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Abstract

We introduce a new numerical method called the complex Fourier series (CFS) method proposed by

Chan (2017) to price options with an early-exercise feature—American, Bermudan and discretely

monitored barrier options—under exponential Lévy asset dynamics. This new method allows us

to quickly and accurately compute the values of early-exercise options and their Greeks. We also

provide an error analysis to demonstrate that, in many cases, we can achieve an exponential conver-

gence rate in the pricing method as long as we choose the correct truncated computational interval.

Our numerical analysis indicates that the CFS method is computationally more comparable or

favourable than the methods currently available. Finally, the superiority of the CFS method is

illustrated with real financial data by considering Standard & Poor’s depositary receipts (SPDR)

exchange-traded fund (ETF) on the S&P 500 R© index options, which are American options traded

from November 2017 to February 2018 and from 30 January 2019 to 21 June 2019.
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1. Introduction

Early-exercise stock option valuation has been an important research subject for the past four

decades (e.g., Geske and Johnson, 1984; Longstaff and Schwartz, 2001; Fang and Oosterlee, 2009b;

Yu and Xie, 2015; Lian et al., 2015; Li et al., 2019). Numerical methods based on fast Fourier

transform (FFT) are traditionally very efficient at pricing options due to the existence of the5

characteristic functions of asset price dynamics. Famous papers (e.g., Carr and Madan, 1999; Itkin,

2005; Lipton, 2002; Gong and Zhuang, 2017) provide good techniques using FFT to price European

vanilla options under Lévy processes. The success of these papers has extended the use of FFT

or a combination of it and other transformation methods, e.g., the Hilbert transform or Gaussian

transform, to pricing exotic options (e.g., Broadie and Yamamoto, 2005; Feng and Linetsky, 2008;10

Jackson et al., 2008; Lord et al., 2008; Wong and Guan, 2011; Zeng and Kwok, 2014). In these

papers, the asset price dynamics are not limited to Lévy processes but extend to more complicated

stochastic processes such as time-changing Lévy processes. Although FFT is very efficient at option

pricing, a disadvantage is that it requires a sustainable number of terms to reach desirable accuracy
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(cf. the numerical results of using the fast Fourier time-stepping method (Jackson et al., 2008) and15

CONV (FFT-based method) (Lord et al., 2008) to price Bermudan options in Table 3.)

Beyond the FFT method, efforts by Oosterlee and his collaborators have attracted considerable

attention (Fang and Oosterlee, 2009a,b, 2011; Leentvaar and Oosterlee, 2008; Ruijter and Oosterlee,

2015; Ruijter et al., 2015; Zhang and Oosterlee, 2013). In their work, they adopt the Fourier

cosine series (COS) to price options or derivatives that have different contingency claims and are20

characterised by path dependence and/or early-exercise features. The implementation of these

methods is relatively simple but elegant and is capable of pricing options under different stochastic

processes as long as their characteristic function exists. The main achievement of these methods is

that they can, in many cases, maintain an exponential convergence rate when pricing options, e.g.,

European options. Moreover, these methods are also able to accurately price options under infinite25

variation processes.

Although the COS method is very successful in pricing options, it has a drawback. According

to Hurn et al. (2014), the accuracy of the COS method relies on a truncation interval, and the

construction of this interval involves the time to maturity of the options (due to the standard

derivation or the cumulants of a risky underlying asset). In their paper, when the interval is30

suitably large (more than, say, approximately ten standard deviations), the accuracy of using the

full-range Fourier series (the combination of COS and sine series) is higher than that of using

the COS method (the half-range COS method) in pricing European digital and vanilla options.

Their finding is crucial because, in the financial industry, especially in the field of insurance and

pensions, the maturity of an option issued in the field can range up to 35 or 40 years. If we use35

the COS method to price the option with a larger truncated interval, the accuracy of the method

can decrease and more terms are required to maintain satisfactory accuracy (cf. the last numerical

test between the COS and CFS methods in Table 3). Moreover, these researchers also show that

because the larger spectrum of the full-range Fourier series guarantees more rapid convergence, it

can improve computational time when the full-range Fourier series is used to calibrate financial40

models with a large number of real data inputs.

In this paper, we extend the theory of the complex Fourier series (CFS) method—the full-range

Fourier series—proposed by Chan (2017) to circumvent the aforementioned problems. We use the

CFS method to price early-exercise options to demonstrate that the CFS method is better than the

FFT method while requiring less computational cost and offering higher accuracy and is a more45

sensible method than the COS method for options with longer maturity. We also derive a complete

error bound to prove that the method exhibits exponential convergence when a probability density

function (PDF) is smooth. Finally, we show that the CFS method can be applied to a large amount

of real data, the SPDR ETF on the S&P 500 R© American index options traded from November 2017

to February 2018 and from January 2019 to June 2019.50

This paper proceeds as follows. In Section 2, we briefly introduce Lévy processes and their

application to modelling risky underlying assets. In Section 3, we revise the CFS method for pricing
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European options. We then present the CFS method for pricing Bermudan and American options,

discuss the algorithm for finding the early-exercise points of both American and Bermudan options

and show the techniques for accelerating the calculation of their prices in Section 4. The CFS pricing55

formulae for barrier options are presented in Section 5. We formulate the CFS representation of

option Greeks, particularly option Delta and Gamma, in Section 6. Numerical results are presented

in Section 7. Section 8 reports the CFS pricing performance over the S&P 500 R© index options.

We conclude in Section 9. Finally, Appendix A, Appendix B and Appendix C contain the error

analysis, the algorithms of computing Bermudan and American options, and the algorithms of60

computing discretely monitored barrier options respectively.

2. Lévy processes and their application in financial modelling

In this section, we briefly introduce Lévy processes and their application to modelling risky

underlying assets. Standard references for Lévy processes can be found in Cont and Tankov (2004)

and Schoutens (2003).65

A Lévy process is an adapted real-valued stochastic process Xt, with X0 = 0 that satisfies the

following properties.

1. Independent increment: For any 0 ≤ t1 < t2 < · · · < tn <∞, Xt2 −Xt1 , Xt3 −Xt2 , . . . , Xtn −
Xtn−1 are independent.

2. Time-homogeneous: For any s < t, Xt −Xs, is equal in distribution to Xt−s.70

3. Stochastically continuous: For any ε > 0, P[|Xx+h −Xt| ≥ ε]→ 0 as h→ 0.

Here, P is the probability measure, and ε is a very small positive number. Lévy processes consist

of a linear drift, a Brownian process, and a jump process1. The jump process is characterised by

the density of jumps, which is called the Lévy density. We denote it as ν(dχ). The characteristic

function of a Levy process can be described by the Lévy-Khinchine representation given by

φ(u) =
1

2
σ2u− iγcu+

∫ ∞
−∞

(1− eiuχ + iuχ1|χ|≥1)ν(dχ), χ ∈ XT−t, (1)

where σ2 is the variance of the Brownian component and ν(dχ) satisfies∫
R\0

min
(
1, χ2

)
ν(dχ) < +∞.

The jump process described above is a process of infinite variation. If the process has finite variation,

1A jump process is a type of stochastic process that has discrete movements, called jumps, with random arrival
times, rather than continuous movement.
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ν(dχ) will be changed to satisfy ∫
R\0

min (1, |χ|) ν(dχ) < +∞.

Then, the Lévy-Khinchine representation (1) simplifies to

φ(u) =
1

2
σ2u− iγu+

∫ ∞
−∞

(1− eiuχ)ν(dχ), χ ∈ XT−t.

In Table 1, we present a list of Lévy processes commonly used in financial applications and their

characteristic functions.

Table 1: Characteristic functions ϕ(u) of Lévy Processes. γc is equal to r − q + ω.

Finite activity models

Geometric Brownian motion (GBM) exp
(
(T − t)

(
iuγc − 1

2σ
2u2
))

The Merton model exp

(
(T − t)

(
iuγc − σ2u2

2 + λ
(
e−σ

2
Ju

2/2+izµJ − 1
)))

The Kou model exp

(
(T − t)

(
iuγc − σ2u2

2 + λ
( pα1

α1−iu + (1−p)α2

α2+iu
− 1)

))
Infinite activity models

Normal inverse Gaussian exp

(
(T − t)

(
iuγc − 1

2σ
2u2 + δ

(√
α2 − β2−

√
α2 − (β + iz)2

)))
Variance Gamma exp

(
(T − t)iuγc

)(
1/
(

1− iθυu+ σ2υ
2 u2

))T−t
υ

Finite-moment log stable (FMLS) exp
(
(T − t)

(
iuγc − (iuσ)α sec

(
πα
2

)))
CGMY exp

(
(T − t)iuγc + (T − t)

(
CΓ(−Y )GY

((
1 + iu

G

)Y − 1− iuY
G

)
+CΓ(−Y )MY

((
1− iu

M

)Y − 1 + iuY
M

)))
, Y ∈ (0, 2)/{1}

We now turn our attention to the application of Lévy processes in financial modelling. First,

we assume frictionless financial equity markets and no arbitrage and take as given an equivalent

martingale measure Q chosen by the market. All stochastic processes defined in the following

are assumed to live on the complete filtered probability space (Ω,F , {Ft}t≥0,Q). The stock price

process (St)t≥0 under Q driven by a Lévy process Xt can be defined as follows:

ST = Ste
(r−q)(T−t)+XT−Xt+ω(T−t) (2)

= Ste
(r−q+ω)(T−t)+XT−t . (3)
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Throughout the paper, r ≥ 0 and q ≥ 0 denote the constant risk-free interest rate and the constant

dividend yield, respectively; St represents the known stock price at time t; and ST represents the

random stock price at time T . The condition that (ST e
−(r−q)(T−t))t≥0 is a martingale will be

guaranteed by an appropriate choice of the mean-correcting compensator ω as follows:

ω =
1

T − t
E
(
eXT−t

)
, (4)

where E
(
eXT−t

)
is assumed to be finite for all 0 ≤ t ≤ T .

3. The complex Fourier series pricing formulae for European options75

In this section, we briefly revise the CFS option pricing formula for European options to prepare

for pricing early-exercise options in the next section. For further details on applying the CFS

method in pricing European options, we refer readers to Chan (2017).

Suppose that we approximate a function f : [a, b]→ R with a truncated complex Fourier series

given by80

fN (x) = Re

[
N∑

k=−N
bke

i 2π
b−akx

]
, with bk =

1

b− a

∫ b

a
f(x)e−i

2π
b−akxdx. (5)

Here, Re represents the real part of the function. We assume that |bk| ≤ C for any C independent

of k and that

lim
N→∞

(f(x)− fN (x)) = 0 and

∞∑
k=−∞

|bk|2 <∞ (6)

almost everywhere in x ∈ [a, b].

A European option driven by (St)t≥0 described in (2) and having the strike K can be exercised

at the end of its life (maturity) T. With the payoff function of G(eXT ), the risk-neutral option value

at time t given the state variable of the underlying asset taking the value of the log stock price

x = log(St) is given by

V (x, t) = e−r(T−t)E(G(eXT )|Xt = x), (7)

Here, G(eXT ) is the payoff of either a vanilla call or put.

If we use a scaled log-price random variable X̃t := Xt− log(K) in (7), we can transform G(eXT )

into g(X̃T , T ) such that

g(X̃T , T ) =

K max(eXT−logK − 1, 0) = K max(eX̃T − 1, 0) (for a call)

K max(1− eXT−logK , 0) = K max(1− eX̃T , 0) (for a put)
. (8)
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As the scaled log-price is still a Lévy process and, accordingly, the independent increments condition

holds (cf. Condition 1 in Section 2), (7) becomes

e−r(T−t)E(g(X̃T , T )|Xt = x) = e−r(T−t)E(g(Xt − log(K) +XT −Xt, T ))

= e−r(T−t)E(g(X̃t +XT−t, T ))

= e−r(T−t)
∫ ∞
−∞

g(x̃+ χ, T )f (χ) dχ, (9)

where χ ∈ XT−t, x̃ = x − logK ∈ X̃t, and f(χ) is the PDF of XT−t. Then, performing a change

in variables and setting y = x̃+ χ, we have

V (x, t) := v(x̃, t) = e−r(T−t)
∫ ∞
−∞

g(y, T )f (y − x̃) dy. (10)

To express the CFS representation of v(x̃, t), we choose a truncated computational interval [c, d] to

replace [−∞,∞] in (10). The interval must satisfy the condition that∫ d

c
eiuχf(χ)dχ ≈ E[eiuXT−t ] = ϕ(u), u ∈ R, (11)

where ϕ(u) is the characteristic function of XT−t. Using the Fourier transform shift theorem and

the truncated CFS representation of a function described in (5), f (y − x̃) can be approximated as

fN (y − x̃) = Re

[
N∑

k=−N
bk,T e

−i 2π
d−ckx̃ei

2π
d−cky

]
, (12)

where

b̂k,T =
1

d− c
ϕ

(
− 2π

d− c
k

)
≈ 1

d− c

∫ d

c
e−iuyf(y)dy, b̂0,T =

1

d− c
ϕ(0) ≈ 1

d− c
. (13)

We substitute (12) into (10) and apply Fubini’s theorem, and v(x̃, t) can be computed as

e−r(T−t)
∫ d

0
g(y, T )Re

[
N∑

k=−N
b̂k,T e

−i 2π
d−ckx̃ei

2π
d−cky

]
dy

= e−r(T−t)Re

[
N∑

k=−N
b̂k,T e

−i 2π
d−ckx̃

∫ d

0
g(y, T )ei

2π
d−ckydy

]

= e−r(T−t)Re

[
N∑

k=−N
b̂k,T ĝk,T e

−i 2π
d−ckx̃

]
. (14)
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In other words, if we regard g(y, T ) as the vanilla call and put payoff functions, we have

ĝk,T =
K(d− c)

i2πk + (d− c)

(
e(i

2π
d−ck+1)d − 1

)
− K(d− c)

i2πk

(
ei

2π
d−ckd − 1

)
,

ĝ0,T = K(ed − 1)−Kd (for a call), (15)

ĝk,T =
K(d− c)

i2πk + (d− c)

(
e(i

2π
d−ck+1)c − 1

)
− K(d− c)

i2πk

(
ei

2π
d−ckc − 1

)
,

ĝ0,T = K(ec − 1)−Kc (for a put). (16)

Finally, based on (13) and (15), we have the CFS pricing formula for European options defined as

v(x̃, t) = e−r(T−t)Re

[
2

N∑
k=1

b̂k,T ĝk,T e
−i 2π

d−ckx̃ + b̂0,T ĝ0,T

]
. (17)

4. The complex Fourier series pricing formulae for Bermudan and American options

In this section, we derive an approximate formula for early-exercise options via the CFS method.

To demonstrate our method, we first consider pricing a Bermudan option, a type of early-exercise85

option that can be exercised only on predetermined dates, typically every month. Subsequently,

we extend the method to price American and barrier options. In addition, throughout this section,

we illustrate the CFS pricing formula using the vanilla call and put payoff functions.

4.1. The complex Fourier series option pricing formulae for Bermudan options

Considering a Bermudan option with strike K and maturity T that can be exercised only on a

given number of exercise dates t = t0 < t1 ≤ t2 ≤ . . . tj ≤ tj+1 ≤ . . . ≤ tM1 = T, we can write the

Bermudan option pricing formulae as

v(x̃tj , tj) =


g(x̃tj , tj) j = M1

max
(
c(x̃tj , tj), g(x̃tj , tj)

)
j = 1, 2, 3, . . . ,M1 − 1

c(x̃tj , tj) j = 0

, (18)

with

c(x̃tj , tj) = e−r(tj+1−tj)E
(
v(x̃tj+1 , tj+1)|x̃tj

)
. (19)

Here, scaled log-price x̃t is xt − logK, and c(x̃tj , tj) and g(x̃tj , tj) are the continuation value and

the option payoff value at time tj , respectively. Moreover, c(x̃tj , tj) is the risk-neutral expectation

of v(x̃tj+1 , tj+1) given x̃tj . Given x̃tj at tj , x̃tj+1 is considered a Lévy process, and as a result, the

independent increment condition holds (cf. Condition 1 in Section 2). c(x̃tj , tj) can be further
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transformed as follows:

e−r(tj+1−tj)
∫ ∞
−∞

v(x̃tj + χ, tj+1)f(χ)dχ, χ ∈ Xtj+1−tj , (20)

where Xtj+1−tj is a Lévy process with PDF f.90

There are four main aspects and two assumptions involved when deriving the CFS formula for

Bermudan option price v(x̃t, t) at t = t0 in (18). First, since there is no closed-form expression in

(20), we repetitively approximate c(x̃tj , tj) from tM1−1 to t0 with the CSF representation. Second,

we evaluate the relationship between the complex Fourier transforms of v(x̃tj , tj) and v(x̃tj+1 , tj+1).

Eventually, we represent the complex Fourier transform of v(x̃t, t) backwardly by that of g(x̃T , T ).95

Third, as the option has the early-exercise feature, we show how one can find and implement the

early-exercise point x̃∗tj in the pricing formula at each tj . Finally, we have the CFS representation

of v(x̃t, t) at t. Given the two assumptions, as the requirement of the CFS pricing formula, the

number of the terms in the truncated CSF representation of c(x̃tj , tj) is the same at each tj . The

time difference between two successive time points, e.g., tj+1 − tj , is also equivalent.100

The procedure for generating the truncated CFS representation cN (x̃tj , tj) of order N is simply

to adapt the ideas of approximating the European option value in (12)–(14). As the formation of

c(x̃tj , tj) (20) is similar to that of (9), we apply a definite integration interval [c, d] satisfied with

(11), perform a change in variables by setting y = x̃tj + χ and reformulate c(x̃tj , tj) as follows:

e−r(tj+1−tj)
∫ d

c
v(y, tj+1)f(y − x̃tj )dy. (21)

Now, approximating f(y − x̃tj ) with a truncated complex Fourier series of order N, we can reach

a general truncated Fourier series expansion of c(x̃tj , tj) given by

cN (x̃tj , tj) = e−r(tj+1−tj)Re

[
N∑

k=−N
b̂k,tj+1

v̂k,tj+1
e−i

2π
b−akx̃tj

]
, (22)

where

b̂k,tj+1
=

1

d− c
ϕ

(
− 2π

d− c
k, tj+1 − tj

)
, b̂0,tj+1 =

1

d− c
ϕ(0) =

1

d− c
. (23)

As the time difference of tj+1 − tj is the same, this implies that b̂k,tj+1
and b̂0,tj+1 are equivalent

throughout at each tj+1.

The complex Fourier transform of v(x̃tj+1 , tj+1) can be expressed in a function, particularly a

matrix-vector product, of the complex Fourier transform of v(x̃tj+2 , tj+2). In (22), v̂k,tj+1
is the

complex Fourier transform of v(y, tj+1). It is indeed composed of the Fourier transform of c(y, tj+1)
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and g(y, tj+1); therefore, v̂k,tj+1
can be further decomposed into the following forms:

v̂k,tj+1
=

∫ d

c
max (c(y, tj+1), g(y, tj+1)) e

i 2π
d−ckydy

=


∫ x̃∗tj+1
c c(y, tj+1)e

i 2π
d−ckydy +

∫ d
x̃∗tj+1

g(y, tj+1)e
i 2π
d−cydy (for a call)∫ b

x̃∗tj+1

c(y, tj+1)e
i 2π
d−ckydy +

∫ x̃∗tj+1
c g(y, tj+1)e

i 2π
d−cydy (for a put)

= ĉk,tj+1
+ ĝk,tj+1

(24)

Here, x̃∗tj+1
is the early-exercise point at time tj+1, which is the point at which the continuation

value equals the payoff function, i.e., c(x̃tj+1 , tj+1) = g(x̃tj+1 , tj+1). The value of x̃∗tj+1
, as discussed

in Fang and Oosterlee (2009b), can be found numerically via Newton’s method and the like. Once

x̃∗tj+1
is obtained, we have

ĝk,tj+1
=

K(d− c)
i2πk + (d− c)

(
e(i

2π
d−ck+1)d − e(i

2π
d−ck+1)x̃∗tj+1

)
− K(d− c)

i2πk

(
ei

2π
d−ckd − e(i

2π
d−ck+1)x̃∗tj+1

)
,

ĝ0,tj+1 = K(ed − ex̃
∗
tj+1 )−K(d− x̃∗tj+1

) (for a call),

ĝk,tj+1
=

K(d− c)
i2πk + (d− c)

(
e(i

2π
d−ck+1)c − e(i

2π
d−ck+1)x̃∗tj+1

)
− K(d− c)

i2πk

(
ei

2π
d−ckc − e(i

2π
d−ck+1)x̃∗tj+1

)
,

ĝ0,tj+1 = K(ec − ex̃
∗
tj+1 )−K(c− x̃∗tj+1

) (for a put). (25)

Moreover, in (24), we again approximate c(k, tj+1) with a truncated CFS representation of cN (k, tj+1),

i.e.,

c(x̃tj+1 , tj+1) ≈ cN (x̃tj+1 , tj+1) = e−r(tj+2−tj+1)Re

[
N∑

k=−N
b̂k1,tj+2

v̂k1,tj+2
e−i

2π
b−ak1x̃tj+1

]
. (26)

This gives the same formation of the complex Fourier transform of c(x̃tj+1 , tj+1) given by

ĉk,tj+1
≈ ĉNk,tj+1

= e−r(tj+2−tj+1)Re

 N∑
k1=−N

b̂k1,tj+2
v̂k1,tj+2

ê−k1,k

 , (27)

where

ê−k1,k :=


∫ x̃∗tj+1
c ei

2π
d−c (−k1+k)x̃tj+1dx̃tj+1 = d−c

i2π(−k1+k)e
i 2π
d−c (−k1+k)y

∣∣∣x̃∗tM1−1

c
(for a call)∫ b

x̃∗tj+1

ei
2π
d−c (−k1+k)x̃tj+1dx̃tj+1 = d−c

i2π(−k1+k)e
i 2π
d−c (−k1+k)y

∣∣∣b
x̃∗tM1−1

(for a put)
, (28)

ê0,0 :=

x̃∗tj+1
− c (for a call)

b− x̃∗tj+1
(for a put)

. (29)
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Based on (24) and (27) and replacing v̂k1,tj+2
with v̂Nk1,tj+2

in (27), we can determine the relation-

ship between v̂Nk,tj+1
and v̂Nk,tj+2

in a truncated CFS representation, i.e.,

v̂Nk,tj+1
≈ e−r(tj+2−tj+1)Re

 N∑
k1=−N

b̂k1,tj+2
v̂Nk1,tj+2

ê−k1,k

+ ĝk,tj+1
. (30)

If we express (30) as a matrix-vector product, we have

v̂Ntj+1
= e−r(tj+2−tj+1)Etj+2

b̂tj+2
v̂Ntj+2

+ ĝtj+1
. (31)

Here, v̂Ntj+1
, b̂tj+2

v̂Ntj+2
, and ĝtj+1

are 2N × 1 vectors:


v̂N −N,tj+1

v̂N −N+1,tj+1

...

v̂NN,tj+1

 ,


b̂−N,tj+2
v̂N −N,tj+2

b̂−N+1,tj+2
v̂N −N+1,tj+2

...

b̂N,tj+2
v̂NN,tj+2

 , and


ĝ−N,tj+1

ĝ−N+1,tj+1

...

ĝN,tj+1

 (32)

respectively. Each element of b̂k,tj+2
can be computed by (23). In the same manner, we can

compute each element of ĝk,tj+1
using (25). With the result of (28), Etj+2

can be also constructed

as a 2N × 2N matrix: 
êN1,−N · · · êN1,N−1 êN1,N

êN1−1,−N · · · êN1−1,N−1 êN1−1,N

...
. . .

. . .
...

ê−N1,−N · · · ê−N1,N−1 ê−N1,N

 . (33)

At t, we can approximate cN (x̃t, t) via the CFS method to obtain v(x̃t, t), as approximating

cN (x̃t, t) is equivalent to approximating v(x̃t, t) based on (18). This is because cN (x̃t, t) can be

expressed as

e−r(t1−t)Re

[
N∑

k=−N
b̂k,t1 v̂Nk,t1e

−i 2π
b−akx̃t

]
. (34)

Here, v̂k,t1 is the element of v̂Nt1 . Furthermore, v̂Ntj+1
has a matrix-vector product relationship

with ĝT based on (31). Using (31), holding N constant and finding x̃∗tj on each early-exercise date,

we can recursively determine that

v̂Nt1 = e−r(t2−t1)Et2b̂t2

(
e−r(t3−t2)Et3b̂t3

(
. . .

10



(
e−r(T−tM1−1)ET b̂T ĝT + ĝtM1−1

)
. . .+ ĝt2

)
+ ĝt1 . (35)

ĝT is the vector of the complex Fourier transform of a terminal payoff function at T. If it is a vanilla

put and call, each element of ĝT is as follows:

ĝk,T =
K(d− c)

i2πk + (d− c)

(
e(i

2π
d−ck+1)d − 1

)
− K(d− c)

i2πk

(
e(i

2π
d−ck)d − 1

)
,

ĝ0,T = K(ed − 1)−Kd (for a call),

ĝk,T =
K(d− c)

i2πk + (d− c)

(
e(i

2π
d−ck+1)c − 1

)
− K(d− c)

i2πk

(
e(i

2π
d−ck)c − 1

)
,

ĝ0,T = K(ec − 1)−Kc (for a put). (36)

4.2. The complex Fourier series pricing formulae for American options

There are basically two approaches to evaluating American options based on the CFS pricing

formula for Bermudan options. As suggested in (Fang and Oosterlee, 2009b), one simple approach

is to approximate an American option by a Bermudan option with many exercise opportunities. In

other words, we increase the number of exercise opportunities M1 to a very large value. According

to Chang et al. (2007) and Geske and Johnson (1984), the other approach is to use Richardson

extrapolation on a series of Bermudan options with an increasing number of exercise opportunities.

We adapt the latter approach, which is also implemented in (Fang and Oosterlee, 2009b), to price

American options here. The prices of American options can be obtained by applying Richardson

extrapolation to the prices of a few Bermudan options with small M1. Suppose that we denote by

v(M1) the value of a Bermudan option with M1 early-exercise dates. By implementing the 4-point

Richardson extrapolation scheme (cf. Fang and Oosterlee, 2009b), the American option price is

given by

vAmer(M1) =
1

12

(
64v(2M1+3)− 56v(2M1+2) + 14v(2M1+1)− v(2M1)

)
, (37)

where vAmer(M1) denotes the approximated value of the American option and v(·) is the CFS

pricing formula for Bermudan options.105

4.3. Early-exercise point using root finding techniques

In this short section, we combine the CFS method with root finding techniques, mainly Newton’s

method, to find early-exercise points. Newton’s method is first proposed in Fang and Oosterlee

(2009b) to find an early-exercise point. This technique can be used when one solves the following

equality:

c(x̃tj+1 , tj+1) = g(x̃tj+1 , tj+1). (38)

11



Therefore, to find x∗tj , we can implement different root finding techniques, such as the secant

method. In this paper, as suggested in Fang and Oosterlee (2009b), we implement Newton’s method

(also known as the Newton-Raphson method) instead. The process of this method is repeated as

xl+1 = xl −
g(xl, tj+1)− c(xl, tj+1)

∂
∂x̃tj

g(xl, tj+1)− ∂
∂x̃tj

c(xl, tj+1)
(39)

over xl for l = 1, 2, . . . until a sufficiently accurate value is reached. In the equation, we start with

x0 equal to x∗tj+1
, the exercise point in the exercise date at tj+1, and we also know that at maturity

T, x∗T is equal to 0.

As we know from the previous section, c(x̃tj , tj) in (39) can be approximated by cN (x̃tj , tj) with

the truncated CFS representation of

e−r(tj+1−tj)Re

[
N∑

k=−N
b̂k,tj+1

v̂Nk,tj+1
e−i

2π
b−akx̃tj

]
, (40)

and similarly, its first-order differentiation can also be approximated with ∂cN (x̃tj , tj+1)/∂x̃tj , which

is equal to

e−r(tj+1−tj)Re

[
N∑

k=−N

(
−i 2π

b− a
k

)
b̂k,tj+1

v̂Nk,tj+1
e−i

2π
b−akx̃tj

]
. (41)

4.4. Matrix-vector multiplication using the FFT110

In (31), the direct computation of v̂Ntj+1
is very expensive, i.e., O(N2), with the input of

v̂Ntj+2
. To make the computation less expensive in (31), we make use of Etj+2

, a Toeplitz matrix

(each descending diagonal from left to right in the matrix is constant). Therefore, the matrix-

vector product (31), with Etj+2
(33), can be transformed into a circular convolution. To do so, we

construct

êtj+2
= [êN1,−N , êN1−1,−N , . . . , ê−N1,−N , 0, êN1,N , êN1−1,N , . . . , ê−N1+1,N ]T , (42)

b̂vtj+2
=
[
b̂−N,tj+2

v̂−N,tj+2
, b̂−N+1,tj+2

v̂−N+1,tj+2
, . . . , b̂v̂N,tj+2

, 0, . . . , 0
]T
, (43)

where êtj+2
and b̂vtj+2

are 4N × 1 vectors. With the help of the FFT algorithm computed in

O(N log2(N)) operations, a circular convolution of two vectors is equal to the inverse discrete

Fourier transform (D−1) of the products of the forward DFTs, D, i.e.,

êtj+2
∗ b̂vtj+2

= D−1
(
D (êtj+2

) · D
(
b̂vtj+2

))
. (44)
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By retrieving the first 2N values of the product of (44), multiplying them by a discounted factor

e−r(tj+2−tj+1) and finally adding them into ĝtj+1
, we can obtain v̂Ntj+1

.

Based on the aforementioned sections, we summarise the computational algorithms for pricing

American and Bermudan options in Appendix B.

5. The complex Fourier series pricing formulae for barrier options115

A barrier option is an early-exercise option whose payoff depends on the stock price crossing

a pre-set barrier level during the option’s lifetime. We call the option an up-and-out, knock-out,

or down-and-out option when the option’s existence fades out after crossing the barrier level. By

contrast, we call the option an up-and-in, knock-in, or down-and-in option when the option comes

into existence after reaching the barrier level. Like European vanilla options, these options can all120

be written as either put or call contracts that have a pre-determined strike price on an expiration

date. In this paper, we investigate only four basic types of barrier options: the down-and-out

barrier (DO) option, down-and-in barrier (DI) option, up-and-out barrier (UO) option and up-and-

in barrier (UI) option. If a DO or UO option provides a refund in the event that the knock-out

occurs, we call it a rebate DO or UO option.125

After categorising the barrier options we examine in this paper, we turn to investigating their

discretely monitored barrier—a subsidiary class of barrier options—and then examine their contin-

uous version. The structure of discretely monitored barrier options is the same as that of Bermudan

options. Instead of having a pre-set exercise date and an early-exercise point like Bermudan options,

barrier options have a pre-set monitored date and a barrier level. In the case of Bermudan options,130

when the stock price goes across the early exercise point, a payoff occurs and the option expires

immediately. In the same manner, a barrier option knocks out or in immediately when the barrier

level is crossed. The barrier level acts exactly the same as the exercise point in Bermudan options.

However, in the case of a barrier option without a rebate, no payoff occurs when the barrier level

is reached; otherwise, a rebate occurs when a barrier option is knocked out.135

We use both rebate DO and UO options as illustrations to formulate their singular Fourier-Padé

pricing formulae and describe their computational algorithms. Once we obtain the formulae and

algorithms for pricing these two options, we extend them to the rest of the options.

Taking the same mathematical notations and formats established in Section 4, we use a scaled

log-price x̃tj = xtj − logK and a scaled barrier B̃ := logB − logK to describe the state variable

and the barrier level of a discretely monitored barrier option at each tj , respectively. Suppose that

we have a rebate DO (UO) option driven by St with a barrier B, a rebate Rb, a strike K and a
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series of monitoring dates M1: t = t0 < t1 < tj < . . . < tM1 = T ; the option can be described as

v(x̃tj , tj) =


gz(x̃tj , tj) j = M1,

c(x̃tj , tj) · 1x̃tj>B̃ + e−r(T−tj)Rb · 1x̃tj≤B̃ j = 0, 1, . . . ,M1 − 1, (for a DO),

c(x̃tj , tj) · 1x̃tj<B̃ + e−r(T−tj)Rb · 1x̃tj≥B̃ j = 0, 1, . . . ,M1 − 1, (for an UO),

(45)

with

c(x̃tj , tj) = e−r(tj+1−tj)E
(
v(x̃tj+1 , tj+1)|x̃tj

)
. (46)

Here, gz(x̃tj , tj) is defined as

gz(x̃T , T ) :=

g(x̃T , T ) · 1
x̃T>B̃

+Rb · 1x̃T≤B̃ (for a DO),

g(x̃T , T ) · 1
x̃T<B̃

+Rb · 1x̃T≥B̃ (for an UO),
(47)

where g(x̃tj , tj) can be any vanilla put or call, i.e.,

g(x̃T , T ) =

K max(ex̃T − 1, 0) (for a call)

K max(1− ex̃T , 0) (for a put)
. (48)

1 is an indicator function that takes a value of 1 when x̃tj > B̃ (x̃tj < B̃); otherwise, it is equal to

zero when its complement x̃tj ≤ B̃ (x̃tj ≥ B̃) exists. In addition, at each tj , both events x̃tj > B̃140

(x̃tj < B̃) and their complement x̃tj ≤ B̃ (x̃tj ≥ B̃) cannot occur simultaneously; only one of them

can exist at each tj .

The CFS computational algorithm of DO and UO is the same as that of the Bermudan option in

Section 4. First, we approximate v(x̃t, t) with a truncated CFS representation. This can be achieved

by implementing the CFS representation cN (x̃t, t) of c(x̃t, t) in (46). As v̂k,t1 is the coefficient of145

cN (x̃t, t), we work backwards and recursively from t1 to T using (45) to identify v̂k,t1 in terms of

the complex Fourier transform ĝzk,T of gz(x̃T , T ) at T.

To illustrate the algorithm, at time t, c(x̃t, t) can be approximated with a form of

cN (x̃t, t) = e−r(t1−t)Re

[
N∑

k=−N
b̂k,t1 v̂Nk,t1e

−i 2π
b−akx̃t

]
(49)
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Hence, v(x̃t, t) in (45) can be reformulated as

(
e−r(t1−t)Re

[
N∑

k=−N
b̂k,t1 v̂Nk,t1e

−i 2π
b−akx̃t

])
· 1

x̃t>B̃
+ e−r(T−t)Rb · 1x̃t≤B̃ (for a DO),(

e−r(t1−t)Re

[
N∑

k=−N
b̂k,t1 v̂Nk,t1e

−i 2π
b−akx̃t

])
· 1

x̃t<B̃
+ e−r(T−t)Rb · 1x̃t≥B̃ (for an UO).

(50)

Here, b̂k,t1 is the same as (23). Like the assumption of the CFS pricing formula for Bermudan

options in Section 4, the time difference between two successive time steps, i.e., tj+1 − tj , is the

same. We can accordingly conclude that b̂k,tj+1
and b̂0,tj+1 are equivalent throughout at each tj+1.

Furthermore, in (50), v̂Nk,t1 can be further simplified as
∫ d
c

(
cN (y, t1) · 1y>B̃ + e−r(T−t1)Rb · 1

y≤B̃

)
ei

2π
d−cky dy (for a DO),∫ d

c

(
cN (y, t1) · 1y<B̃ + e−r(T−t1)Rb · 1

y≥B̃

)
ei

2π
d−cky dy (for an UO).

=

ĉNk,t1 + e−r(T−t1)Rb · ĝ1k,t1 (for a DO),

ĉNk,t1 + e−r(T−t1)Rb · ĝ1k,t1 (for an UO).
(51)

Here, ĝ1k,t1 is the complex Fourier transform of 1 such that

ĝ1k,t1 =
d− c
i2πk

(
ei

2π
d−ckB̃ − ei

2π
d−ckc

)
, ĝ10,t1 = B̃ − c, (for a DO), (52)

ĝ1k,t1 =
d− c
i2πk

(
ei

2π
d−ckd − ei

2π
d−ckB̃

)
, ĝ10,t1 = d− B̃, (for an UO). (53)

ĉNk,t1 is the complex Fourier transform of cN (y, t1) given by

ĉNk,t1 = e−r(t2−t1)Re

 N∑
k1=−N

b̂k1,t2 v̂Nk1,t2 ê−k1,k

 , (54)

where

ê−k1,k :=


d−c

i2π(−k1+k)e
i 2π
d−c (−k1+k)y

∣∣∣d
B̃

(for a DO)

d−c
i2π(−k1+k)e

i 2π
d−c (−k1+k)y

∣∣∣B̃
c

(for an UO)
, ê0,0 :=

d− B̃ (for a DO)

B̃ − c (for an UO)
. (55)

To derive the value of v̂Nk,t1 in (50), we fully utilise the idea of the matrix-vector product in (35)

and evaluate backwardly to represent v̂Nt1 (v̂Nk,t1 being its element) in terms of ĝzT. Hence, v̂Nk,t1
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can be found from v̂Nt1 , and v̂Nt1 is given by

e−r(t2−t1)Et2b̂tj+2

(
. . . e−r(tj+1−tj)Etjb̂tj

(
. . .

(
e−r(T−tM1−1)ET b̂T ĝzT

+ er(T−tM1−1)Rb · ĝ1tM1−1

)
. . .+ e−r(T−tj)Rb · ĝ1tj

. . .

)
+ e−r(T−t1)Rb · ĝ1t1 . (56)

Here, Etj is a 2N × 2N matrix, which is the same as (33) with the elements listed in (55); b̂tj is a

2N × 1 vector with the input elements of (23); ĝ1tj
is also a 2N × 1 vector with the input elements

of (52); and finally, ĝzT , a 2N × 1 vector, consists of two other 2N × 1 vectors—ĝT and ĝ1T—such

that

ĝzT = ĝT + ĝ1T. (57)

Based on whether the terminal payoff function is a call or put (cf. (48)), each element of ĝT and

ĝ1T can be further distinguished in Table 2. For example, if it is a DO call, we have

ĝk,T =
K(d− c)

i2πk + (d− c)

(
e(i

2π
d−ck+1)d − e(i

2π
d−ck+1)B̃

)
− K(d− c)

i2πk

(
ei

2π
d−ckd − e(i

2π
d−ck+1)B̃

)
,

ĝ0,T = K(ed − eB̃)−K(d− B̃),

ĝ1k,T =
d− c
i2πk

(
ei

2π
d−ckB̃ − 1

)
, ĝ10,T = B̃. (58)

For both DI and UI barrier options, we modify (45) to allow the feature of knocking-in. Hence,

(45) becomes

v(x̃tj , tj) =


gz(x̃tj , tj) j = M1,

c(x̃tj , tj) · 1x̃tj≤B̃ j = 0, 1, . . . ,M1 − 1, (for a DI),

c(x̃tj , tj) · 1x̃tj≥B̃ j = 0, 1, . . . ,M1 − 1, (for an UI),

(59)

with

gz(x̃T , T ) :=

g(x̃T , T ) · 1
x̃T≤B̃ (for a DI),

g(x̃T , T ) · 1
x̃T≥B̃ (for an UI),

(60)

Here, g(x̃T , T ) is the call or put payoff function described in (48). In the same manner used to

formulate the CFS pricing formula of DO or UO options, the CFS representation of a DI or UI
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option can be defined as follows:

cN (x̃t, t) = e−r(t1−t)Re

[
N∑
k=1

b̂k,t1 v̂Nk,t1e
−i 2π

b−akx̃t + b̂0,t1 v̂N 0,t1

]
. (61)

Hence, v(x̃t, t) in (59) can be reformulated as

(
e−r(t1−t)Re

[
N∑

k=−N
b̂k,t1 v̂Nk,t1e

−i 2π
b−akx̃t

])
· 1

x̃t≤B̃ (for a DI),(
e−r(t1−t)Re

[
N∑

k=−N
b̂k,t1 v̂Nk,t1e

−i 2π
b−akx̃t

])
· 1

x̃t≥B̃ (for an UI).

(62)

The matrix-vector product presentation of v̂Nt1 in DI and UI options differs from (56). To address

their context, v̂Nt1 is modified to

e−r(t2−t1)Et2b̂t2

(
. . . e−r(tj+1−tj)Etjb̂tj

(
. . .

(
e−r(T−tM1−1)ET b̂T ĝzT

)
. . .

)
. . .

)
. (63)

Here,

ĝzT = ĝT . (64)

The value of ĝT depends on whether we are considering a call or put and can be found in Table 2.

Moreover, each element of Etj can be calculated as follows:

ê−k1,k :=


d−c

i2π(−k1+k)e
i 2π
d−c (−k1+k)y

∣∣∣d
B̃

(for an UI)

d−c
i2π(−k1+k)e

i 2π
d−c (−k1+k)y

∣∣∣B̃
c

(for a DI)
, ê0,0 :=

d− B̃ (for an UI)

B̃ − c (for a DI)
. (65)

We summarise the computational algorithms for pricing discretely monitored barrier options in

Appendix C.

6. Option Greeks150

In this paper, we focus on deriving three option Greeks—Delta, Gamma, and Vega. Delta,

∆, is defined as the rate of change in the option value with respect to changes in the underlying

asset price; Gamma, Γ, is the rate of change in ∆ with respect to changes in the underlying price;

and finally, Vega is the measurement of an option’s sensitivity to changes in the volatility of the

underlying asset price. In general, volatility measures the amount and speed at which the price155

moves up and down, and it is often based on changes in the recent, historical prices of a trading

instrument. Other Greeks, such as Theta, can be derived in a similar fashion; however, depending
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Table 2: Complex Fourier transforms for a variety of barrier payoff functions at maturity time T .

Barrier payoff functions Fourier Transform Fourier Transform

ĝk,T ĝ0,T

DO/UI Call K(d−c)
i2πk+(d−c)

(
e(i

2π
d−c k+1)d − e(i

2π
d−c k+1)B̃

)
− K(d−c)

i2πk

(
ei

2π
d−c kd − e(i

2π
d−c k+1)B̃

)
K(ed − eB̃) −K(d− B̃)

DO/UI Put K(d−c)
i2πk+(d−c)

(
e(i

2π
d−c k+1)B̃ − 1

)
− K(d−c)

i2πk

(
ei

2π
d−c kB̃ − 1

)
K(eB̃ − 1) −KB̃

UO/DI Call K(d−c)
i2πk+(d−c)

(
e(i

2π
d−c k+1)B̃ − 1

)
− K(d−c)

i2πk

(
ei

2π
d−c kB̃ − 1

)
K(eB̃ − 1) −KB̃

UO/DI Put K(d−c)
i2πk+(d−c)

(
e(i

2π
d−c k+1)c − e(i

2π
d−c k+1)B̃

)
− K(d−c)

i2πk

(
ei

2π
d−c kc − e(i

2π
d−c k+1)B̃

)
K(ec − eB̃) −K(c− B̃)

ĝ1k,T ĝ10,T

DO Call d−c
i2πk

(
ei

2π
d−c kB̃ − 1

)
B̃

DO Put d−c
i2πk

(
ei

2π
d−c kc − ei

2π
d−c kB̃

)
c− B̃

UO Call d−c
i2πk

(
ei

2π
d−c kd − ei

2π
d−c kB̃

)
d− B̃

UO Put d−c
i2πk

(
ei

2π
d−c kB̃ − 1

)
B̃

on the characteristic function, the derivation expression might be rather lengthy. We omit them

here, as many terms are repeated.

Delta is the first derivative of the value of V of the option with respect to the underlying

instrument price S. Hence, differentiating the truncated CFS expansion of v defined as the Bermuda

option (18), American option (37), and barrier options (45) and (59) with respect to S, we have

∆t =
∂v(x̃t, t)

∂S
=
∂v(x̃t, t)

∂x̃t

∂x̃t
∂S

= e−r(t1−t)−x

(
Re

[
2

N∑
k=1

(
−i 2π

d− c
k

)
b̂k,t1 v̂Nk,t1e

−i 2π
d−ckx̃t

])
. (66)

In a similar fashion, we can obtain Γt by differentiating ∆t with respect to S such that

Γt =
∂2v(x̃t, t)

∂S2
=
∂∆t

∂S
=
∂∆t

∂x̃t

∂x̃t
∂S

, (67)

and eventually,

Γt = e−r(t1−t)−2x

(
Re

[
2

N∑
k=1

(
i

2π

d− c
k

)(
i

2π

d− c
k + 1

)
b̂k,t1 v̂Nk,t1e

−i 2π
d−ckx̃t

]
− (68)
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Re

[
2

N∑
k=1

(
−i 2π

d− c
k

)
b̂k,t1 v̂Nk,t1e

−i 2π
d−ckx̃t

])
. (69)

It is also easy to obtain the formula for Vega, ∂v
∂σ , where σ is the initial value of the volatility at

time t. For example, for the finite moment log stable (FMLS) process, as σ is the initial value of

the volatility in its characteristic function, we derive Vega as follows:

∂v(x̃t, σ, t)

∂σ
= e−r(t1−t)

(
Re

[
2

N∑
k=1

∂b̂k,t1
∂σ

v̂Nk,t1e
−i 2π

d−ckx̃t

])
, (70)

with

∂b̂k,t1
∂σ

= −ασα−1(t1 − t)
((
−2kπi

d− c

))α
sec
(πα

2

)
b̂k,t1 , (71)

where ϕ contains the parameter σ.160

7. Numerical results

In this section, we demonstrate the performance of the CFS method through various numerical

tests. The purpose of this section is, first, to test whether the error convergence analysis presented

in Section Appendix A is in line with the numerical findings in this section. A number of popular

numerical methods are implemented to test the CFS method in terms of the error convergence,165

convergence rate and computational time. These methods include the COS method (a Fourier COS

series method, Fang and Oosterlee, 2009b), the CONV method (an FFT method, Lord et al., 2008)

the multinomial method (Wong and Guan, 2011) and the Fourier space time-stepping (FSTS)

method (Jackson et al., 2008). When we implement the CONV, we use Simpson’s rule for the

Fourier integrals to achieve fourth-order accuracy. We also set the damping factors of the CONV170

to 0 and any value greater than zero, respectively.

In all numerical experiments, applying a minimum and substantial interval [c, d] is crucial to

capture most of the mass of a PDF such that the CFS method can maintain a sensible global

spectral convergence rate. To do so, we construct an interval related to the closed-form formulas

of stochastic process cumulants. The idea of using the cumulants was first proposed by Fang and

Oosterlee (2009a) to construct the definite interval [c, d]. Based on their ideas, we have the following

expression for [c, d]:

d =

∣∣∣∣c1 + L
√
c2 +

√
c4 +

∣∣∣∣log

(
S0
K

)∣∣∣∣∣∣∣∣ (72)

c = −d, (73)

where c1, c2, and c4 are the first, second and fourth cumulants, respectively, of the stochastic

19



process. For simple, less-complicated financial models, we also obtain closed-form formulas for

c1, c2, and c4, which can be found in Chan (2017, 2018) and Fang and Oosterlee (2009a,b). As

Fang and Oosterlee (2009b) suggest, any maturity time longer than 0.1 years is acceptable, and

thus we use L = 8 as an appropriate value for the Lévy processes considered. If any maturity

time is less than 0.1 years, we add a constant value of 0.1 into (72). Moreover, BSM stands for

the Black-Scholes model (Geometric Brownian Motion); VG denotes the variance gamma model

(Madan et al., 1998; Madan and Milne, 1991; Madan and Seneta, 1990); CGMY stands for the

Carr-German-Maddan-Yor model (Carr et al., 2002); and NIG is short for the normal inverse

Gaussian process (Barndorff-Nielsen, 1991). We use the parameter N to denote the number of

terms in the CFS and COS methods and the grid points of the others. When we measure the

approximation errors of the numerical methods, we use absolute errors, the infinity norm error R∞,

as the measurement units. Following Fang and Oosterlee (2009b), to observe the spectral error

convergence, we define the following ratio:

ratio =
ln ‖err(2d+1)‖∞
ln ‖err(2d)‖∞

=
lnR∞(2d+1)

lnR∞(2d)
,

where lnR∞(2d) denotes the infinity norm error between the reference solution and approximation

obtained with N = 2d (for other methods, we use N instead). ratio should be equal to or above 2 if

R∞(N) = C1 exp(−P1N) with C1 and P1 not depending on N ; if the error convergence is algebraic,

i.e., R∞(N) = C2 exp(−P2N) with C2 and P2 not depending on N , ratio should equal (d+ 1)/d.175

Finally, all CPU times presented (in seconds) are determined after averaging the computational

time over 120 experiments. A MacBook Pro with a 2.8 GHz Intel Core i7 CPU and two 8 GB DDR

SDRAM (cache memory) is used for all experiments. The code is written in MATLAB R2011b.

In Table 3, we price Bermudan options under different Lévy processes and compare the CFS

method with the CONV, COS, multinomial and FSTS methods in terms of error convergence and180

computational time. There are 15 predetermined dates of the options in total, and the reference

values are generated via the COS method with N = 215 = 32768. Since the PDF is smooth,

compared with other methods, we can see that both the COS and CFS methods not only have

higher accuracy with fewer numbers terms of N but also achieve the spectral convergence rate. In

addition, in each numerical test, the computational time is very reasonable for the CFS method. In185

other words, it requires only approximately 0.06 seconds to generate a Bermudan option price with

N = 256 and an approximately 1.00e−13 error difference from the reference price. Furthermore, in

the last numerical test under the NIG model in Table 3, we can see that the CFS method can yield

quicker convergence with fewer terms required than COS when T = 40. This is in line with the

finding of Hurn et al. (2014). As T = 40, the truncated interval (72) is larger than approximately ten190

standard derivations, and as a result, as Hurn et al. (2014) suggest, the CFS method outperforms

the COS method. We compare both the COS and CFS methods for pricing the American call
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Figure 1: Recovered Bermudan put Delta ∆ (top left) and Gamma Γ (top right) via the CFS method using the
BSM model with S0 = 100, r = 0.1, q = 0.0, σ = 0.2, T = 1 and K increasing from 10 to 190. There are a total of
10 predetermined dates for the put. The number of terms N increases in a sequence of 8 (red line), 32 (blue line)
and 128 (yellow line), 512 (cyron line) and 32,768 (black line). The parameters are taken from Fang and Oosterlee
(2009b).

option under the BSM model and American put option under the CGMY model, respectively, in

Tables 4 and 5. In the tables, we apply the extrapolation method using (37). As M1 increases

gradually from 1 to 3, the error converges to a 8.456e − 04 difference from the true value for a195

call option and a 3.045e− 07 difference from the true value for a put option. In Figs. 1 and 2, we

recover the Delta ∆ and Gamma Γ of a Bermudan put option under the BSM and CGMY models.

As long as we increase the value of N, the value difference of ∆ and Γ in each N is diminished.

When we turn our attention to using the CFS method to price monthly monitored (M1 = 12)

up-and-out call and put options, (UO Call) and (UO Put), and down-and-out call and put options,200

(DO Call) and (DO Put), we solve the same problems as in Feng and Linetsky (2008) and Fang and

Oosterlee (2009b) with barrier level H = 120 for the up-and-out and H = 80 for the down-and-out

options. In Tables 6, 7 and 8, the CPU times are again measured in seconds, and the reference

values are obtained by the COS method, with N = 215. Tables 6 and 7 show spectral convergence,

as the ratio is almost equal to two when N increases twofold. This convergence is attributed to the205

PDF in both tables being smooth. When we have more monthly monitored M1, as in Table 8, the

time intervals tend to be smaller, which means that the transitional PDF tends to become highly

peaked. As a result, we have an algebraic convergence rate in the CFS method in Table 8, as the

PDF is more highly peaked than those in Tables 6 and 7.

8. Empirical study: Standard & Poor’s depositary receipts exchange-traded fund case210

In the next numerical experiments, we test our new method to determine whether it is relevant to

real market data. We consider American options based on Standard & Poor’s Depositary Receipts

(known as “SPDRs”, with the ticker symbol “SPY”) between 17 November 2017 and 16 February
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Figure 2: Recovered Bermudan put Delta ∆ (top left) and Gamma Γ (top right) via the CFS method using the
CGMY model with S0 = 100, r = 0.1, q = 0.0, C = 0.5, G = 3, M = 3, Y = 0.5, T = 1 and K increasing from 10 to
190. There are a total of 10 predetermined dates for the put. The number of terms N increases in a sequence of 8
(red line), 32 (blue line) and 128 (yellow line), 512 (cyron line) and 32,768 (black line).

2018, covering 112 days, as well as between 30 January 2019 and 21 June 2019, covering 142

days. The SPDR exchange-traded fund (ETF) is designed to track the performance of the S&P215

500R© Index. We collect ask and bid prices, open interest, and volume together with the contract

specifications (strike and maturity date) of both calls and puts. Additionally, we use the implied

risk-free rates and dividends obtained from Bloomberg. Since the days-to-expiration information

is not annualised, we divide it by 365 days to obtain an annualised value. Finally, we summarise

the statistics of the retained options in Table 9.220

In this paper, we only consider calibrating the parameters of the VG and CGMY models. To

obtain higher accuracy when estimating model parameters, we discard options with zero volume

and zero open interest in the data set, and as a result, we only have 332 observations for the

period from 17 November 2017 to 16 February 2018 and 124 observations for the period from 30

January 2019 to 21 June 2019 in total. Moreover, we apply a local optimisation method (sequential

quadratic programming [SQP]) suggested by Kienitz and Wetterau (2012) to estimate the model

parameters. The input cost function of the SQP method is the root mean square error (RMSE)

function, which is defined as follows:

RMSE =

√∑N
j=1(Cmid,j − Cmod,j)2

N
(74)

where Cmid is the observed mid-price, which is the average between a bid price and an ask price,

and Cmod is the model price at the current time, which is computed via the CFS method with

the 4-point Richardson extrapolation scheme (cf. Eq. (37)). In terms of achieving higher accuracy

in approximating the model parameters, we find that there is little difference between setting M1

equal to 3 or 4 in Eq. (37). To reduce the computational time, we set M1 equal to 3 rather than 4.225
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Figure 3: Graphical representations of the market prices and the VG model prices of the call (top left) and put (top
right) options and their absolute differences (bottom left for the calls and bottom right for the puts). The data of
set 2 and set 3 and the parameters of the VG models are retrieved from Tables 9 and 10, respectively.

As we use all the call and put mid-prices to calibrate the parameters of the models, we report

the approximate model parameters and their RMSE values in Table 10. Moreover, based on the

parameters of the VG and CGMY models, we approximate American call and put options via

the CFS method with the 4-point Richardson extrapolation scheme and compare the approximate

model option prices with the market prices in Table 9. We summarise the absolute maximum error230

difference between them in Table 11 from 17 November 2017 to 16 February 2018. In Table 11,

from 17 November 2017 to 16 February 2018, we can restrict the absolute error difference between

the model prices and the market prices within less than 0.380 in all data sets. We also graphically

represent the market prices and the model prices and their comparisons in terms of absolute error

differences in Figs. 3 and 4. Comparing Fig. 3 with Fig. 4, we can see that the CFS approximate235

option prices under the CGMY model have a smaller absolute error difference when the strike prices

are closely grouped around the current stock price. Finally, in Table 12, we compare the accuracy of

the CONV, COS and CFS approximate option prices against the market prices between 30 January

2019 and 21 June 2019 listed in Table 9. As we can see in the table, both COS and CFS methods

are slightly better than the CONV method in terms of accuracy, but there is not much difference240

in accuracy between them.

9. Conclusions

In this paper, we show how to price options with an early-exercise feature using the CFS method

when asset price dynamics are modelled as Lévy processes. According to all numerical experiments,

when the option maturity is less than 2 years, the CFS method can achieve the same accuracy as245

the COS method. However, if the option maturity is considerably longer, such as 35 years or

more, the CFS method can outperform the COS method with fewer terms required for higher

accuracy. This is in line with the findings of Hurn et al. (2014). Moreover, if the PDF is smooth,
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Figure 4: Graphical representations of the market prices and the CGMY model prices of the call (top left) and put
(top right) options and their absolute differences (bottom left for the calls and bottom right for the puts). The data
of set 4 and set 5 and the parameters of the CGMY models are retrieved from Tables 9 and 10, respectively.

we can obtain an exponential convergence rate; however, if the PDF is non-smooth, we obtain an

algebraic convergence rate. In addition, we provide a theoretical proof of our method to show that250

the computational truncated interval plays an important role in determining the accuracy of our

method, and the convergence rate of our method is subject to the smoothness of the input PDFs.

Finally, we also evaluate the CFS method applied to the SPDR ETF on the S&P500 R© Index options

with an American-style exercise. Through the empirical study, we see that the CFS method can

be fairly accurate in modelling real financial option data.255

Although the theoretical analysis/numerical results presented here demonstrate the effectiveness

of the CFS method, the method might be further developed in three ways. First, it would be an

interesting question to extend our method to price options when their underlying price is driven by

time-changed Lévy processes (Carr and Wu, 2004). As these processes have been reported to yield

higher accuracy when modelling option prices (Kienitz and Wetterau, 2012), such an extension260

has the potential to significantly improve our method’s ability to model real financial option prices.

Second, the exponential convergence rate cannot be maintained if the input PDF is not smooth. To

improve this, we apply the singularity Fourier-Pade method (Chan, 2018) or filters (Ruijter et al.,

2015; Tadmor and Tanner, 2005; Vandeven, 1991), a numerical method for modifying the Fourier

coefficients to maintain an exponential convergence rate of Fourier series expansions, to the CFS265

method. Finally, there is no theoretical establishment of our choice of the definite interval (72), let

alone its value of L. It would be an interesting further research question to develop a theoretical

proof for choosing a definite interval.
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Appendix A. Error analysis

In this section, we first conduct the error analysis of the CFS representation of Bermudan

options to see whether it converges to the true price v(x̃, t). Thereafter, we extend the result of the275

analysis to the American option and discretely monitored barrier option prices. In our analysis, we

also show that the choice of [c, d] plays a crucial role in determining the accuracy of the method.

In addition, as it is the core development of the CFS method, we clearly show that global spectral

convergence can be maintained despite the PDF being smooth.

Based on the context of the CFS representation framework, we can distinguish the following280

four approximation errors for Bermudan options.

1. The integration truncation error at each tj :

ε1,tj :=

∣∣∣∣(∫ ∞
−∞

v(y, tj+1)f(y − x̃tj )dy −
∫ d

c
v(y, tj+1)f(y − x̃tj ) dy

)∣∣∣∣ (A.1)

2. The summation truncation error at each tj :

ε2,tj :=

∣∣∣∣∣
∞∑

k=−∞

(
1

d− c

∫ d

c
f(y)e−i

2π
d−ckydy

)
v̂k,tj+1

e−i
2π
d−ckx̃t−

N∑
k=−N

(
1

d− c

∫ d

c
f(y)e−i

2π
d−ckydy

)
v̂k,tj+1

e−i
2π
d−ckx̃t

∣∣∣∣∣ (A.2)

3. Error related to approximating 1
(d−c)

∫ d
c f(y)e−i

2π
d−ckydy with b̂k,tj+1

at each tj :

ε3,tj :=

∣∣∣∣∣
N∑

k=−N

(
1

d− c

∫ d

c
f(y)e−i

2π
d−ckydy − b̂k,tj+1

)
v̂k,tj+1

e−i
2π
d−ckx̃t

∣∣∣∣∣ (A.3)

4. The error related to approximating v̂k,tj+1
with v̂Nk,tj+1

at each tj :

ε4,tj :=

∣∣∣∣∣
N∑

k=−N
b̂k,tj+1

(
v̂k,tj+1

− v̂Nk,tj+1

)
e−i

2π
b−akx̃tj

∣∣∣∣∣ (A.4)

Before we describe the errors above in detail, we first explain how the errors occur in our CFS

pricing formulae. At each pre-set exercise date tj in pricing Bermudan options (cf. (18)), we

approximate c(x̃tj , tj) with a definite integration interval, i.e.,

e−r(tj+1−tj)
∫ ∞
−∞

v(y, tj+1)f(y − x̃tj ) dy ≈ e−r(tj+1−tj)
∫ d

c
v(y, tj+1)f(y − x̃tj ) dy. (A.5)
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This implies the first approximate error—ε1,tj (A.1). Then, we express c(x̃tj , tj) in a truncated

CFS representation of order N of the form

e−r(tj+1−tj)Re

[
N∑

k=−N

(
1

d− c

∫ d

c
f(y)e−i

2π
d−ckydy

)
v̂k,tj+1

e−i
2π
b−akx̃tj

]
. (A.6)

This indicates ε2,tj (A.2). In addition, we replace 1
(d−c)

∫ d
c f(y)e−i

2π
d−ckydy with b̂k,tj+1

, a function

of the characteristic function of (23), in (A.6). This leads to ε3,tj (A.3) and transforms (A.6) into

e−r(tj+1−tj)Re

[
N∑

k=−N
b̂k,tj+1

v̂k,tj+1
e−i

2π
b−akx̃tj

]
. (A.7)

Due to the lack of a closed-form representation of v̂k,tj+1
in (A.7), we use v̂Nk,tj+1

, a complex Fourier

transform of vN (y, tj+1) (cf. (27)), to approximate v̂k,tj+1
. Accordingly, we have the last error ε4,tj

and the CFS pricing formula defined as

e−r(tj+1−tj)Re

[
N∑

k=−N
b̂k,tj+1

v̂Nk,tj+1
e−i

2π
b−akx̃tj

]
. (A.8)

If we introduce the concept of the cumulative probability density function (CDF) F (y) such

that f(y)dy = dF (y), we can simplify the integration truncation error ε1,tj as follows:

ε1,tj =

∣∣∣∣(∫ ∞
−∞

v(y, tj+1)f(y − x̃tj )dy −
∫ d

c
v(y, tj+1)f(y − x̃tj ) dy

)∣∣∣∣
=

∣∣∣∣(∫ c

−∞
v(y, tj+1)f(y − x̃tj ) dy +

∫ ∞
d

v(y, tj+1)f(y − x̃tj ) dy

)∣∣∣∣
≤
∣∣∣∣(∫ c

−∞

∂v(y, tj+1)

∂y
F (y)dy

)∣∣∣∣+

∣∣∣∣∫ ∞
d

∂v(y, tj+1)

∂y
(1− F (y))dy

∣∣∣∣ (A.9)

≈ 0 : (if y = c, d,−∞,∞). (A.10)

We can see that ε1,tj is bounded and approaches zero as long as [c, d] is chosen reasonably such

that 1 − F (d) ≈ 0 when d < ∞ or F (c) ≈ 0 when c > −∞. As we use the same interval [c, d] for

each time step tj , we have the same truncated integration error ε1,tj throughout from T to t.

To analyse ε2,tj , we have

ε2,tj :=

∣∣∣∣∣
∞∑

k=−∞

(
1

d− c

∫ d

c
f(y)e−i

2π
d−ckydy

)
v̂k,tj+1

e−i
2π
d−ckx̃t−

N∑
k=−N

(
1

d− c

∫ d

c
f(y)e−i

2π
d−ckydy

)
v̂k,tj+1

e−i
2π
d−ckx̃t

∣∣∣∣∣
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=

∣∣∣∣∣ ∑
|k|≥N+1

(
1

d− c

∫ d

c
f(y)e−i

2π
d−ckydy

)
v̂k,tj+1

e−i
2π
d−ckx̃t

∣∣∣∣∣
As we hold N constant from T to tj , ε2,tj is the same throughout at each tj .285

According to Theorem 4 (Luke, 1969, p., 271), Luke suggests that ε2,tj vanishes at least (N +1)

times in [c, d] with z = exp
(
−i 2π

d−ckx̃tj

)
and |z| ≤ 1. Hence, ε2,tj is bounded. Moreover, ε2,tj

exhibits an exponential convergence rate because Fang and Oosterlee (cf. Proposition 4.3, Fang

and Oosterlee 2009a) suggest that the error following the truncation of the expansion after N + 1

terms is bound to experience a convergence rate of P exp(−Nν), where P > 0 and ν > 0 are290

constant. As a result, we obtain

ε2,tj ≤ P exp(−Nν) ≈ 0 : (if |N | → ∞). (A.11)

Sadly, according to Fang and Oosterlee [cf. proposition 4.2 and lemma 4.3], the luxury of having

an exponential convergence rate does not remain if the rate becomes algebraic when we apply the

complex Fourier expansion series around/at a discontinuity regarding one of its derivatives in a

PDF, such as VG and CGMY. In this case, a new bound can be constructed as follows:295

ε2,tj ≤
P̂

(N − 1)β−1
≈ 0 : (if |N | → ∞). (A.12)

Here, P̂ is a constant, and β ≥ n ≥ 1 (n is the algebraic index of convergence of ei
2π
b−akx̃t).

Now, we adapt the same idea of investigating ε1,tj to determine the error bound of ε3,tj . Ac-

cordingly, taking into account | exp(i 2πkd−cy)| ≤ 1, we first investigate the error

ε3,tj+1
:=

∣∣∣∣ 1

d− c

∫ d

c
f(y)e−i

2π
d−ckydy − b̂k,tj+1

∣∣∣∣
in ε3,tj . If we expand the equation above, we obtain

ε3,tj+1
:=

∣∣∣∣ 1

d− c

∫ d

c
f(y)e−i

2π
d−ckydy − 1

d− c
ϕ

(
−i 2π

d− c
k, tj+1 − tj

)∣∣∣∣ (A.13)

≤
∣∣∣∣ 1

d− c

(∫ c

−∞
f(y)dy +

∫ ∞
d

f(y)dy

)∣∣∣∣ (A.14)

=

∣∣∣∣ 1

d− c
(F (∞)− F (d) + F (c)− F (−∞))

∣∣∣∣ (A.15)

≈ 0 : (if y = c, d,−∞,∞). (A.16)
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Based on the result above,

ε3,tj :=

∣∣∣∣∣Re

[
N∑

k=−N

(
1

d− c

∫ d

c
f(y)e−i

2π
d−ckydy − b̂k,tj+1

)
v̂k,tj+1

ei
2π
d−ckx̃t

∣∣∣∣∣
≤

∣∣∣∣∣Re

[
N∑

k=−N
ε3,tj+1

v̂k,tj+1
ei

2π
d−ckx̃t

]∣∣∣∣∣
≈ 0 : (if ε3,tj+1

→ 0). (A.17)

As the time difference between two successive time steps, e.g., tj+1− tj , is equal to one another and

we declare the same [c, d] at each tj , the value of b̂k,tj+1
is equivalent to that of b̂k,tj+2

. Accordingly,

we can conclude that ε3,tj is the same for each tj .

Before we completely determine ε4,tj , with the help of (24) and (30), we can see that

|v̂k,tj+1
− v̂Nk,tj | = |ĉk,tj+1

+ ĝk,tj+1
− ĉNk,tj+1

− ĝk,tj+1
|

= |ĉk,tj+1
− ĉNk,tj+1

| (A.18)

This is attributed to the closed-form expression of ĝk,tj+1
(cf. (25)). According to (30), we know

that

ĉNk1,tj+1
= e−r(tj+2−tj+1)

N∑
k1=−N

b̂k1,tj+2
v̂Nk1,tj+2

ê−k1,k. (A.19)

This naturally implies that |v̂k,tj+1
− v̂Nk,tj | is bounded by ε1,tj+1 , ε2,tj+1 and ε3,tj+1 from tj+1 to

tj+2. If we pay attention to v̂Nk1,tj+2
in (A.19), we can use the same approach to approximate

v̂k1,tj+2
with v̂Nk1,tj+2

. This accordingly indicates the same of error of ε1,tj+2 , ε2,tj+2 and ε3,tj+2 from

tj+2 to tj+3. Furthermore, the matrix-vector relationship of (35) also suggests that if we recursively

work until maturity T, where v̂k,T is equal to the closed-form expression of ĝk,T , we can infer that

|v̂k,tj+1
− v̂Nk,tj | is bounded by

C((M1 − j)− 1)(ε1,tj+1 + ε2,tj+1 + ε3,tj+1), (A.20)

where C is a constant and M1 is the total number of exercise dates. This is because ε1,tj+1 , ε2,tj+1

and ε3,tj+1 are always the same from tj+1 to T when we keep the same N and [c, d] at each tj+1.

Based on the result of |v̂k,tj+1
− v̂Nk,tj |, we can finally determine ε4,tj , i.e.,

ε4,tj :=

∣∣∣∣∣
N∑

k=−N
b̂k,tj+1

(
v̂k,tj+1

− v̂Nk,tj+1

)
e−i

2π
b−akx̃tj

∣∣∣∣∣
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≤

∣∣∣∣∣
N∑

k=−N
b̂k,tj+1

∣∣C((M1 − j)− 1)(ε1,tj+1 + ε2,tj+1 + ε3,tj+1)
∣∣ e−i 2π

b−akx̃tj

∣∣∣∣∣
≤ Cmax(ε1,tj+1 + ε3,tj+1 + ε3,tj+1)

≈ 0. (A.21)

Here, Cmax = C((M1 − j)− 1)N × max
−N ≤ k ≤ N

(̂bk,tj ).300

From the analysis of ε1,tj , ε2,tj , ε3,tj , and ε4,tj , the total error of the CFS pricing formula for

Bermudan options is

ε =

∣∣∣∣∣v(x̃t, t)− e−r(t1−t)Re

[
N∑

k=−N
b̂k,t1 v̂Nk,t1 e

−i 2π
d−ckx̃t

]∣∣∣∣∣ (A.22)

=

∣∣∣∣∣e−r(t1−t)
(∫ ∞
−∞

v(y, t1)f(y − x̃t)dz −Re

[
N∑

k=−N
b̂k,t1 v̂Nk,t1 e

−i 2π
d−ckx̃t

]∣∣∣∣∣
≤
∣∣∣∣e−r(t1−t)∣∣∣∣

( ∣∣∣∣∫ ∞
−∞

v(y, t1)f(y − x̃t)dz −
∫ d

c
v(y, t1)f(y − x̃t)dz

∣∣∣∣+∣∣∣∣∣Re

[ ∞∑
k=−∞

1

d− c

∫ d

c
f(y)e−i

2π
d−ckydy v̂k,t1 e

−i 2π
d−ckx̃t−

N∑
k=−N

1

d− c

∫ d

c
f(y)e−i

2π
d−ckydy v̂k,t1e

−i 2π
d−ckx̃t

]∣∣∣∣∣+∣∣∣∣∣Re

[
N∑

k=−N

1

d− c

∫ d

c
f(y)e−i

2π
d−ckydy v̂k,t1 e

−i 2π
d−ckx̃t −

N∑
k=−N

b̂k,t1 v̂k,t1e
−i 2π

d−ckx̃t

]∣∣∣∣∣+∣∣∣∣∣Re

[
N∑

k=−N
b̂k,t1 v̂k,t1 e

−i 2π
d−ckx̃t −

N∑
k=−N

b̂k,t1 v̂Nk,t1 e
−i 2π

d−ckx̃t

∣∣∣∣∣+
< Cmax(ε1,t + ε3,t + ε2,t)

<

Cmax (ε1,t + ε3,t + P exp(−Nν)) ( if a PDF is smooth)

Cmax

(
ε1,t + ε3,t + P̂

(N−1)β−1

)
(if a PDF is non-smooth)

≈ 0. (A.23)

Here, Cmax = C((M1 − 1)N × max
−N ≤ k ≤ N

(̂bk,t1). The total error of the CFS pricing formula for Amer-

ican options is the same as that of the CFS pricing formula for Bermudan options, as when M1

approaches a larger number, the CFS pricing formula for a Bermudan option becomes that for an

American option.

To determine the total approximate error of discretely monitored barrier options, note that the
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CFS pricing formulae for these options are as follows:

v(x̃t, t) =



cN (x̃t, t)1x̃t>B̃ +Rb · 1
x̃t≤B̃ for an DO

cN (x̃t, t)1x̃t<B̃ +Rb · 1
x̃t≥B̃ for an UO

cN (x̃t, t)1x̃t≤B̃ for an DI

cN (x̃t, t)1x̃t≥B̃ for an UI

(A.24)

From the formulae above, we apply only cN (x̃t, t) with the CFS representation of order N. We can305

accordingly conclude that both discretely monitored barrier options and Bermudan options share

the same total errors. This is attributed to the formulation of the CFS pricing formula for discretely

monitored barrier options, which is equivalent to that of a Bermudan option, as we replace exercise

dates with discretely monitored dates and early-exercise points with barrier levels at each tj to

obtain the pricing formula for discretely monitored barrier options.310

Appendix B. The CFS pricing algorithm for Bermudan options and American options

We are now prepared to formulate the CFS pricing algorithm shown in Section 4 using a vanilla

Bermudan call and put as an example. In Algorithm 1, we combine with Newton’s method in

Section 4.3 of finding the early-exercise points, and with the FFT algorithm in Section 4.4 to

accelerate the calculation. To obtain the American option price, we can either adopt Algorithm 1315

while increasing the number of M1 to a large value or use (37) to apply Algorithm 1 in each v(·) in

the equation.

Appendix C. The CFS pricing algorithm for computing discretely monitored barrier

options

In this section we present the CFS pricing algorithm for discretely monitored barrier options,320

Algorithm 2. The algorithm summarises the ideas and computational steps shown in Section 5. It

is also combined with the FFT algorithm in Section 4.4 to accelerate the calculation.
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Result: Bermuda option price v(x̃t, t) at time t
initialisation;
tj = tM1−1;
while tj 6= t do

if tj = tM1−1 then

compute b̂T and ĝT using (23) and (36) respectively;
find x̃∗tj via Newton’s method shown in Section 4.3;
compute ĝtM1−1 with the inputs of (25), and apply (33) to compute ET with the

inputs of (28) ;
apply (31) to compute v̂NtM1−1

using FFT shown in Section 4.4 with the inputs of

e−r(T−tM1−1), ET, b̂T, ĝT, and ĝtM1−1 ;

store v̂NtM1−1
;

tj = tM1−2;

else

retrieve v̂Ntj+1
, and compute b̂tj+1

using (23);

find x̃∗tj via Newton’s method shown in Section 4.3;
compute ĝtj with the inputs of (25), and apply (33) to compute Etj+1

with the inputs

of (28) ;
apply (31) to compute v̂Ntj using FFT shown in Section 4.4 with the inputs of

e−r(tj+1−tj), Etj+1
, b̂tj+1

v̂Ntj+1
, and ĝtj ;

store v̂Ntj ;

tj = tj−1;

end

end

retrieve v̂Nt1 and compute b̂t1 using (23);

formulate the CFS expansion of cN (x̃t, t) using (22) with the inputs of e−r(t1−t), b̂t1 and
v̂Nt1 in Section 3;
and apply (34) to approximate v(x̃t, t).

Algorithm 1: Algorithm for computing Bermudan option price v(x̃t, t) at time t.
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Result: Barrier option price v(x̃t, t) at time t
initialisation;
tj = tM1−1;
while tj 6= t do

if tj = tM1−1 then

compute b̂T using (23);
compute ĝzT using (64) for a DO/UO option or a DI/UI option;
compute ET using (28) with the elements of (55) for a DO/UO option or those of
(65) for a DI/UI option;
choose (56) for a DO/UO option or (63) for a DI/UI option before computing
v̂NtM1−1

;

compute v̂NtM1−1
shown in Section 4.4 with the inputs of eT−tM1−1 , ET, b̂T, ĝzT,
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end

end

formulate the CFS expansion of c(x̃t, t) using (50) with b̂t1 and v̂Nt1 in Section 3.;
Algorithm 2: Algorithm for computing the barrier option price v(x̃t, t) at time t.
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Table 4: CFS vs. COS in terms of error convergence and computational time for pricing American call options using
the BSM model with S0 = 100, K = 100, r = 0.3, q = 0.3 T = 0.5, σ = 0.15. The parameters are taken from von
Sydow et al. (2015). The reference value is 4.17712.

M1 in Eq. (37)
COS CFS

R∞ time R∞ time

0 6.23e-01 0.071 4.230e-01 0.081
1 7.34e-02 0.111 6.194e-02 0.126
2 5.23e-03 0.203 5.231e-03 0.214
3 5.04e-04 0.434 8.512e-04 0.521

Table 5: CFS vs. COS in terms of error convergence and computational time for pricing American put options using
the CGMY model with S0 = 1, K = 1, r = 0.1, q = 0, T = 1, C = 1, G = 5, M = 5, and Y = 0.5. The parameters
are taken from Fang and Oosterlee (2009b).The reference value is 0.11215.

M1 in Eq. (37)
COS CFS

R∞ time R∞ time

0 4.41e-05 0.071 5.411e-05 0.081
1 7.69e-06 0.101 5.694e-06 0.123
2 9.23e-07 0.201 1.231e-06 0.211
3 3.04e-07 0.432 3.561e-07 0.511

Table 6: The CFS method in terms of error convergence and computational time for pricing monthly monitored
barrier options using the CGMY model with S0 = 100, K = 100, r = 0.05, q = 0.02, T = 1 C = 4, G = 50, M = 60,
and Y = 0.7. The parameters are taken from Fang and Oosterlee (2009b).

Option Type Ref. Value N Time R∞ ratio

DO Put 2.339381026

24 0.0011 1.121e-01 -
25 0.0024 4.198e-03 2.5
26 0.0035 1.019e-05 2.1
27 0.0044 1.308e-10 1.98

DO Call 9.155070561

24 0.0012 6.011e-02 -
25 0.0023 4.912e-03 1.89
26 0.0033 3.8750e-05 1.91
27 0.0041 4.009e-10 2.13

UO Put 6.195603554

24 0.0011 6.023e-02 -
25 0.0022 3.91e-03 2.3
26 0.0043 4.321e-06 1.91
27 0.0045 4.433e-11 1.93

UO Call 1.814827593

24 0.0013 3.45e-02 -
25 0.0023 1.723e-03 1.89
26 0.0034 2.788e-06 2.01
27 0.0047 2.451e-11 1.91
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Table 7: The CFS method in terms of error convergence and computational time for pricing monthly monitored
barrier options using the NIG model with S0 = 100, K = 100, r = 0.05, q = 0.02, T = 1, α = 15, β = −5, δ = 0.5.
The parameters are taken from Fang and Oosterlee (2009b).

Option Type Ref. Value N Time R∞ ratio

DO Put 2.139931117

27 0.0037 7.112e-03 -
28 0.0047 2.230e-04 1.71
29 0.0071 1.611e-06 1.81
210 0.0141 2.0620e-13 1.93

DO Call 8.983106036

27 0.0039 5.123e-03 -
28 0.0046 1.662e-04 1.65
29 0.0082 2.433e-07 1.75
210 0.0142 3.162e-13 1.89

UO Put 5.995341168

27 0.0037 2.345e-02 -
28 0.0047 1.412e-03 1.76
29 0.0081 1.982e-05 1.65
210 0.0143 3.819e-09 1.79

UO Call 2.277861597

27 0.0035 1.231e-03 -
28 0.0046 1.581e-05 1.65
29 0.0082 5.794e-09 1.71
210 0.0141 2.564e-14 1.65

Table 8: The CFS method in terms of error convergence and computational time for pricing monthly monitored (M1

= 252) barrier options using the NIG model with S0 = 100, K = 100, r = 0.05, q = 0.02, T = 1, α = 15, β = −5,
δ = 0.5. The parameters are taken from Fang and Oosterlee (2009b).

Option Type Ref. Value N Time R∞ ratio

DO Put 1.88148753

29 0.134 1.251e-02 -
210 0.231 3.412e-03 1.31
211 0.462 3.306e-04 1.41
212 1.234 1.237e-05 1.41
213 2.675 4.350e-08 1.52

DO Call 8.96705248

29 0.132 3.67e-04 -
210 0.243 1.664e-04 1.11
211 0.456 2.854e-05 1.21
212 1.245 1.003e-06 1.32
213 2.654 4.591e-09 1.39
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Table 9: The data on the SPDR exchange-traded fund (ETF) retrieved from Bloomberg.

17 November 2017–16 February 2018

S0 ($) r q Times-to-maturity (days) K ($)

Set 1 258.85 0.0123 0.000 21 235.5–263.5

Set 2 258.85 0.0128 0.0121 49 246–270

Set 3 258.85 0.0132 0.0122 63 246–270

Set 4 258.85 0.0136 0.0122 84 246–270

Set 5 258.85 0.0142 0.0122 112 246–270

30 January 2019–21 June 2019

S0 ($) r q Times-to-maturity (days) K ($)

Set 1 265.94 0.0255 0.0128 45 254-278

Set 2 265.94 0.0261 0.0128 58 254–277

Set 3 265.94 0.0269 0.0128 78 257–275

Set 4 265.94 0.0277 0.0277 142 262–270

Table 10: The VG and CGMY model parameters are calibrated using the real market prices in Table 9.

17 November 2017–16 February 2018

Call RMSE Put RMSE

VG:
σ = 0.0835,
θ = 0.212, υ = 0.000412,

0.334
σ = 0.126,
θ = 0.331, υ = 0.000472,

0.329

CGMY:
C = 0.220, G = 8.803,
M = 20.000, Y = 0.503

0.270
C = 0.485, G = 9.257,
M = 12.205, Y = 0.366

0.278

30 January 2019–21 June 2019

Call RMSE Put RMSE

VG:
σ = 0.0731,
θ = 0.232, υ = 0.000732,

0.431
σ = 0.236,
θ = 0.562, υ = 0.000372,

0.478

CGMY:
C = 0.330, G = 9.023,
M = 20.123, Y = 0.645

0.401
C = 0.501, G = 10.023,
M = 12.341, Y = 0.4112

0.456

Table 11: The absolute maximum error (abs. err.) between the market prices from Table 9 and the CFS approximate
prices using the VG and CGMY models between 17 November 2017 and 16 February 2018.

VG CGMY
abs. err. (Call) abs. err. (Put) abs. err. (Call) abs. err. (Put)

Set 1 0.375 0.315 0.231 0.211

Set 2 0.341 0.321 0.212 0.234

Set 3 0.325 0.316 0.262 0.234

Set 4 0.311 0.302 0.232 0.211

Set 5 0.323 0.311 0.261 0.242
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Table 12: The absolute maximum error (abs. err.) between the market prices from Table 9 and the CONV, COS
and CFS approximate prices using the VG (top table) and CGMY (bottom table) models between 30 January 2019
and 21 June 2019.

CONV COS CFS

VG abs. err. (Call) abs. err. (Put) abs. err. (Call) abs.err. (Put) abs. err. (Call) abs. err. (Put)

Set 1 0.915 0.820 0.415 0.401 0.455 0.432

Set 2 0.875 0.710 0.437 0.421 0.465 0.434

Set 3 0.901 0.801 0.445 0.421 0.434 0.441

Set 4 0.832 0.798 0.423 0.412 0.423 0.434

CONV COS CFS

CGMY abs. err. (Call) abs. err. (Put) abs. err. (Call) abs. err. (Put) abs. err. (Call) abs. err. (Put)

Set 1 0.955 0.890 0.475 0.425 0.443 0.423

Set 2 0.925 0.789 0.434 0.425 0.410 0.489

Set 3 0.897 0.756 0.421 0.421 0.423 0.414

Set 4 0.867 0.789 0.411 0.402 0.412 0.413
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