
1 
 

   Predictive Precision in Battery Recycling: Unveiling Lithium 

Battery Recycling Potential through Machine Learning 

 

Alireza Valizadeh*a, Mohammad Hossein Amirhosseinib, Yousef Ghorbani c 

 

a Samad Power Ltd. 9 Centurion Ct, Brick Cl, Kiln Farm, Milton Keynes MK11 3JB, United Kingdom 

b Department of Computer Science and Digital Technologies, School of Architecture, Computing and 

Engineering, University of East London, London, E16 2RD, United Kingdom 

c School of Chemistry, University of Lincoln, Joseph Banks Laboratories, Green Lane, Lincoln, Lincolnshire, 

LN6 7DL, United Kingdom 

 

Abstract 

This paper explores the application of machine learning in battery recycling, aiming to enhance 

sustainability and process efficiency. The research focuses on three key areas: (i) Investigating machine 

learning's potential in predicting battery recycling viability, optimizing processes, and improving resource 

recovery. (ii) Assessing machine learning's impact on addressing engineering challenges within recycling. 

(iii) Introducing a streamlined framework for the application of machine learning in this domain. The study 

comprehensively analyzes scientific principles, methodologies, and algorithms relevant to battery 

recycling. Furthermore, it examines practical implications and challenges associated with implementing 

machine learning techniques in real-world scenarios. Our comparative analysis reveals that the proposed 

framework offers numerous advantages and effectively addresses common limitations seen in previous 

models. Notably, this framework provides detailed insights into pre-processing, feature engineering, and 

evaluation phases, catering to researchers with varying technical skills for effective model application in 

analysis and product development. 
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1 Introduction 

The recycling of lithium batteries holds significant scientific importance and has a crucial background [1]. 

With the increasing adoption of lithium batteries in various applications, such as electric vehicles, the 

need for efficient and scalable recycling processes has become crucial [2][3]. Traditional recycling 

methods often face challenges related to greenhouse gas emissions, economic viability, and the recovery 

of valuable materials [4]. Therefore, the utilization of machine learning (ML) in lithium battery recycling 

has gained attention as a data-driven approach to predict recycling potential. By leveraging real-time, 

non-invasive measurements and statistical ML , it becomes possible to optimize the recycling process 

without relying on complex physical models [5]. ML can also contribute to optimizing engineering 

challenges and improving recycling efficiency [6]. However, further research is necessary to fully explore 

and harness the potential of ML in enhancing lithium battery recycling. 

The application of ML in battery recycling has emerged as a promising avenue due to its potential to 

address the challenges associated with traditional recycling methods [7]. The growing demand for lithium 

batteries, especially in the context of electric vehicles and renewable energy storage, necessitates 

efficient and scalable recycling processes [8]. By utilizing ML algorithms, it becomes possible to predict 

the recycling potential of batteries, optimize the recycling process, and enhance resource recovery. This 

data-driven approach offers several advantages, including real-time, non-invasive measurements, and the 

ability to overcome the limitations of complex physical models. 

Moreover, ML can contribute to predicting battery life, optimizing engineering challenges [9], and 

improving recycling efficiency [10]. By analyzing vast amounts of data, ML algorithms can identify patterns 

and correlations that are difficult to discern using traditional methods [11]. These algorithms can then 

generate accurate predictions and insights, enabling more informed decision-making in the recycling 

industry. For example, previous research has shown the use of support vector regression in predicting the 

recycling potential for lithium-ion batteries [12].  Recent studies have demonstrated the application of 

ML in predicting the recycling potential for lithium-ion batteries [13].   

This paper aims to explore the motivation and scientific basis behind applying ML techniques in battery 

recycling, paving the way for more sustainable and effective recycling practices in the future. The 

objectives of this paper are (1) to investigate the potential of using ML techniques in battery recycling, (2) 

to assess their impact on enhancing the sustainability and efficiency of the recycling process and (3) 

proposing a data workflow to guide researchers in using ML techniques in battery recycling. The scope of 

this research encompasses the scientific principles, methodologies, and algorithms involved in ML for 

battery recycling. The paper also considers the practical implications and challenges of implementing ML 

techniques in real-world battery recycling scenarios. By addressing these objectives and exploring the 
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scope, this paper aims to contribute to the advancement of sustainable and effective battery recycling 

practices by a critical review of the literature, addressing the research gap and proposing a data workflow 

to the researchers. 

This paper begins by exploring the challenges and opportunities surrounding the recycling of lithium 

batteries. Subsequently, the study focuses on the data gathering approaches and the necessary 

preprocessing steps for the collected data. Furthermore, it delves into the examination of feature 

engineering and implementation of ML models for predicting the potential of recycling. This will be 

followed by presenting model performance and analysis, discussion and providing a framework for 

facilitating the application of ML models in the field of battery recycling. Lastly, a comprehensive 

conclusion will be presented. This paper provides significant references for researchers to understand the 

importance of ML in predicting the recycling potential of lithium batteries, as well as a framework to 

facilitate the application of ML in this field for both researchers in academia and businesses in industry. 

 

2 Lithium Battery Recycling: Challenges and Opportunities 

2.1 Overview of lithium battery components and recycling process 

It is crucial to highlight the importance of developing scalable recycling methods for lithium batteries 

when discussing the various components and recycling processes involved. This becomes even more 

significant in light of the growing deployment of gigawatt hours of batteries in electric vehicles 

[14]. Although multiple battery recycling processes are available, their environmental impact in terms of 

greenhouse gas emissions and economic viability can vary depending on the specific battery 

chemistry [14]. Therefore, it is imperative for recycling policies to incentivize efficient collection of 

batteries and encourage the adoption of energetically efficient recycling processes that result in reduced 

emissions. To provide a comprehensive understanding,  

 

Battery Type  Recycling Process Advantages Limitations 

Lead-Acid 
Batteries 
 

Smelting High recycling efficiency, recovery 
of valuable lead. 

Emissions and pollution control required, 
potential health risks associated with lead 
and sulfuric acid exposure. 

Desulfurization Effective removal of sulfur improves 
the quality of recovered lead. 

Additional steps and processes required, 
increasing the complexity and cost of 
recycling. 

Grid Casting Enables the reuse of lead in battery 
production, reduces the demand for 
raw materials. 

Requires additional manufacturing processes 
and energy for casting new battery grids. 
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Lithium-Ion 
Batteries 

Mechanical 
Shredding 

Facilitates the subsequent 
separation and recovery of valuable 
metals. 

Requires specialized equipment, and 
shredding can be energy-intensive. 

Magnetic 
Separation 

Efficient separation based on 
magnetic properties, aids in the 
recovery of specific metals. 

Limited effectiveness in separating all 
components, may require additional 
separation methods. 

Hydrometallurgical 
Processes 

Enables the recovery of valuable 
metals, reduces reliance on mining. 

Requires chemical processes and careful 
management of waste streams, can be 
technically complex and expensive. 

Thermal 
Treatment 

Effective recovery of metals at high 
temperatures can handle a wide 
range of battery sizes and types. 

Energy-intensive process, emissions 
management and environmental controls 
needed. 

Nickel-
Cadmium 
Batteries 

Thermal 
Treatment 

Efficient recovery of valuable 
metals, reduces cadmium 
environmental impact. 

Requires high-temperature furnaces and 
careful management of cadmium emissions, 
limited recycling facilities. 

Hydrometallurgical 
Processes 

Enables the recovery of valuable 
metals, reduces reliance on primary 
resources. 

Requires chemical processes and waste 
management, may have lower economic 
viability due to declining use of nickel-
cadmium batteries. 

Nickel-Metal 
Hydride 
(NiMH) 
Batteries 

Mechanical 
Shredding 

Facilitates subsequent separation 
and recovery processes. 

Requires specialized equipment, and 
shredding can be energy-intensive. 

Hydrometallurgical 
Processes 

Enables the recovery of valuable 
metals, reduces reliance on primary 
resources. 

Less developed recycling process compared 
to other battery types, limited recycling 
infrastructure, lower economic viability due 
to declining use of NiMH batteries. 

Thermal 
Treatment 

Effective recovery of metals at high 
temperatures can handle a wide 
range of battery sizes and types. 

Energy-intensive process, emissions 
management and environmental controls 
needed. 

Alkaline 
Batteries 

Mechanical 
Shredding 

Facilitates subsequent separation 
and recovery processes, reduces 
battery volume. 

Requires specialized equipment, and 
shredding can be energy-intensive. 

Physical 
Separation 
Techniques  

Enables efficient separation of 
battery components, enhances the 
recovery of metals. 

May require a combination of multiple 
separation techniques, additional processing 
steps and equipment. 

Hydrometallurgical 
Processes 

Enables the recovery of valuable 
metals, reduces environmental 
impact. 

Requires chemical processes and careful 
waste management, limited recycling 
infrastructure, lower demand for recycled 
materials compared to the production of new 
batteries. 

Table 1- Comparison of Battery Recycling Processes for a range of battery types [15][16][10]. 

 

There are various proposed or operational processes for recycling lithium-ion batteries, each with its own 

set of advantages and disadvantages [17]. While most process routes attain high yields for valuable metals 

like cobalt, copper, and nickel, the recovery of lithium is limited to a few processes with lower yields, 

despite its significant economic value. On the other hand, the recovery of other valuable components like 

graphite, manganese, and electrolyte solvents is technically feasible but poses economic challenges [18]. 

Processes that utilize a combination of mechanical processing, hydro-metallurgical, and pyrometallurgical 

steps appear to be effective in obtaining materials suitable for the re-manufacturing of lithium-ion 

batteries. Conversely, processes that heavily rely on pyrometallurgical steps are sturdy but can only 

recover metallic components [19]. 
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 presents a detailed overview of different battery types, their respective recycling processes, as well as 

their advantages and limitations. 

 

Battery Type  Recycling Process Advantages Limitations 

Lead-Acid 
Batteries 
 

Smelting High recycling efficiency, recovery 
of valuable lead. 

Emissions and pollution control required, 
potential health risks associated with lead 
and sulfuric acid exposure. 

Desulfurization Effective removal of sulfur improves 
the quality of recovered lead. 

Additional steps and processes required, 
increasing the complexity and cost of 
recycling. 

Grid Casting Enables the reuse of lead in battery 
production, reduces the demand for 
raw materials. 

Requires additional manufacturing processes 
and energy for casting new battery grids. 

Lithium-Ion 
Batteries 

Mechanical 
Shredding 

Facilitates the subsequent 
separation and recovery of valuable 
metals. 

Requires specialized equipment, and 
shredding can be energy-intensive. 

Magnetic 
Separation 

Efficient separation based on 
magnetic properties, aids in the 
recovery of specific metals. 

Limited effectiveness in separating all 
components, may require additional 
separation methods. 

Hydrometallurgical 
Processes 

Enables the recovery of valuable 
metals, reduces reliance on mining. 

Requires chemical processes and careful 
management of waste streams, can be 
technically complex and expensive. 

Thermal 
Treatment 

Effective recovery of metals at high 
temperatures can handle a wide 
range of battery sizes and types. 

Energy-intensive process, emissions 
management and environmental controls 
needed. 

Nickel-
Cadmium 
Batteries 

Thermal 
Treatment 

Efficient recovery of valuable 
metals, reduces cadmium 
environmental impact. 

Requires high-temperature furnaces and 
careful management of cadmium emissions, 
limited recycling facilities. 

Hydrometallurgical 
Processes 

Enables the recovery of valuable 
metals, reduces reliance on primary 
resources. 

Requires chemical processes and waste 
management, may have lower economic 
viability due to declining use of nickel-
cadmium batteries. 

Nickel-Metal 
Hydride 
(NiMH) 
Batteries 

Mechanical 
Shredding 

Facilitates subsequent separation 
and recovery processes. 

Requires specialized equipment, and 
shredding can be energy-intensive. 

Hydrometallurgical 
Processes 

Enables the recovery of valuable 
metals, reduces reliance on primary 
resources. 

Less developed recycling process compared 
to other battery types, limited recycling 
infrastructure, lower economic viability due 
to declining use of NiMH batteries. 

Thermal 
Treatment 

Effective recovery of metals at high 
temperatures can handle a wide 
range of battery sizes and types. 

Energy-intensive process, emissions 
management and environmental controls 
needed. 

Alkaline 
Batteries 

Mechanical 
Shredding 

Facilitates subsequent separation 
and recovery processes, reduces 
battery volume. 

Requires specialized equipment, and 
shredding can be energy-intensive. 

Physical 
Separation 
Techniques  

Enables efficient separation of 
battery components, enhances the 
recovery of metals. 

May require a combination of multiple 
separation techniques, additional processing 
steps and equipment. 

Hydrometallurgical 
Processes 

Enables the recovery of valuable 
metals, reduces environmental 
impact. 

Requires chemical processes and careful 
waste management, limited recycling 
infrastructure, lower demand for recycled 
materials compared to the production of new 
batteries. 

Table 1- Comparison of Battery Recycling Processes for a range of battery types [15][16][10]. 
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There are various proposed or operational processes for recycling lithium-ion batteries, each with its own 

set of advantages and disadvantages [17]. While most process routes attain high yields for valuable metals 

like cobalt, copper, and nickel, the recovery of lithium is limited to a few processes with lower yields, 

despite its significant economic value. On the other hand, the recovery of other valuable components like 

graphite, manganese, and electrolyte solvents is technically feasible but poses economic challenges [18]. 

Processes that utilize a combination of mechanical processing, hydro-metallurgical, and pyrometallurgical 

steps appear to be effective in obtaining materials suitable for the re-manufacturing of lithium-ion 

batteries. Conversely, processes that heavily rely on pyrometallurgical steps are sturdy but can only 

recover metallic components [19]. 

 

2.2 Key challenges in lithium battery recycling 

Recycling of lithium-ion batteries (LIBs) is critical given the continued electrification of vehicles and mass 

generation of spent LIBs. However, industrial- scale recycling is hampered by a variety of factors that 

make large-scale recycling difficult while maintaining economic viability.  

In the last ten years, researchers have shown unwavering dedication to the creation of spent LIB recycling 

methods that are characterized by high efficiency, low cost, and environmental friendliness. However, 

the ongoing advancement and substitution of rechargeable batteries present is a challenge because the 

research for developing recycling processes is not developing with the pace of LIB development process 

[20]. The rapid pace of LIB development poses a challenge to the advancement of LIB recycling technology 

because the recycling technology didn’t develop with same pace during the time. 

Data collection could be a challenge in recycling LIBs. However, it is believed that data collection 

methodologies, software and hardware are developed for this purpose. Data collection will be discussed 

later in chapter 3. 

The lack of standardization in battery designs and the significant effort needed to convert batteries into 

metal feedstocks have been major obstacles in the field of lithium-ion recycling [17]. Additionally, the 

extraction and treatment of emissions generated during the battery recycling process pose another 

challenge as it necessitates costly infrastructure and advanced equipment [11]. Also, LIBs are designed 

with a focus on safety and long cell life, which compromises their recyclability. As the cell count increases, 

the proportion of active and valuable materials relative to the battery weight decreases. Moreover, a 

higher cell count complicates the opening and separation process, leading to increased recycling costs. 

[21]. Figure 1 demonstrates the challenges of development of the LIB recycling technology. 
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Figure 1- Challenges of LIB recycling technology. 

 

2.3 Opportunities for improving recycling efficiency with ML 

The significant metal content found in used LIBs presents a valuable metal source, particularly given the 

limited global reserves of approximately 62 million tons of lithium and 145 million tons of cobalt. Hence, 

the recycling of used LIBs is extremely valuable, given the importance of sustainable utilization of these 

metals [20].  

ML presents significant opportunities for enhancing the efficiency of LIB recycling. One such opportunity 

lies in utilizing ML to facilitate metal leaching from used lithium-ion batteries, enabling swift acquisition 

of leaching outcomes without the need for extensive and time-consuming experiments [22]. For example, 

ML assisted robotic systems are developed to overcome the challenge of diverse range of battery 

packaging during disassembly for recycling [23]. Also, ML can be employed to make precise predictions 

about battery longevity by using data gathered from charge-discharge cycles during the initial stages of a 

battery's lifespan [24]. This information can be invaluable in optimizing the recycling process by providing 

insights into the battery's condition and residual value. Furthermore, ML can be employed to optimize 
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and model engineering challenges encountered in the recycling process, offering a non-invasive and 

highly accurate solution with minimal processing requirements [25]. By utilizing ML techniques, recycling 

operations can be streamlined and improved. However, it is important to note that further research is 

necessary to fully exploit the potential of ML in enhancing the efficiency of LIB recycling. Continued 

exploration and development of ML applications in this field hold promise for advancing recycling 

practices and maximizing resource recovery. 

Data-driven methods, like ML, can predict LIB recycling potential [26]. By conducting non-invasive, real-

time measurements and using statistical techniques, these approaches establish relationships without 

relying solely on physical models [26]. They help overcome challenges in LIB recycling (section 2.2) and 

unlock new avenues for enhanced efficiency. 

 

3 Data Collection and Preprocessing Approaches 

Data collection and preprocessing are vital for ML models predicting LIB recycling potential. Data 

collection acquires data from various sources, while preprocessing involves cleaning, converting, and 

preparing data for analysis. [11]. The quality of the data collected and produced can have a significant 

impact on the outcomes of any study, making it critical to be meticulous and thorough during this stage 

[9].  

 

3.1 Sources of data for assessing the recycling potential of lithium batteries 

Accurately predicting the recycling potential of lithium batteries requires gathering data from a variety of 

reliable sources. These sources encompass battery recycling databases, battery manufacturers, 

environmental agencies, research institutions, industry reports and market research, academic literature, 

online forums and communities, as well as sensor data and Internet of Things (IoT) devices [10].  Academic 

research, industry reports, and government publications serve as essential sources of data for assessing 

the recycling potential of lithium batteries. For instance, research articles by Ciez et al. [27]   and Ali et al. 

[28] offer valuable insights into the subject.  

Industry reports provide data on the size of the market and the growth potential of the LIB recycling 

industry [10]. Government agencies collect and publish data on battery recycling, informing policy 

decision makers and guiding industry practices. Different data sources have pros and cons. Manufacturers 

offer accurate details on battery design but may not be publicly accessible. Academic research provides 

https://www.sciencedirect.com/science/article/pii/S136403212200692X
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peer-reviewed data on recycling potential but may not be as up-to-date as industry sources. Table 2 

presents data sources, applications, and limitations for predicting recycling potential of lithium batteries. 

 

Data Source Application Advantages Limitations 

Battery 
Recycling 
Databases 

Battery recycling databases 
offer detailed information 
on recycling rates, 
processes, and materials 
recovery, enabling analysis 
of historical data to identify 
patterns and trends. 

o Focused and 
comprehensive 
information on battery 
recycling 

o Accurate insights into 
recycling potential 

o Coverage of emerging 
recycling technologies 
and best practices 

o Restricted access or collaboration 
required for proprietary battery 
recycling databases 

o Limited data availability to specific 
regions or battery types 

o Potential impact on generalizability of 
predictions 

Battery 
Manufacturers 

Collaborating with battery 
manufacturers offers vital 
data on battery 
specifications, compositions, 
and recycling capabilities, 
facilitating recyclability 
assessment and 
improvement opportunities. 

o In-depth knowledge 
about produced batteries 

o Accurate and detailed 
data collection 

o Insights into future 
battery designs and 
recycling initiatives 

o Reluctance to share proprietary data by 
manufacturers for competitive reasons 

o Potential bias towards their own 
products in the provided data 

o Limited representation of the broader 
landscape of LIB recycling 

Environmental 
Agencies and 
Research 
Institutions 

Environmental agencies and 
research institutions provide 
valuable insights on battery 
recycling, including 
infrastructure, regulations, 
and sustainability, through 
reports and studies. 

o Rigorous scientific review 
of data 

o Comprehensive insights 
into environmental 
implications of recycling 
processes 

o Identification of policy 
and regulatory factors 
influencing recycling 
potential 

o Generalized data lacking specific details 
on recycling processes or battery types 

o Limited scope of studies to certain 
geographic regions or specific aspects of 
recycling 

o Potential limitations in granularity and 
coverage of the data 

Industry 
Reports and 
Market 
Research 

Industry reports and market 
research studies provide key 
insights on the LIB industry, 
including trends, 
applications, and recycling 
practices, informing 
commercial viability and 
future demand. 

o Insights into market 
dynamics, investment 
opportunities, and 
technological 
advancements 

o Holistic view of the 
market landscape 

o Inform decision-making 
processes 

o Market reports may not focus exclusively 
on recycling, and the information 
provided may be more qualitative or 
anecdotal. The reports could be biased 
towards certain market players or may 
not reflect the most recent 
developments 

Academic 
Literature 

Academic literature enriches 
scientific understanding of 
LIB recycling, covering 
process optimization, 
recovery rates, and material 
analysis, providing valuable 
insights into technical 
aspects. 

o Peer review and 
adherence to scientific 
standards 

o Reliability and validity of 
data and findings 

o Cutting-edge research 
and advancements in 
recycling technologies 

o Academic literature may have a 
narrower focus on specific research 
questions rather than practical concerns 

o Some papers may lack readily applicable 
information for predictive modeling or 
commercial applications 

o Potential limitations in directly 
translating academic findings into 
practical solutions 

Online Forums 
and 
Communities 

Online forums and 
communities offer insights 
from experts and 
enthusiasts, providing real-
world experiences, 
challenges, and solutions for 
LIB recycling. 

o Knowledge exchange and 
firsthand experiences 

o Access to diverse 
perspectives 

o Practical insights 
complementing formal 
data sources 

o Lack of standardization and verification 
in information shared on online forums 
and communities 

o Challenges in validating the accuracy and 
reliability of the obtained information 

o Subjectivity of discussions, potentially 
not representative of the overall industry 
or recycling practices 
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Sensor Data 
and IoT Devices 

Sensor data from recycling 
facilities and IoT devices 
enables real-time 
monitoring and optimization 
of recycling operations, 
improving efficiency and 
material recovery rates. 
 

o Real-time monitoring and 
control of recycling 
processes 

o Accurate and up-to-date 
insights into recycling 
operation performance 

o Identification of areas for 
improvement 

o Limited access to sensor data and IoT 
devices in recycling facilities 

o Challenges in implementing IoT 
infrastructure and ensuring data privacy 
and security 

o Requirement for careful preprocessing 
and interpretation of collected data for 
use in predictive models 

Table 2-Overview of data sources, applications, advantages, and limitations in predictive analysis of LIB 

recycling potential [10][29][26]. 

 

3.2 Data collection methodologies and considerations 

Collecting data for LIB recycling potential involves careful methodologies and considerations to ensure 

the quality and relevance of the dataset [30]. Several factors need to be taken into account during the 

data collection process. Firstly, it is essential to identify the specific data requirements for predicting 

recycling potential. This includes determining the necessary variables, such as battery composition, design 

specifications, recycling techniques used, and recovery rates of valuable metals. Clearly defining these 

requirements helps in selecting appropriate data sources and designing effective data collection 

strategies. Secondly, consideration should be given to the representativeness and diversity of the data. It 

is important to collect data from various battery types, manufacturers, recycling facilities, and 

geographical locations to capture the broader landscape of LIB recycling. This helps in reducing bias and 

increasing the generalizability of the predictive models. Thirdly, data privacy and access need to be 

addressed. While data from battery manufacturers and recycling facilities may provide accurate and 

detailed information, access to such proprietary data might be restricted due to confidentiality 

agreements. In such cases, collaboration and partnerships with relevant stakeholders can facilitate data 

sharing and ensure the availability of essential information. 

Furthermore, data quality assurance is crucial. This involves verifying the accuracy, completeness, and 

reliability of the collected data. Data cleaning techniques, such as removing duplicates, handling missing 

values, and addressing outliers, should be applied to enhance the overall quality of the dataset [31]. 

Lastly, the timeliness of the data should be considered. While academic research provides valuable 

insights, it may not always reflect the most current practices and advancements in the field. Therefore, 

combining up-to-date data from industry reports, government agencies, and ongoing research projects 

can provide a more comprehensive understanding of the recycling potential of lithium batteries. 
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3.3 Preprocessing techniques for cleaning and preparing data  

There are specific challenges when LIB recycling data is going to be used for training and testing ML 

models. One major challenge is the lack of uniformity in battery designs, making it difficult to establish a 

standardized recycling process [28]. Additionally, the recycling process requires expensive infrastructure 

and advanced equipment to extract and handle emissions properly [28]. Furthermore, lithium batteries 

can pose a safety risk if stored alongside regular waste, emphasizing the importance of proper disposal. 

The growing importance of LIB recycling in the past decade is driven by supply chain limitations for crucial 

materials like lithium and cobalt, as well as a shift in policies towards greater material circularity to 

address environmental concerns [28]. As a result, once the data is collected, it needs to undergo 

preprocessing steps to ensure its suitability for ML analysis. 

In fact, data preprocessing is a critical phase in any ML project and involves several techniques such as 

integration, cleaning, transformation, reduction, and validation [10]. These techniques are employed to 

enhance the quality and usability of the data for ML algorithms. Figure 2 demonstrates the required 

preprocessing steps before ML model implementation.  

 

 

Figure 2-Preprocessing steps before ML implementation. 

 

Data integration is necessary when combining data from multiple sources to create a more 

comprehensive dataset [32]. This step ensures that all relevant information is included and avoids the 

loss of valuable data. Data cleaning is the process of eliminating missing values, duplicates, and other 



12 
 

inconsistencies that can impact the accuracy of ML algorithms. It involves removing inconsistencies, 

errors, or noise present in the dataset, addressing missing values, correcting inconsistent entries, and 

handling outliers [25]. Data transformation involves various operations to prepare the data for analysis. 

Scaling and normalization ensure that the data is on a comparable scale and follows a desired distribution 

[25]. Encoding categorical variables allows algorithms to process categorical data effectively [24]. 

Handling outliers helps in dealing with extreme values that may skew the analysis [25]. Following data 

integration, cleaning, and transformation, feature reduction techniques can be applied. Feature reduction 

methods, such as dimensionality reduction or feature selection, are employed to extract the most 

relevant and informative features for predicting recycling potential [33]. Finally, data validation should be 

performed to check the accuracy and quality of data before being used for training and testing the ML 

models [34].  These techniques reduce the computational complexity of the models and mitigate the risk 

of overfitting. By employing appropriate data collection methodologies and preprocessing techniques, 

the dataset can be effectively prepared for subsequent steps such as feature engineering and ML model 

implementation.  

 

4 Feature Engineering for Recycling Potential Prediction 

4.1 4.1 Feature engineering 

Feature engineering is the process of selecting, transforming, extracting, combining, and manipulating 

raw data to generate the desired variables for analysis or predictive modeling. It is a crucial step in 

developing a ML model. The three phases of feature engineering are feature identification, feature 

extraction, and feature selection [35][36]. Feature identification involves finding relevant variables to 

predict the target variable. Feature extraction creates new features from existing ones. Feature selection 

picks the most impactful features for model construction [37]. Figure 3 shows feature engineering steps. 
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Figure 3- Feature engineering is employed to select high-quality features from the dataset. 

 

4.2 Identification of relevant features for recycling potential prediction 

Identification of relevant features is a crucial step in developing a ML model for predicting the recycling 

potential of lithium batteries. Feature engineering involves selecting and transforming the most pertinent 

features from raw data to improve model performance. One approach to feature engineering is 

leveraging domain knowledge to manually identify relevant features. Researchers with expertise in LIB 

recycling may consider battery chemistry, age, and usage history as significant factors for predicting 

recycling potential [9]. Alternatively, data-driven methods, like deep learning, can automatically learn 

relevant features from the data by capturing complex relationships between input data and the target 

variable [38]. Different opinions exist on identifying relevant features for recycling potential prediction. 

While some researchers argue for domain knowledge as the best approach, allowing experts to leverage 

their knowledge, others advocate for data-driven methods that can learn features without prior 

knowledge. The choice of approach may depend on the specific problem and the availability of high-

quality data [38].  

 

4.3 Feature extraction and transformation techniques 

Feature extraction and transformation enhance ML models for predicting LIB recycling potential. These 

techniques involve selecting and transforming the most relevant features from raw data to enhance 
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model performance [38]. Domain knowledge can manually identify and transform relevant features, such 

as battery chemistry, age, and usage history. For example, researchers knowledgeable in LIB recycling 

might consider battery chemistry, age, and usage history as essential for predicting recycling potential. 

Alternatively, deep learning automatically learns complex relationships between input data and the target 

variable [39]. There are varying opinions on feature extraction and transformation for recycling potential 

prediction. While some researchers prefer domain knowledge, others argue that data-driven methods 

are more effective since they can learn relevant features without relying on prior knowledge [38]. 

 

4.4 Feature selection methods for improving model performance 

In the context of predicting LIB recycling potential with ML , feature engineering can be employed to 

select high-quality features from the dataset [7]. Feature selection is one of the feature engineering steps 

that aims to reduce the number of input variables in a predictive model, minimizing computational 

burden and potentially enhancing performance. It serves several purposes including mitigating 

overfitting, enhancing model interpretability, and reducing training times [7]. This process is adaptable to 

different inputs, prioritizing those that have a significant impact on degradation [33]. Handling feature 

selection in high-dimensional datasets is challenging. Three general approaches are (1) filter methods, (2) 

wrapper methods, and (3) embedded methods. Usually, a filter method eliminates inadequate features 

quickly, followed by a wrapper or embedded method. 

 

4.4.1 Filter Methods 

Filter methods focus on the general characteristics of the training data to be able to select specific 

features with independence of any predictor. These methods can be more efficient and  computationally 

less expensive when dealing with high-dimensional data [40]. There are several filter methods which can 

be applied over different problems. Some of the most popular filter methods include (1) Information Gain, 

(2) Chi-square Test, (3) Fisher's Score, (4) Correlation confident, (5) Variance Threshold, and (6) Mean 

Absolute Deviation [41]. Information Gain is an entropy-based method which calculates the reduction in 

entropy from the transformation of a dataset. This method can be used for feature selection by evaluating 

the Information gain of each variable in the context of the target variable [42]. Moreover, Chi-square Test 

can be used for categorical features to test the relation between various features in the dataset and the 

target variable. In other words, it can be calculated between each feature and the target variable to select 

the desired number of features with the best Chi-square scores. In order to correctly apply the chi-square 
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test you have to make sure that the variables are categorical and they have been sampled independently. 

Moreover, the values should have an expected frequency greater than 5 [43]. Furthermore, Fisher's score 

is another method which can be used to find a feature subset. In a data space spanned by the selected 

features, this method maximizes the distances between data points in different classes while minimizing 

the distances between data points in the same class [44]. Correlation Coefficient measures linear 

relationships between variables, enabling predictions. Good variables highly correlate with the target, but 

should be uncorrelated with each other [45]. The variance threshold is a simple baseline approach for 

feature selection. It removes features with low variance or zero variance. Higher variance is considered 

more informative, but relationships between features or the target are not considered [46]. Mean 

Absolute Deviation computes the absolute difference from the mean value, without squaring as in 

variance. It is a scaled measure, where higher Mean Absolute Deviation indicates higher discriminatory 

power [47]. 

 

4.4.2 Wrapper Methods 

Wrapper methods search feature subsets, evaluating them with a classifier. They rely on a specific ML 

algorithm and dataset. A greedy search evaluates subsets against the criterion. Wrapper methods may 

offer better prediction accuracy than filter methods. Popular ones include Forward Feature Selection, 

Backward Feature Elimination, Exhaustive Feature Selection, and Recursive Feature Elimination. Forward 

Feature Selection iteratively adds features, evaluating model performance after each addition [48]. 

Backward Feature Elimination also follows an iterative approach but it begins with the complete set of 

features, and then after each iteration features will be removed one-by-one and the accuracy of the 

prediction will be checked [49]. In addition, Exhaustive Feature Selection is one of the most robust feature 

selection methods. In this method, the important features and their combination will be ranked through 

training a ML model with each combination one-by-one. In other words, this method tries every possible 

combination of the features and returns the best-performing subset [50]. Finally, Recursive Feature 

Elimination tries to improve the performance of the ML model by removing the least important features, 

that if you remove them from the dataset, their deletion will have the least effect on training errors [51]. 

 

4.4.3 Embedded Methods 

Embedded methods combine Filter and Wrapper advantages with reasonable computational costs. They 

analyze model training iterations to extract influential features. Common Embedded methods are LASSO 

Regularization and Random Forest Importance. Regularization adds penalties to model parameters to 
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prevent overfitting. LASSO Regularization transforms coefficients, shrinking some to zero and removing 

corresponding features [52]. Random Forest Importance is a Bagging Algorithm, aggregating decision 

trees. It ranks features based on how well they improve node purity (reduce impurity). Important features 

appear early in trees. Pruning below a specific node creates a subset of the most important features [53]. 

 

5 ML Models for Recycling Potential Prediction 

5.1 Overview of ML algorithms for predicting recycling potential 

In the realm of lithium-ion batteries, ML algorithms have proven instrumental in predicting various crucial 

aspects such as battery health, remaining useful life, and heat generation rate. Researchers have 

extensively employed several ML algorithms in battery research, including Artificial Neural Networks 

(ANN), Support Vector Machines (SVM), Gaussian Process Regression (GPR), and deep learning algorithms 

like Recurrent Neural Networks (RNN) and Long Short-Term Memory networks (LSTM)) [12][54]. 

The selection of the most suitable ML algorithms for recycling prediction in LIB research remains a topic 

of debate. Cao et al. argued that SVM, ANN, and GPR effectively predict diverse facets of lithium-ion 

batteries [54]. Conversely, Khumprom et al. contend that deep learning algorithms like RNN and LSTM 

outperform others due to their ability to capture intricate relationships between input data and the target 

variable [12]. Ultimately, the optimal approach hinges on the specific problem at hand and the availability 

of high-quality data. Figure 4 illustrates the fundamental pipeline for developing ML models, beginning 

with data preparation encompassing data cleaning, training, and learning phases. Subsequently, data 

prediction, feature extraction, and feature selection come into play. Model training and the utilization of 

test data follow suit. Finally, prediction constitutes the last stage of the pipeline. However, leveraging the 

predictions' outcomes as input for the model is essential to enhance accuracy. Ensuring the precise 

execution of these stages right from the outset holds utmost significance. 
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Figure 4- Illustration of the data pipeline, starting from the data preparation stages, progressing to 
model execution, and concluding with prediction generation. The feedback from predictions is 

incorporated into both the data preparation and prediction stages. 

 

5.2 Building predictive models using supervised learning techniques 

Search shows that relatively no credible research has investigated alternative techniques such as semi-

supervised or unsupervised learning for predicting LIB recycling potential. Therefore, this research focuses 

primarily on the study of supervised learning. In the sphere of LIB recycling potential prediction, 

supervised learning techniques offer a powerful approach for constructing accurate predictive models. 

Supervised learning is a branch of ML that entails training a model on a labeled dataset, where the desired 

output is already known. Subsequently, the trained model can be utilized to make predictions on new, 

unseen data, enabling insights into recycling potential [55]. 

Various supervised learning algorithms have proven effective in battery research, contributing to the 

development of robust predictive models. random forests (RF), decision tree, Support vector machines 

(SVM), Artificial Neural Networks (ANN), Gaussian Process Regression (GPR), and deep learning 

algorithms such as Recurrent Neural Networks (RNN) and Long Short-Term Memory networks (LSTM) are 

among the commonly employed techniques [39]. By training these algorithms on battery recycling-

related data, one can harness their potential to generate predictive models specifically tailored to 

assessing LIB recycling potential. By leveraging supervised learning techniques, researchers and 

practitioners can unlock the ability to accurately predict the recycling potential of lithium batteries. The 

utilization of well-established algorithms, coupled with comprehensive and relevant data, empowers the 

development of sophisticated models that can offer valuable insights for the recycling industry. 
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5.3 Evaluation metrics for assessing model performance 

The evaluation of model performance in predicting LIB recycling potentials poses unique challenges as 

there is no objective loss function to guide model training or a definitive measure to gauge the quality of 

the model based solely on loss. Consequently, a combination of qualitative and quantitative techniques 

has been developed to assess model performance, focusing on the quality and diversity of the generated 

synthetic data. Quantitative evaluation metrics play a vital role in assessing the performance of generative 

models. Commonly used metrics include Mode Score, Modified Inception Score (m-IS), Inception Score 

(IS), Coverage Metric, and Average Log-likelihood. These metrics provide quantitative insights into the 

quality of the generated data, aiding in the evaluation process [25]. The position of the Evaluation phase 

that is placed after predictions in the workflow that is demonstrated in Figure 4. 

Qualitative evaluation, on the other hand, involves manual inspection of the generated data. While this 

approach serves as a useful starting point, it is subjective and time-consuming. Nonetheless, combining 

qualitative and quantitative assessment techniques allows for a more comprehensive and robust 

evaluation of generative models [25]. The choice of evaluation approach depends on the specific problem 

at hand and the availability of high-quality data. It is crucial to strike a balance between qualitative and 

quantitative assessment to effectively evaluate generative models. Table 3 summarizes the metrics for 

evaluating the performance of ML models in predicting LIB recycling potentials, highlighting their 

respective advantages and limitations. Leveraging these metrics entails ensuring a robust dataset, 

employing appropriate model architectures, considering model interpretability techniques, and 

periodically updating the models to account for evolving dynamics in the LIB recycling domain. 

 

Metric Description Pros Cons 

Accuracy Accuracy measures correctness in 
ML predictions. In LIB recycling, it 
reflects the model’s ability to 
make correct predictions by 
comparing predicted potentials 
with actual outcomes. 

Improved 
accuracy: ML 
enables accurate 
predictions by 
analyzing large 
datasets and 
identifying 
complex patterns.  
 
Efficient data 
processing: ML 
algorithms 
efficiently process 
and analyze 
diverse sources of 

Data availability and quality: 
ML models require high 
quality data for accurate and 
generalizable predictions. 
Limited or biased data can 
impact their effectiveness. 
 
Model interpretability: Some 
ML algorithms, like deep 
neural networks, may lack 
interpretability. Interpreting 
predictions is important for 
trust and transparency in LIB 
recycling. 
 

Precision 
and 
Recall 

Precision measures correct 
positive predictions, while recall 
measures correct positive 
outcomes. These metrics 
evaluate the model’s ability to 
identify recycling potentials and 
avoid false results. 
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F1 Score The F1 score balances precision 
and recall, offering a 
comprehensive performance 
measure. It is especially valuable 
in imbalanced datasets with 
differing positive and negative 
recycling outcomes. 

information for 
valuable insights. 
 
Automation and 
scalability: 
Trained ML 
models automate 
prediction 
processes, 
enabling 
scalability and 
faster decision 
making in 
assessing 
recycling 
potentials. 

Model overfitting or 
underfitting: ML models can 
suffer from overfitting or 
underfitting, affecting their 
performance. Proper model 
selection and tuning 
techniques are crucial to 
mitigate these issues. 
 
Changing dynamics: The 
evolving nature of LIB 
recycling, including 
technologies, regulations, and 
market dynamics, poses 
challenges for ML models 
trained on historical data. 
Adaptability to new scenarios 
is important. 

AUC-
ROC 

The ROC curve displays the 
model's performance across 
thresholds, showing sensitivity 
against 1-specificity. The area 
under the curve (AUC) is a single 
metric indicating overall 
performance, with higher values 
reflecting better predictive 
capabilities. 

mean 
squared 
error 

The average squared difference 
between estimated and actual 
values. It is a measure of the 
quality of an estimator, and 
decreases as the error 
approaches zero. 

Table 3- Metrics, advantages, and limitations of using ML in prediction of LIB recycling potentials [56] [7] 

[57][58]. 

 

6 Model Performance and Analysis: Predicting Lithium Battery Recycling 

Potential 

6.1 Description of the experimental setup and dataset used 

Research studies focused on recycling lithium batteries employ diverse experimental setups and datasets 

tailored to their specific objectives. Typically, these setups involve comprehensive data collection 

encompassing various aspects of LIB recycling, including battery chemistry, age, usage history, and 

recycling potential. Data can be sourced from multiple avenues such as laboratory experiments, field 

studies, and existing databases. Table 2 shows an overview of the data sources and their applications in 

predictive analysis of LIB recycling potential. 

Upon data collection, preprocessing techniques are employed to cleanse, convert, and prepare the data 

for analysis. Preprocessing methods that are specific to LIB recycling include stabilization, disassembly, 
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and separation processes [59]. These techniques aim to enhance the separation of LIB components and 

improve the liberation of active electrode materials through mechanical and physical treatments [59]. 

Diverse perspectives exist regarding the optimal approach for conducting experiments and collecting data 

in LIB recycling research. Some researchers advocate for laboratory experiments, emphasizing control 

over experimental conditions and precise measurements. Conversely, others argue for the effectiveness 

of field studies, which provide realistic data representative of real-world conditions. Ultimately, the 

choice of approach depends on the specific research problem and the availability of high-quality data 

[10]. Selecting the most suitable experimental setup and dataset for recycling lithium batteries requires 

careful consideration as it directly impacts the reliability and applicability of research findings. A 

comprehensive understanding of research objectives, coupled with the availability of resources and high-

quality data, is crucial in determining the optimal approach for experimental setup and dataset selection. 

 

6.2 Performance evaluation of the developed ML models 

Performance evaluation plays a vital role in predicting the recycling potential of lithium batteries using 

ML models. It serves to assess the accuracy, reliability, and areas for improvement within the developed 

models. As presented in Table 3, multiple metrics can be employed to evaluate the performance of ML 

models, including accuracy, precision, recall, F1 score, and ROC AUC. These metrics provide insights into 

the model's ability to correctly classify or predict the recycling potential of lithium batteries [60]. In a data-

driven approach, feature engineering techniques are applied to select high-quality features from the 

dataset. This process enhances model performance by mitigating overfitting and improving 

interpretability. It is crucial to emphasize that performance evaluation should be an iterative process, 

adapting to new data and model refinements over time to ensure accuracy and reliability. 

 

6.3 Interpretation and analysis of the results 

Interpreting and analyzing the results for recycling lithium batteries involves evaluating the performance 

of ML models in predicting their recycling potential. This can be achieved by utilizing various evaluation 

metrics, such as precision, accuracy, recall, and F1 score, to measure the models' performance and 

compare results against established benchmarks or expected outcomes [60]. 

Different perspectives exist regarding result interpretation and analysis for recycling lithium batteries. 

Some researchers argue that using a single evaluation metric, such as accuracy, is sufficient to assess 

model performance [38]. Conversely, others advocate for multiple evaluation metrics to provide a 
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comprehensive assessment of model performance [60]. The most appropriate approach depends on the 

specific problem being addressed and the availability of high-quality data. 

In addition to evaluating model performance, researchers delve into result analysis to gain insights into 

the factors influencing the recycling potential of lithium batteries. They may investigate the relative 

importance of different features in predicting recycling potential or identify patterns and trends within 

the data. This analysis aids in understanding the underlying mechanisms driving LIB recycling and 

facilitates the development of effective strategies to improve recycling rates [58] [61]. By employing 

rigorous interpretation and analysis techniques, researchers extract meaningful knowledge from their 

results, paving the way for advancements in the field of LIB recycling and the optimization of recycling 

processes. 

 

7 Discussion 

7.1 Comparison of different ML approaches for recycling potential prediction 

Several ML approaches have been utilized for predicting the recycling potential of lithium batteries. These 

approaches can be compared based on their performance, accuracy, and reliability [62]. Common 

techniques employed in recycling potential prediction include support vector machines, random forests, 

decision trees, and artificial neural networks [63]. By utilizing these techniques, predictive models can be 

built to accurately classify or forecast the recycling potential of lithium batteries. The effectiveness of 

these diverse ML approaches can be evaluated using various metrics such as recall, precision, accuracy, 

and F1 score [64]. 

These metrics provide a means to measure the models' ability to correctly classify or predict the recycling 

potential of lithium batteries. Furthermore, beyond performance comparison, researchers can analyze 

the results to gain insights into the factors influencing the recycling potential of these batteries. By 

examining the relative importance of different features in predicting recycling potential or identifying 

patterns and trends in the data, researchers can inform future studies and develop more effective 

strategies for improving recycling rates [62] [31]. 

 

7.2 Insights gained from the study and implications for battery recycling industry 

Studies on ML approaches for predicting the recycling potential of lithium batteries have provided 

valuable insights for the LIB industry. These insights can help to improve the efficiency and effectiveness 
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of battery recycling processes, and to develop more sustainable strategies for managing end-of-life 

batteries. One key insight from these studies is the potential for ML to improve the accuracy and reliability 

of recycling potential predictions. By using advanced ML techniques, such as support vector machines, 

decision trees, and random forests, researchers have been able to develop predictive models that can 

accurately classify or predict the recycling potential of lithium batteries [4]. 

Another important insight is the potential for ML to help identify the factors that influence the recycling 

potential of lithium batteries. By analyzing the results of ML models, researchers can gain insights into 

the relative importance of different features in predicting recycling potential. This can help to inform 

future research and to develop more effective strategies for improving recycling rates. These insights 

have important implications for the battery recycling industry. By leveraging the power of ML, battery 

recyclers can improve their processes and develop more sustainable strategies for managing end-of-life 

batteries. This can help to reduce waste, conserve resources, and protect the environment.  

 

7.3 Limitations and potentials of future research directions 

While ML approaches for predicting the recycling potential of lithium batteries offer significant 

advantages, there are certain limitations that need to be considered in future research. Additionally, 

exploring potential research directions can further enhance the application of ML in battery recycling. 

One of the primary limitations is the availability and quality of data. ML models require large amounts of 

high-quality data to train effectively. The availability and quality of data on the recycling potential of 

lithium batteries may be limited, which could impact the performance of ML models [37]. To address this, 

comprehensive experimental data is needed to accurately learn the long-term degradation characteristics 

of batteries over multiple cycles and hours of operation [65]. 

Another limitation is the complexity of ML models. These models can be intricate and challenging to 

interpret, making it difficult to understand how they make predictions and identify potential sources of 

error [25]. Overcoming this challenge requires developing techniques to enhance model interpretability, 

enabling researchers to gain insights into the decision-making process of ML models. Despite these 

limitations, there are several promising future research directions that can overcome these challenges 

and further advance ML in the field of battery recycling: 

1- Technical Aspects: Research can focus on leveraging ML to optimize the safe and efficient automatic 

disassembly of retired lithium-ion batteries (LIBs) [23]. Analyzing battery designs and structures using 

ML algorithms can optimize disassembly processes, ensuring both safety and efficiency. Additionally, 
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ML can aid in the development of alternative rechargeable batteries and resource management for 

LIBs, facilitating the efficient recovery of multiple components  [66]. 

2- Economic Aspects: Future research can explore how ML algorithms can optimize recycling processes 

to reduce costs and increase the value of recycled products. By analyzing cost-benefit calculations, 

ML can identify strategies to achieve economic efficiency, such as implementing simplified 

processing techniques and producing high-value-added or high-purity recycled materials. 

Furthermore, ML can help in analyzing and mitigating concerns related to secondary pollution, 

optimizing waste treatment processes, and maximizing overall recycling benefits  [66]. 

3- Environmental and Safety Aspects: Research efforts can focus on leveraging ML to enhance the 

energy efficiency of battery manufacturing processes. By identifying areas for optimization, ML  can 

contribute to reducing the environmental impact of rechargeable batteries. Additionally, ML can aid 

in the selection of environmentally friendly materials, such as binders and electrolytes. It can also 

assist in developing sound control measures and prevention equipment to minimize potential risks 

of secondary pollution during the recycling process  [66]. 

4- Data Collection: Future research can explore the potential of ML algorithms in establishing 

comprehensive management platforms for battery recycling traceability. Through the collection and 

analysis of data across the entire life cycle of batteries, from production to retirement and recycling, 

ML can enable real-time monitoring, facilitate evaluation of recycling technologies, and support the 

assessment of retired batteries for secondary use [66]. 

 

8 Proposed framework for using ML in predicting lithium battery recycling 

potential 

Addressing the discussed limitations and exploring the mentioned potential research directions will 

unlock the full potential of ML in LIB research and recycling. By doing so, the industry can achieve greater 

efficiency, reduce waste, conserve resources, and foster a more sustainable approach to managing end-

of-life batteries. Collaboration between academia, industry, and policymakers will be crucial in advancing 

these research directions and realizing the benefits of ML in the battery recycling industry. Hence, this 

research proposes a framework for using ML in predicting LIB recycling potential. Figure 5 demonstrates 

the high-level framework that is proposed in this research. There are several major phases in the 

framework which are described below.  
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1. Data Retrieval: The dataset should be collected from a range of resources that are explained in detail 

in section 3.  

2. Data Preparation: This phase is mainly data processing steps such as data cleaning, data visualization 

and data wrangling. 

3. Feature Engineering: This is the process of selecting, transforming, extracting, combining, and 

manipulating raw data to generate the desired variables for analysis and predictive modeling. The 

four phases of feature engineering in this framework include (1) feature identification, (2) feature 

extraction, and (3) feature transformation, and (4) feature selection which are explained in detail in 

section 4 and the relevant workflow is presented in Figure 3. 

4. ML Model Development: In the model development process, data features should be fed into a ML 

algorithm to train the model. The objective is usually to optimize a specific cost function, aiming to 

minimize errors and generalize the representations derived from the data. ML modelling is described 

in detail in section 5. 

5. Model Optimization: Models consist of different parameters that should be adjusted during a 

process known as hyperparameter tuning. This optimization aims to obtain models that deliver the 

best and most optimal outcomes. This process is described in detail in section  

6. Model Evaluation: After constructing models, they should be assessed and tested using validation 

datasets. Performance evaluation should be conducted based on metrics such as accuracy, F1 score, 

recall, precision and others. Model evaluation is described in detail in section 6. Additionally, the 

feature engineering process can be iterated to enhance the performance of the evaluated model. 

7. Model Deployment: Chosen models should be implemented in production and undergo continuous 

monitoring based on their predictions and outcomes.  
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Figure 5- High-level framework of the proposed ML pipeline with the major phases for lithium battery 
recycling. 
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Table 4 provides a comprehensive comparison of information pertaining to data-oriented and intelligent 

methodologies within the realm of LIB technology. Specifically, it showcases various frameworks within 

battery technology, systematically detailing their scopes, advantages, and limitations, aiming to 

illuminate the diverse array of prevalent methodologies employed in battery recycling technology. By 

comparing these exemplary frameworks against our innovative approach and framework (Figure 5), the 

table serves as an essential reference, offering vital context to underscore the unique nature and potential 

of our tailored framework within the realm of battery recycling. This deliberate comparison effectively 

highlights the distinctive strengths and contributions of our proposed methodology, positioning it within 

the broader spectrum of existing battery technology methodologies. 

Research shows the absence of an established framework for the application of ML in LIB recycling. 

Consequently,  

Table 4 is designed to present frameworks from similar fields to address this gap and provide valuable 

insights. The table presents a comparative analysis between the conceptual framework depicted in Figure 

5 in its second row and similar frameworks employed in ML applications within LIB research in rest of the 

rows. The table underscores the distinctive novelty of the proposed framework, specifically emphasizing 

its innovation in the application of ML techniques to the recycling of LIBs.  

 

Frame
work  

Example Scope Advantages Limitations 
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o Offering a more sustainable 
approach to managing end-of-
life LIBs using ML. 

o Developing scalable LIB 
recycling methods.  

o Unlocking the full potential of 
using ML in LIB recycling. 

o Achieving greater efficiency, 
reducing waste, and 
conserving resources in LIB 
recycling.  

 
 

o Ability to continuously learn and 
adapt to emerging technologies. 
o A sustainable approach which is 
not limited to specific ML or deep 
learning models. 
o Provides a clear structure for pre-
processing.  
o Emphasizes on feature 
engineering phase that can boost 
the performance of the models 
dealing with complex features. 
o Suggests a more robust evaluation 
approach which improves the 
reliability of the prediction.  
o Considering different hyper 
parameter tuning techniques to find 
the optimum values which 
significantly impacts the 
performance of the models. 
o The clear structure for pre-
processing, feature engineering, 
and evaluation phases, can help the 
researchers with low or moderate 
technical skills to benefit from 
applying ML models in their analysis 
and product development.  

o Significant computational resources 
might be required based on the selected 
algorithm. 
o Obtaining large amount of high-quality 

data related to LIB recycling can be 
costly. 
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o Digital Twin creates a model to 
predict LIB life & assess LIB 
reliability. 

o Stochastic Model considers 
randomness & dispersion in LIB 
degradation. 

o Uses Bayesian algorithms to 
refine predictions over time. 

o Plans maintenance based on 
accurate RUL predictions. 

o Using digital twin for precise LIB 
behavior prediction. 
o Real-time monitoring provides 
continuous assessment by mapping 
physical LIB to digital models. 
o Considerate modelling accounts 
for randomness, enhancing 
predictive capability. 
o Improves accuracy with evolving 
Bayesian-based models. 

o Dependents on sensor & historical 
data availability. 
o Requires significant computational 
resources & expertise. 
o Model simplifications might not 
capture all real-world complexities. 
o Validation through experiments, may 
not apply universally. 
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o Development of predictive 
maintenance strategies for LIB 
using real-time monitoring & data 
analysis. 

o Utilizing ML models to predict LIB 
SOH & RUL based on the NASA 
battery dataset. 

o Analysis of crucial battery 
features during charging & 
discharging for SOH 
determination & RUL prediction. 

o Cost-effective equipment 
management. 
o Accurate battery SOH & RUL 
predictions. 
o Methodology, including feature 
selection & predictive analysis. 
o Comprehensive NASA battery 
dataset for in-depth analysis & 
modeling. 

o Limited data from only four batteries 
with 170 cycles may limit generalization. 
o The limited choice of ML models could 
impact prediction accuracy. 
o Variations in conditions not fully 
covered may affect predictive accuracy. 
o Definition & determination of RUL 
might need standardization for industry 
use. 
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o Finding new battery materials by 
forecasting their properties. 

o Estimating battery states (SOC, 
SOH, & RUL). 

o Developing intelligent BMS for 
accurate battery behavior 
prediction. 

o Electrode & electrolyte material 
properties prediction. 

o Evaluating battery performance 
& predicting safety-related 
incidents. 

o Fast screening of vast datasets. 
o Accurate predictions, aiding better 

decision-making. 
o Intricate property relationships, 

offering insights beyond traditional 
methods. 

o ML models help precisely estimate 
battery behavior, crucial for usage 
optimization. 

o Obtaining large, quality training data for 
ML models, especially for rare events, 
can be costly. 

o Reliability of models hinges on quality & 
representativeness of training data. 

o Safety risks & cost implications in 
battery design can restrict real-world 
applications of ML. 
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o Deep learning prognostics 
framework for SOH & RUL 
estimation of LIB. 

o Applied to charge curve using the 
same protocol employed during 
degradation experiments to 
confirm its feasibility with respect 
to actual applications. 

o Using parameter optimization at 
two stages of data training 

o Definition of 3 different phases 
inside the framework 

o Application limited to using deep 
learning for SOH & RUL estimation. 

o The framework is not working efficient 
with low number of data because it is 
using deep learning. 

o Understanding the rationale and 
mechanisms of the process becomes 
challenging due to the utilization of 
deep learning layers.  
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Table 4-Comparison of data-oriented and smart approaches in battery technology: frameworks, scopes, 
advantages, and limitations. RUL and SOH stand for Remaining useful Life and State of Health 

respectively. 

 

9 Novelty and Knowledge Contribution 

This study not only explores Machine Learning algorithms for battery recycling prediction but also 

conducts an in-depth analysis of their practical impact on engineering challenges within recycling 

processes. The outcomes can help researchers and businesses by providing useful insights and a clear 

understanding of the current state of ML applications in LIB recycling and the relevant challenges. 

Additionally, a framework has been proposed in this study, offering a more sustainable, scalable, and 

tailored approach to managing end-of-life LIBs using ML. By unlocking the full potential of using ML in 

LIB recycling, this framework can address the identified challenges in this field and help with achieving 

greater efficiency, reducing waste, and conserving resources in LIB recycling.  

The proposed framework in this study has also been compared to other existing frameworks which 

were previously used, and the results show that this framework can provide more advantages and can 

address the most common limitations that previous frameworks were facing with. According to table 4, 

it was realized that one of the most common and serious limitations in the previous frameworks was 

their limitation to particular ML models. In contrast to alternative frameworks, our framework is not 

limited to specific ML models, and it can be used for developing variety of ML and deep learning models. 

Furthermore, our framework provides more details on the pre-processing, feature engineering, and 

evaluation phases, that can enable the researchers with low technical skills to apply ML models in their 

analysis and product development. More precisely, emphasizing on feature engineering steps in this 

framework, which was not seriously considered in previous frameworks, can significantly impact the 

performance of the models. The outcomes of comparing this framework with previous frameworks can 

clarify the practicality and efficiency of this framework in different scenarios.   

 

10 Conclusion 

The importance of recycling lithium batteries cannot be overstated, especially with the growing 

prevalence of lithium batteries in various applications, such as electric vehicles. However, traditional 

recycling methods face significant challenges in terms of greenhouse gas emissions, economic viability, 

and the recovery of valuable materials. To address these challenges, there is a pressing need to develop 

efficient and scalable recycling processes for lithium batteries. 
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This study has demonstrated the significance of incorporating ML into the development of scalable 

recycling methods, particularly in the context of the increasing demand for electric vehicles. By 

emphasizing the importance of recycling policies that encourage efficient battery collection and the 

adoption of energetically efficient recycling processes to reduce emissions, the potential for positive 

impact becomes evident. Furthermore, the paper has provided a comprehensive overview of different 

battery types and their recycling processes, offering valuable insights into the advantages and limitations 

of each approach. 

A notable contribution of this research is the exploration of the opportunities presented by ML in 

enhancing the efficiency of LIB recycling. The application of ML for metal leaching from used lithium-ion 

batteries has shown promise, streamlining the acquisition of leaching outcomes without extensive and 

time-consuming experiments. In the process of developing ML models for predicting recycling potential, 

the critical phases of data collection and preprocessing have been thoroughly examined. Various data 

sources and methodologies have been discussed, highlighting the need for meticulousness and 

thoroughness during this stage. Additionally, the paper has explored feature engineering, which involves 

selecting, transforming, and extracting relevant features from raw data to improve model performance. 

Among the ML algorithms investigated, including Artificial Neural Networks, Support Vector Machines, 

Gaussian Process Regression, and deep learning algorithms like Recurrent Neural Networks and Long 

Short-Term Memory networks, have been used for predicting recycling potential. The performance 

evaluation of these models, utilizing metrics such as accuracy, precision, recall, F1 score, and ROC AUC, is 

a critical step to assess accuracy, reliability, and identify areas for improvement. 

While ML holds promise for recycling potential prediction, this research also acknowledges certain 

limitations and proposes potential research directions to address these challenges. By overcoming these 

limitations and exploring new research directions, the full potential of ML in LIB recycling can be realized. 

A significant contribution of this study is the presentation of a framework that facilitates the application 

of ML in LIB recycling. This framework serves as a valuable guide for researchers and practitioners looking 

to integrate ML into this field effectively. This framework was compared with other existing frameworks 

and the outcomes show that it can provide more advantages and can address most common limitations 

that the previous frameworks were facing with. By providing more details on the pre-processing, feature 

engineering, and evaluation phases, this framework can also enable the researchers with low technical 

skills to apply ML models in their analysis and product development. 
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