed in proliferating cells (mean of 46.9 mRNA copies/cell

versus 7.5 copies for all mRNAs, p = 1.2 3 10�26; Marguerat

et al., 2012). We conclude that upon TORC1 inhibition, Gaf1 con-

tributes to the downregulation of highly expressed genes

functioning in protein synthesis.

The 108 genes that were expressed lower in gaf1D than in

wild-type cells (i.e., genes induced by Gaf1) were typically upre-

gulated in Torin1-treated wild-type cells but less so in gaf1D cells

(Figure 3B). These genes were enriched in several metabolic pro-

cesses of small molecules, including organonitrogen com-

pounds (43 genes, p = 4.6 3 10�14), amino acids (18 genes,

p = 4.13 10�5), urea (6 genes, p = 7.33 10�5), and organic acids

(20 genes, p = 0.001) (Figure S3). There was also a substantial

overlap with genes that are induced by nitrogen limitation (43

genes, p = 1.3 3 10�29; Mata et al., 2002) and genes that are

periodically expressed during the cell cycle (41 genes, p =

1.6 3 10�12; Marguerat et al., 2006), including 9 histone genes.

These results suggest a Gaf1-dependent transcriptional pro-

gram to adjust the metabolism of amino acids and other mole-

cules, possibly to recycle nutrients under conditions that do

not allow rapid proliferation. Similar gene-expression changes

are mediated by budding yeast Gln3 and Gat1 under conditions

of TORC1 inhibition (Kuroda et al., 2019; Scherens et al., 2006).

Altogether, these findings indicate that Gaf1 regulates
Cell Reports 30, 3240–3249, March 10, 2020 3243
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(A) Top panels: fluorescence microscopy of cells

expressing GFP-tagged Gaf1 (left) with chromatin

stained by Hoechst 33342 (middle) after 10 min of

exposure to 20 mM Torin1. Bottom panels: fluores-

cence microscopy of live Gaf1-GFP cells, showing
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intervals after addition of either DMSO (solvent
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also Figure S2.

(B) Hierarchical clustering of microarray data. Col-

umns represent WT or gaf1 mutants (gaf1D) before

(untreated) and after 1 h of treatment with 20 mM

Torin1 or with 10 mM caffeine and 100 ng/mL of ra-

pamycin (Caff+Rap). Rows represent the 198 genes

whose mRNA levels changed R1.5-fold in Torin1-

treated gaf1D cells relative toWT cells, consisting of

90 genes showing higher expression (red bar) and

108 genes showing lower expression (blue bar) in

gaf1D cells. In untreated cells, only 3 genes showed

R1.5-fold expression changes in gaf1D relative to

WT cells. Average RNA expression changes (from 2

independent repeats) in the different genetic and

pharmacological conditions relative to WT control

cells are color coded as shown. The orange bars

indicate 43 genes whose promoters were bound by

Gaf1 after 60 min with Torin1. See also Figure S3.

(C) Principal-component (PC) analysis of all genes

measured by microarrays. PC1 separates untreated

cells fromcells treatedwith Torin1 (T) or caffeine and

rapamycin (CT), while PC2 separatesWT (blue) from

gaf1mutants (gaf1D, red). Percentagesof the xandy

axes show the contribution of the corresponding PC

to the difference in the data.
physiological changes supporting the growth arrest triggered by

TORC1 inhibition.

Gaf1 Binds to Both Coding and tRNA Genes following
TOR Inhibition
The microarray analyses identified genes whose expression

depends on Gaf1, some of which may be directly regulated

by Gaf1. To detect gene promoters bound by Gaf1, we per-

formed chromatin immunoprecipitation sequencing (ChIP-

seq) of Gaf1-GFP cells. The number of Gaf1-bound promoters

increased from 165 before Torin1 treatment to 454 after

Torin1 treatment, with 93 genes in common between the

two conditions (Figure 4A). Gaf1 binding sites upstream of

close, divergently expressed genes were assigned to both

genes. The Gaf1 target genes after Torin1 treatment con-

sisted of 245 protein-coding genes and 209 non-coding genes

(Table S3).

The protein-coding Gaf1 target genes were significantly en-

riched in metabolic processes of organonitrogen compounds

(55 genes, p = 1.4 3 10�6), including nucleotides (24 genes,

p = 0.0009) and organic acids (34 genes, p = 0.0003) (Figure S4).

They were also enriched for genes induced by nitrogen limitation

(40 genes, p = 1.63 10�11) and periodically expressed during the

cell cycle (53 genes, p = 4.53 10�6). Overall, these target genes
3244 Cell Reports 30, 3240–3249, March 10, 2020
showed similar functional enrichments to the genes whose

expression was induced by Gaf1. Accordingly, Gaf1 binding

sites were enriched among the genes induced by Gaf1 (Fig-

ure 3B, orange bars). Moreover, most protein-coding genes

bound by Gaf1 were induced by TORC1 inhibition but less so

in gaf1D cells, leading to distinct clusters for wild-type and

mutant conditions (Figure 4B). We conclude that coding Gaf1

target genes are mostly upregulated by Gaf1 when TORC1 is

inhibited.

Notably, Gaf1 bound to the promoters of 20 transcription fac-

tor genes (Table S3; Figure S4). Typically, these factors were

induced in wild-type cells after TORC1 inhibition but less so in

gaf1D cells. Many of these factors are involved in stress re-

sponses or cell-cycle regulation, including Atf1 (Wilkinson

et al., 1996), Cbf12 (Chen et al., 2003), Fep1 (Bekker et al.,

1991), Fil1 (Duncan et al., 2018), Hsr1 (Chen et al., 2008), Klf1

(Shimanuki et al., 2013), Loz1 (Corkins et al., 2013), Pap1

(Chen et al., 2008), Php3 (Mercier et al., 2006), and Sep1 (Rustici

et al., 2004). These transcription-factor targets indicate that Gaf1

may indirectly control some Gaf1-dependent genes via other

transcription factors. Gaf1 inhibited the expression of many

genes functioning in translation (Figure S3), but these genes

were not among its direct binding targets. These genes may

thus be indirectly regulated by Gaf1; for example, Atf1 represses
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Figure 4. Gaf1 Regulation of Protein-Coding and tRNA Genes

(A) Gaf1 binding sites across the 3 S. pombe chromosomes, before (0 min,

blue) and after (60 min, orange) treatment with 20 mM Torin1. See also Fig-

ure S4.

(B) Hierarchical clustering of microarray data for 150 protein-coding genes

bound by Gaf1 after Torin1 treatment and for which expression data were

available for all conditions. The conditions have been clustered aswell (red tree

on top) and are grouped as follows: untreatedWT and gaf1D cells (Uwt, Ugaf1),

caffeine+rapamycin- or Torin1-treated gaf1D cells (CRgaf1, Tgaf1), and caf-

feine+rapamycin- or Torin1-treatedWT cells (CRwt, Twt). Expression changes

are color coded as in Figure 3B.

(C) Gaf1 shows increased binding to tRNA genes after Torin1 treatment. Top,

red curves: average Gaf1 binding profiles aligned to transcription start sites

(TSSs) of all S. pombe tRNA genes before (0 min) and after (60 min) Torin1
translation-related genes during stress (Chen et al., 2008),

raising the possibility that it also represses these genes during

TORC1 inhibition in a Gaf1-dependent manner.

The 209 non-coding genes among the Gaf1 targets included

82 tRNA genes and a small nucleolar RNA (snoRNA) involved

in tRNA regulation, besides large non-coding RNAs (Table S3).

Coverage plotting indicated that Gaf1 binds to all tRNA genes

that are clustered in S. pombe (Figure 4C; Figure S5). Binding

occurred near the transcription start sites for tRNA genes and

strongly increased after Torin1 treatment (Figure 4C). We

conclude that Gaf1 binds not only to genes transcribed by

RNA Pol II but also to the tRNA genes transcribed by RNA Pol

III. To address whether Gaf1 represses or activates tRNAs, we

performed northern analyses of tRNA gene expression as a func-

tion of Gaf1 and Torin1. The abundant mature tRNAs are rapidly

processed from precursor tRNAs, which need to be assayed to

detect expression changes (Otsubo et al., 2018). The expression

of tRNA precursors decreased during Torin1 treatment in wild-

type cells, while in gaf1D cells their expression was higher and

showed a delayed and less pronounced decrease, especially

at later time points (Figures 4D and 4E). We conclude that Gaf1

binds to tRNA genes and inhibits their expression upon TOR

inhibition.

Downregulation of precursor tRNA expression is required

for TORC1 inhibition in S. pombe (Otsubo et al., 2018), indi-

cating that tRNAs can act upstream of TORC1. Our experi-

ments, conversely, point to a mechanism of tRNA regulation

downstream of TORC1. Altogether, these findings suggest

regulatory feedback, involving precursor tRNAs, TORC1, and

Gaf1, to match tRNA expression to physiological require-

ments. Our results reveal a transcription factor that not only

controls RNA Pol II-mediated expression of genes functioning

in translation- and metabolism-related processes but also

globally inhibits RNA Pol III-mediated expression of tRNAs.

It will be interesting to test whether the latter function is

conserved for orthologous GATA transcription factors.

Studies of Gln3 and Gat1 function in budding yeast have

excluded tRNAs and are therefore not conclusive with respect

to tRNA gene regulation (Kuroda et al., 2019; Scherens et al.,

2006).
treatment, along with corresponding control ChIP-seq data (hemagglutinin

[HA]). Bottom: heatmaps of Gaf1 binding around the TSS of all 196 tRNAs,

ordered by normalized ChIP-seq coverage. See also Figure S5.

(D) Northern blots of precursor tRNAs for leucine (top) and asparagine (middle)

fromWT and gaf1D cells, treated with 20 mMTorin1 over 120 min as indicated.

Probes to detect precursor tRNAs, indicated with red bars, are as described

before (Otsubo et al., 2018). Probes for cdc2 were used as loading control

(bottom).

(E) Northern quantitation of leucine and asparagine precursor tRNAs relative to

WT time 0 and normalized to loading controls (three independent repeats

shown as dots). Asterisks denote significant differences in pre-tRNA levels

between WT and gaf1D cells from same time point (t test, p < 0.05).

(F) Model for Gaf1-mediated transcriptional repression of translation down-

stream of TORC1. Following TORC1 inhibition, Gaf1 activates the transcription

of genes for small-molecule metabolic pathways and represses the tran-

scription of tRNAs and other genes functioning in translation (the latter via

indirect control, hatched). Together with the S6K-mediated translational

control (Ma and Blenis, 2009), this transcriptional branch contributes to

longevity.
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Conclusions
The GATA transcription factor Gaf1 is essential for blocking cell

proliferation with Torin1; in its absence, cell growth remains

normal, even in high doses of Torin1 (Figure 1G). Gaf1 is also

required for normal chronological lifespan and contributes to,

but is not necessary for, the longevity of Torin1-treated cells (Fig-

ure 2). Upon TORC1 inhibition, Gaf1 inhibits the expression of

genes functioning in protein translation, including protein-coding

genes, which may be indirectly controlled by Gaf1, and tRNA

genes, which are binding targets of Gaf1 (Figures 3 and 4).

Gaf1 also positively controls genes functioning in metabolic

pathways for nitrogen-containing molecules, which support the

adaptation to lowered protein synthesis. Thus, Gaf1 can directly

regulate both RNA Pol II- and RNA Pol III-transcribed genes. It is

possible that Gaf1 elicits its repressor activity at tRNA genes by

recruiting a histone deacetylase: work in S. pombe has identified

potential loading sites for Clr6 complex components at tRNAs

(Zilio et al., 2014). Downregulation of global protein translation

is beneficial for longevity in all organisms studied, including

S. pombe (Kaeberlein and Kennedy, 2011; Rallis and Bähler,

2013). Given its role in repressing diverse translation-related fac-

tors, Gaf1 may inhibit aging by contributing to the downregula-

tion of translation upon TORC1 inhibition (Figure 4F). Gaf1 thus

defines a transcription-based branch of translational and meta-

bolic control downstream of TORC1, in parallel to the post-trans-

lational branch exerted by translational regulators like S6K (Fig-

ure 4F). This transcriptional branch is essential for growth

inhibition triggered by lowered TORC1 activity.

RepressionofRNAPol III prolongs lifespan in yeast,worms, and

flies and is required for the lifespan extensionmediated by TORC1

inhibition (Filer et al., 2017). Besides general transcription factors

such as TFIIIB, TFIIIC, and TBP, several factors control RNA Pol III

transcription without directly binding to DNA (Hummel et al.,

2019), including the RNA Pol III inhibitor Maf1, the coactivator

PNRC, and MYC, which interacts with the RNA Pol III basal appa-

ratus (Campbell andWhite, 2014; Graczyk et al., 2018; Zhou et al.,

2007). To our knowledge, the TORC1 target Gaf1 is the first spe-

cific transcription factor shown to globally bind to and repress the

tRNA genes. Thus, Gaf1 could exert the aging-associated func-

tion of RNAPol III. Recentwork in flies shows thatGATA transcrip-

tion factors can mediate the effects of dietary restriction on life-

span (Dobson et al., 2018). This finding raises the possibility that

Gaf1 regulation of aging-related processes is conserved and

that other GATA factors exert similar functions downstream of

TORC1. The mouse and human ortholog of Gaf1, GATA6, is

involved in differentiation, stem cell maintenance, and cancer

(Viger et al., 2008; Wamaitha et al., 2015; Zhong et al., 2011). It

is plausible that GATA6 exerts these important functions by regu-

lating translation-related genes, including tRNAs.
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M. (2010). grofit: Fitting biological growth curves with R. J. Stat. Soft. 33, 1–21.

Kim, D.U., Hayles, J., Kim, D., Wood, V., Park, H.O.,Won,M., Yoo, H.S., Duhig,

T., Nam, M., Palmer, G., et al. (2010). Analysis of a genome-wide set of gene

deletions in the fission yeast Schizosaccharomyces pombe. Nat. Biotechnol.

28, 617–623.

Kim, L., Hoe,K.L., Yu, Y.M., Yeon, J.H., andMaeng, P.J. (2012). The fission yeast

GATA factor, Gaf1, modulates sexual development via direct down-regulation of

ste11+ expression in response to nitrogen starvation. PLoS ONE 7, e42409.

Kuroda, K., Hammer, S.K., Watanabe, Y., Montaño López, J., Fink, G.R., Ste-
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Phospho-(Ser/Thr) Akt Substrate (PAS) Cell Signaling Cat#9611; RRID:AB_330302

Anti-rps6 Abcam Cat#ab40820; RRID:AB_945319

anti-rabbit HRP Abcam Cat#ab6721; RRID:AB_955447

Anti-GFP Abcam Cat#ab290; RRID:AB_303395

Anti-HA Abcam Cat#ab9110; RRID:AB_307019

Dynabeads M-280 sheep

anti Rabbit IgG

Thermo Fisher Cat# 11203D; RRID:AB_2783009

Chemicals, Peptides, and Recombinant Proteins

Rapamycin LC Laboratories # R-5000

Caffeine Sigma # 27602-250G

Torin1 TOCRIS #4247

FM4-64 ThermoFisher #T13320

Calcuofluor Sigma #18909

Doxycycline hyclate Sigma # D9891

CdSO4 Sigma # 202924

Cycloheximide Sigma # C7698

PMSF Sigma #10837091001

Phosphatase Inhibitor Cocktail 1 Sigma #P2850

Phosphatase Inhibitor Cocktail 2 Sigma #P5726

Complete, EDTA free protease

Inhibitor Cocktail

Merck #11873580001

Critical Commercial Assays

Microarrays Agilent Custom design 8x15K

NEBNext� ultra DNA Library Prep kit New England Biolabs E7370L

ECL Western Blotting Detection System GE Healthcare GERPN2134

DIG Oligonucleotide 30 End Labeling Kit,

2nd generation

Merk #03353575910

DIG Luminescent Detection Kit Merk # 11363514910

DIG Wash and Block Buffer Set Merk # 11585762001

BrightStar-Plus Positively Charged

Nylon Membrane

Thermo Fisher # AM10100

Mini-PROTEAN� TBE-Urea Precast Gels Bio Rad # 4566036

MiSeq Reagent Kit v3 (150-cycle) Illumina MS-102-3001

Deposited Data

ChIP-seq data ENA Accession numbers:

PRJEB32910 and ERP115647

Microarray data ArrayExpress Accession number: E-MTAB-8569

Experimental Models: Organisms/Strains

Fission yeast 972- Bahler lab strainlist JB903

Fission yeast Gaf1-GFP Bahler lab strainlist JB1744

Fission yeast Bioneer strains Bioneer N/A

Oligonucleotides

Cdc-SRT cdc2-SRT GGGCAGGGTCATAAACAAGC Clément-Ziza et al., 2014

tRNA-leu-CAA-intron-5 GACTATCGTCCAAGTATTACTTGAGTGCTGCG Otsubo et al., 2018

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

tRNA-asn01-5leader TATGCTACCCGACCTATAATGCTCCTGGTGAG Otsubo et al., 2018

Software and Algorithms

ImageJ Schneider et al., 2012 https://imagej.nih.gov/ij/

Volocity acquisition program PerkinElmer https://www.perkinelmer.com/

Volocity quantitation package PerkinElmer https://www.perkinelmer.com/

GEM Guo et al., 2012 http://groups.csail.mit.edu/cgs/gem/

Bowtie2 Langmead and Salzberg, 2012 http://bowtie-bio.sourceforge.net/

bowtie2/index.shtml

ChIPpeakAnno Zhu et al., 2010 https://www.bioconductor.org/packages/

release/bioc/html/ChIPpeakAnno.html

Deeptools Ramı́rez et al., 2016 https://deeptools.readthedocs.io/en/develop/

Samtools Li et al., 2009 http://samtools.sourceforge.net/
LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, J€urg

Bähler (j.bahler@ucl.ac.uk). This study generated new S. pombe strains that are available from the Lead Contact without restriction

upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

This study has been conducted using S. pombe as experimental model. For wild-type control strains, we used 972 h- or the parental

strains for the deletion library, ED666 (h+ ade6-M210 ura4-D18 leu1–32) and ED668 (h+ ade6- M216 ura4-D18 leu1–32). The Bioneer

haploid deletion library strains used for further studies were PCR-validated and backcrossed with 972 h-. The gaf1-GFP strain was

generated as described (Bahler et al., 1998). Cell cultures were grown in yeast extract plus supplements (YES) as default or in

Edinburgh minimal medium (EMM2) if indicated (Moreno et al., 1991). Liquid cultures were grown at 32�C with shaking at 130

rotations per minute.

METHOD DETAILS

Drug sensitivity assays
Cells were grown in liquid YES to an OD600 of 0.5. Ten-fold serial dilutions of cells were spotted onto YES agar plates, using replica

platers for 48-well or 96-well plates (Sigma), with or without drugs as indicated in figure legends.

Measurement of cell size and fluorescence microscopy
To determine cell size, control and drug-treated cells were fixed in 4% formaldehyde for 10 min at room temperature, washed with

50 mM sodium citrate, 100mM sodium phosphate, and stained with Calcofluor (50 mg/ml). Microscopy was performed using a DAPI

filter for Calcofluor detection and a Hamamatsu ORCA-ER C4742-95 digital camera fitted to a Zeiss Axioskop microscope with EC

plan-NEOFLUAR 63x 1.25 NA oil objective. Images were recorded using the Volocity acquisition program (PerkinElmer). At least 100

septated cells were counted and analyzed for each condition using the Volocity quantitation package (PerkinElmer). Results were

analyzed in R. For fluorescence microscopy of Gaf1-GFP cells, we used a spinning disk confocal microscope (Yokogawa

CSU-X1 head mounted on Olympus body; CoolSnap HQ2 camera [Roper Scientific], Plan Apochromat 100X, 1.4 NA objective

[Olympus]). The images correspond to maximum intensity projections of 15 image stacks with a Z-step of 0.3 microns. Cells were

immobilized with soybean lectin (Sigma L1395) in two different compartments of a glass-bottom 15 m-Slide 8 well (Ibidi 80821) to

add either DMSO as a solvent control or Torin1 (to a final concentration of 20 mM, dissolved in DMSO). In vivo chromatin staining

was done with Hoechst 33342 (1 mg/ml). As this dye performs poorly in YES, cells were immobilized onto glass bottom wells and

washed three times with liquid EMM2 containing Hoechst 33342 (Sigma-Aldrich B2261) at 1 mg/ml plus Torin1 (20 mM). Cells

were covered with this media and imaged 10 min later. Image analysis and editing was performed using Fiji (ImageJ) open software

(Schindelin et al., 2012).

Measurement of vacuolar size
Vacuolar labeling was performed as described (Codlin and Mole, 2009). Briefly, FM4-64 dye (Molecular Probes) was dissolved in

DMSO at a concentration of 0.82 mM, and 2 mL FM4-64 stock was added to 1 mL log-phase cells with or without drugs. Following
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30 min exposure to FM4-64, cells were washed and chased for 40 min in fresh media to allow all dye to reach the vacuole. Fluores-

cence microscopy was performed using a Rhodamine filter for detection of FM4-64 and a Hamamatsu ORCA-ER C4742-95 digital

camera fitted to a Zeiss Axioskop microscope with EC plan-NEOFLUAR 3 63 1.25 NA oil objective. Images were recorded using

the Volocity acquisition program (PerkinElmer). At least 500 vacuoles were measured using the Volocity quantitation package

(PerkinElmer). Results were analyzed in R.

Chronological lifespan assay
Cells were grown in EMM2media as described (Rallis et al., 2013). When cultures reached a stable maximal density, cells were left an

additional 24 hr and then harvested, serially diluted, and incubated on YES plates. The measurement of colony-forming units (CFUs)

was taken at the beginning of the lifespan curve (time point 0: 100%cell survival). CFUmeasurements were conducted on successive

days until cultures dropped to 0.1% cell survival. Error bars represent standard deviation calculated from three independent cultures,

with each culture measured three times at each time point. To determine the chronological lifespan when TOR is inhibited, 8 mM

Torin1 was added to rapidly proliferating cell cultures at OD600 = 0.5 which were then grown to stationary phase, and lifespan

was recorded as described above. AUCs were measured with ImageJ (Schindelin et al., 2012) for all experimental repeats using

lifespans curves on the linear scale for % survival.

High-throughput genetic screening
The haploid deletion libraries were plated onto YES plates containing 100 mg/ml G418 using a RoToR HDA robot (Singer). Multiple

replicate copies of the library were thus generated. Using the RoToR, the libraries were compacted into nine 384-density plates

of plates and then printed onto plates containing 20 mM Torin1. The plates were incubated at 32�C for 2 days and then manually

scored for resistant colonies.

Growth assay
Growth in the presence or absence of Torin1 were automatically determined in 48-well flowerplates at 1.5mL volumes, 1000 rpm and

32�C using the Biolector microfermentation system (m2p-biolabs). Growth dynamics were modeled using the grofit R package

(Kahm et al., 2010). In the resulting growth curves, the units of the x axis are time (hr) while the y axis shows biomass (arbitrary units)

normalized to biomass at time 0.

Western blotting and antibodies
For protein preparations, cells were diluted in 6 mM Na2HPO4, 4mM NaH2PO4.H2O, 1% Nonidet P-40, 150 mM NaCl, 2 mM EDTA,

50 mM NaF supplemented with protease (PMSF) and phosphatase inhibitors (Sigma cocktails 1 and 2), together with glass beads.

Cells were lysed in a Fastprep-24 machine (MP Biomedicals). Phospho-(Ser/Thr) Akt Substrate (PAS) Antibody (9611, Cell Signaling)

for detection of P-S6 (p27) and anti-rps6 (ab40820, Abcam) were used at 1/2000 dilution. For detection, we used the anti-rabbit HRP-

conjugated antibody (1/5000 dilutions) with the ECL Western Blotting Detection System (GE Healthcare) according to the manufac-

turer’s protocol.

Microarrays
Microarray analysis was performed as previously described (Rallis et al., 2013). Cells were grown in YES to OD600 = 0.5 and har-

vested. Torin1 treatments were done for 1 hr at a concentration of 20 mM. Caffeine/rapamycin treatments were also performed for

1 hr at concentrations 10mM caffeine and 100ng/ml rapamycin. Two independent biological repeats with a dye swap were per-

formed. For each repeat, a corresponding pool of Torin1 or caffeine/rapamycin treated and untreated wild-type and gaf1D cells

was used as a common reference for microarray hybridization. Agilent 8 3 15K custom-made S. pombe expression microarrays

were used, with hybridizations and subsequent washes performed according to the manufacturer’s protocols. The microarrays

were scanned and extracted using GenePix (Molecular Devices), processed using R scripts for quality control and normalization,

and analyzed using GeneSpring GX3 (Agilent). We determined genes that were 1.5-fold upregulated or downregulated in both

repeats of Torin1-treated and caffeine/rapamycin-treated gaf1D cells relative to Torin1-treated and caffeine/rapamycin-treated

wild-type cells respectively.

ChIP-seq
Cells were grown in YES to an OD600 of �0.4. Untreated and Torin 1-treated (20 mM for 15 min or 1 hr) cells were fixed in 1% form-

aldehyde for 30 min and then quenched 10 min with 125mM glycine. Pellets were washed with ice-cold PBS, snap frozen in liquid

nitrogen and stored at �80�C. Cell pellets were resuspended in lysis buffer (50 mM HEPES pH 7.6, 1mM EDTA pH 8, 150 mM NaCl,

1% Triton X-100, 0.1% sodium doxycolate, 1mM PMSF and protease inhibitors). Chromatin was obtained following cell disruption

using a Fastprep-24 (MP Biomedicals) and sheared using a Bioruptor (Diagenode). Dynabeads M-280 sheep anti-rabbit IgG were

incubated in lysis buffer and 0.5% BSA for 2 hr with either rabbit anti-GFP (Abcam) for query IPs or 5 ml of rabbit-anti HA (Abcam)

for control IPs. Then, 2 mg of Chromatin extract were inmunoprecipitated for 16 hr using the corresponding antibody-incubated

Dynabeads. Following the washes, DNA was eluted, treated with RNase and proteinase K, and purified using the QIAGEN PCR

MiniElute kit. Sequencing libraries were prepared using the NEBNext� ultra DNA Library Prep kit for Illumina� (E7370L). DNA
e3 Cell Reports 30, 3240–3249.e1–e4, March 10, 2020



was sequenced using IlluminaMi-seqwith a V3 kit, sequencing 75 bp on each end. Sequenceswere aligned to theS. pombe genome

build ASM294v2 using Bowtie2. Peak calling was done with GEM (Guo et al., 2012) (setting–k_min 4 and–k_max 18), and peak

annotation was done with the R package ChIPpeakAnno (Zhu et al., 2010). Peaks were annotated to the closest TSS; for peaks lying

within 500 bp of 2 divergently expressed genes, peaks were annotated to both genes. Normalizations for the plots were performed

using deeptools (Ramı́rez et al., 2016) (normalizing to RPGC and using the parameters –centerReads –binsize 10 –smoothLength 2).

Further analyses were carried out with R scripts (http://www.r-project.org/). Gene enrichment analysis was performed using AnGeLi

(Bitton et al., 2015) and g:profiler (Raudvere et al., 2019).

Northern analyses
Detection of tRNA precursors was performed as described (Otsubo et al., 2018) using Digoxigenin labeled probes (Roche), following

the manufacturer’s instructions. As a loading control, northerns were stripped by incubating for 60 min at 60�C with 0.1% SDS,

changing the solution every 10 min, followed by re-hybridizing with a Digoxigenin labeled probe specific for cdc2 (cdc2-SRT

GGGCAGGGTCATAAACAAGC) as described (Clément-Ziza et al., 2014). Quantification of Northern blots has been performed by

ImageJ (Schindelin et al., 2012) as previously described (Rallis et al., 2014). Ratios of each tRNA band signal with the corresponding

cdc2 loading control have been normalized with the ratio at time point 0 for each tRNA and genotype.

QUANTIFICATION AND STATISTICAL ANALYSIS

Northern blot and lifespan AUC quantification has been conducted using ImageJ using 3 independent biological repeats (n = 3).

Significance has been defined using t tests with a p value cutoff of 0.05. Microarray experiments have been conducted in 2 biological

repeats with a dye swap. ChIP-seq experiments have been conducted in 2 biological repeats. Quantifications and statistical analysis

are also described in corresponding STAR Methods sections. Lifespan assays have been performed in three biological repeats with

each time point measured in three technical repeats for each biological replicate. t tests were used for AUC statistics. For Figures S3

and S4, p values refer to adjusted p values using the g:SCS algorithm described in the g:profiler software (Raudvere et al., 2019). For

Figure 1B, each boxplot represents at least 500 measured vacuoles. In Figure S1, each boxplot represents at least 100 measured

cells.

DATA AND CODE AVAILABILITY

Scripts for Analysis
Scripts, packages and programs used for analyses are mentioned in the main text and listed within the Key Resources Table.

Dataset Hosting
The accession numbers for the ChIP-seq data reported in this paper are ENA: PRJEB32910 and ERP115647. The accession number

for the microarray data reported in this paper is ArrayExpress: E-MTAB-8569.
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