
TYPE Review

PUBLISHED 16 January 2023

DOI 10.3389/fncom.2022.1006763

OPEN ACCESS

EDITED BY

Md. Kafiul Islam,

Independent University, Bangladesh

REVIEWED BY

Shinji Kawakura,

Osaka City University, Japan

Amir Rastegarnia,

Malayer University, Iran

*CORRESPONDENCE

Md Atiqur Rahman Ahad

mahad@uel.ac.uk

RECEIVED 29 July 2022

ACCEPTED 23 December 2022

PUBLISHED 16 January 2023

CITATION

Hossain KM, Islam MA, Hossain S, Nijholt A and

Ahad MAR (2023) Status of deep learning for

EEG-based brain–computer interface

applications.

Front. Comput. Neurosci. 16:1006763.

doi: 10.3389/fncom.2022.1006763

COPYRIGHT

© 2023 Hossain, Islam, Hossain, Nijholt and

Ahad. This is an open-access article distributed

under the terms of the Creative Commons

Attribution License (CC BY). The use,

distribution or reproduction in other forums is

permitted, provided the original author(s) and

the copyright owner(s) are credited and that

the original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is

permitted which does not comply with these

terms.

Status of deep learning for
EEG-based brain–computer
interface applications

Khondoker Murad Hossain1, Md. Ariful Islam2, Shahera Hossain3,

Anton Nijholt4 and Md Atiqur Rahman Ahad5*

1Department of Computer Science and Electrical Engineering, University of Maryland Baltimore County,

Baltimore, MD, United States, 2Department of Robotics and Mechatronics Engineering, University of Dhaka,

Dhaka, Bangladesh, 3Kyushu Institute of Technology, Kitakyushu, Japan, 4Human Media Interaction,

University of Twente, Enschede, Netherlands, 5Department of Computer Science and Digital Technology,

University of East London, London, United Kingdom

In the previous decade, breakthroughs in the central nervous system bioinformatics

and computational innovation have prompted significant developments in

brain–computer interface (BCI), elevating it to the forefront of applied science

and research. BCI revitalization enables neurorehabilitation strategies for physically

disabled patients (e.g., disabled patients and hemiplegia) and patients with brain

injury (e.g., patients with stroke). Different methods have been developed for

electroencephalogram (EEG)-based BCI applications. Due to the lack of a large

set of EEG data, methods using matrix factorization and machine learning were

the most popular. However, things have changed recently because a number of

large, high-quality EEG datasets are now being made public and used in deep

learning-based BCI applications. On the other hand, deep learning is demonstrating

great prospects for solving complex relevant tasks such as motor imagery

classification, epileptic seizure detection, and driver attention recognition using

EEG data. Researchers are doing a lot of work on deep learning-based approaches in

the BCI field right now. Moreover, there is a great demand for a study that emphasizes

only deep learning models for EEG-based BCI applications. Therefore, we introduce

this study to the recent proposed deep learning-based approaches in BCI using

EEG data (from 2017 to 2022). The main differences, such as merits, drawbacks,

and applications are introduced. Furthermore, we point out current challenges and

the directions for future studies. We argue that this review study will help the EEG

research community in their future research.

KEYWORDS

deep learning, EEG, BCI, future challenge, convolutional neural network (CNN)

1. Introduction

BCI is a method that uses psychology, electronics, computers, neuroscience, signal

processing, and pattern recognition to work together. It is used to generate various control

signals or commands from recorded brain signals of neural responses in order to determine the

intentions of the medically challenged subject to perform a motor action to restore a quality

of life. In a nutshell, the BCI turns the neural responses of the human brain into control

signals or commands that can be used to control things such as prosthetic limbs, walking,

neurorehabilitation, and movement. It is also used to assist medically challenged people with

severe motor disorders, as well as healthy people, in their daily activities.

A generic BCI system (Schalk et al., 2004; Hassanien and Azar, 2015) comprises: (i)

electrodes to obtain electrophysiological scheme patterns from a human subject; (ii) signal

acquisition devices to record the neural responses of the subject’s brain scheme; (iii) feature

extraction to generate the discriminative nature of brain signals to decrease the size of data
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needed to classify the neural scheme; (iv) a translation algorithm

to generate operative control signals; (v) a control interface to

convert into output device commands; and (vi) a feedback system to

guide the subject to refine specific neural activity to ensure a better

control mechanism.

On the other hand, there are two types of signal acquisition

methods to trace neural activity, namely invasive and non-invasive

methods (Schalk et al., 2004). A generic EEG-based BCI architecture

is shown in Figure 1. Microelectrodes are neurosurgically implanted

to the entire surface of the cerebral cortex or over the entire surface

of the cerebrum under the scalp in an invasive method (Abdulkader

et al., 2015). Even though this method gives high-resolution neural

signals, it is not the best way to record neural activity from a human

brain because it can cause scar tissue and infections.

In that case, the non-invasive method is preferred due to its

flexibility and reduced risk. There are many techniques (Lotte

et al., 2018) by which the neural activity is recorded, such as

magnetoencephalography (MEG), functional magnetic resonance

imaging (fMRI) (Acar et al., 2022; Hossain et al., 2022), and

electroencephalography (EEG), and fully functioning near-infrared

spectroscopy (fNIRS). The EEG method is preferred due to its

robustness and user-friendly approach (Bi et al., 2013).

Artificial intelligence (AI) refers to systems or computers that

imitate human intelligence to carry out tasks and can (iteratively)

improve themselves depending on the information that they acquire.

AI can take several forms, including machine learning and deep

learning. Machine learning refers to the form of AI that can

automatically adapt with only minimal intervention from humans.

On the other hand, deep learning is a subset of machine learning

that learns with large data by exploiting more neural network layers

than classical machine learning schemes. There are several reviews

on EEG-based BCI using signal processing and machine learning

(Craik et al., 2019; Al-Saegh et al., 2021; Alzahab et al., 2021; Rahman

et al., 2021; Wang and Wang, 2021). Nevertheless, machine learning

reviews consist of a small part of deep learning modalities, so no

FIGURE 1

A generic brain–computer interface system.

review has focused exclusively on deep learning. One of the best

things about deep learning is that it can do feature engineering on its

own. In this method, the data are combed through by an algorithm

that searches for features that correlate with one another, and then

combines those features to facilitate faster learning without any

explicit instructions. A comprehensive review is much anticipated

as deep learning is the state-of-the-art classification pipeline. In this

review, we report the most recent deep learning-based BCI research

studies for the last 6 years. Figure 2 shows the PRISMA flow diagram

of our literature review process.

We used PubMed, ERIC, JSTOR, IEEE Xplore, and Google

Scholar as the electronic databases to get and retrieve the articles.

As our goal is to include studies that relate to the three keywords:

EEG data, BCI applications, and deep learning, we looked for

studies that included all three keywords. From the 245 studies,

we removed 31 as they were either fully duplicated or subversions

of other articles. After screening the remaining 214 papers, we

excluded 57 because they used deep learning only for related

works or as only a part of the full pipeline, resulting in 157

studies. But we could not fully retrieve 34 studies out of 157,

and this filtering gives us 123 articles, of which five do not have

a clear dataset description, and the tasks of eight studies are

irrelevant to our review. Finally, we explored 110 articles for

this review.

To show how important this review is, we compare it to review

that have been done recently in Table 1. As the comparison criteria,

we have selected the coverage of the studies, the number of studies

that are included in the review, the presence of dataset-specific studies

in the review, whether the review is BCI application-specific, having

future recommendations for the researchers, and whether the review

is based only on deep learning. This study is the most recent study,

which covers the articles until late 2022 and comprises the highest

number of studies for the past 6 years. There has been no other

review study that has done dataset-specific filtration of EEG-based

BCI research, whereas we show the number of studies and results for
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FIGURE 2

PRISMA flow diagram of the literature review process for studies on deep learning-based EEG-based BCI.

TABLE 1 Comparison between previous review works and our proposed review study.

References Coverage No. of
studies

Dataset specific
studies

Only BCI
application?

Deep learning
specific

Future
recommendation

Cao (2020) 2017–2020 Unspecified No Yes No No

Abiri et al. (2019) 1991–2017 Unspecified No Yes No No

Rahman et al. (2021) 2009–2021 54 No No No Yes

Craik et al. (2019) 2014–2018 90 No No Yes No

Alzahab et al. (2021) 2015–2020 47 No Yes Yes (hybrid deep
learning)

No

Al-Saegh et al. (2021) 2016–2020 40 No No Yes No

Wang and Wang (2021) 2016–2020 Unspecified No Yes No No

Our study 2017–2022 110 Yes Yes Yes Yes

each dataset separately. Furthermore, with a rich tabular comparison

between the two works, we only consider the EEG data classification

for BCI application-specific. Finally, we only concentrate on the deep

learning algorithms for the EEG classification in contrast to most of

the reviews.

The study is organized as follows: After the introduction in

Section 1, we introduce the core elements of EEG-based BCI in

Section 2. Section 3 includes the classical methods, which have

been exploited for EEG-based BCI tasks. Then, we analyzed the

implementation of deep learning and related parts of this domain
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FIGURE 3

An architecture of BCI based on EEG data.

in Section 4. Sections 5, 6 are the discussion and conclusion of this

article, respectively.

2. EEG-based BCI preliminaries

To translate mortal objectives or aspirations into real-time

equipment control signals, the cognitive responses of humans are

related to the physical world. In Figure 3, we depict the usage of

EEG data in BCI applications. Electrophysiological activity patterns

of human subjects are recorded by the acquisition device. Scalp

electrodes are mounted over the headset to capture the neural

responses of human subjects (Sakkalis, 2011). Furthermore, a pre-

amplifier is used to make the brain signals stronger, and then the

signal that has been strengthened is sent through a filter to get

rid of unwanted parts, noise, or interference. After that, an analog-

to-digital converter (ADC) converts the filtered analog signal to a

digital signal. The electrical activities that had been recorded were

then standardized to improve the signal-to-noise ratio (SNR) of the

digital signal.

It is important to note that feature extraction gives you the things

that neural activity cannot do. This means that you need less data to

put the neural strategy into a category. Then, the data or information

is put into a specific group or category of brain patterns. After this

stage, the retrieved feature set is transformed into operational control

signals. The control signals made in the previous step are used to

control the external interface device. Thus, the BCI applications can

be controlled by these command signals.

3. Classical methods for EEG-based BCI
applications

EEG is by far the most prevalent strategy due to its high efficiency

and usability (Schalk et al., 2004). Be that as it may, pattern-based

control utilizing EEG signals is troublesome due to being exceedingly

boisterous and containing numerous exceptions. The human neural

impulses acquired from a BCI based on EEG include noise and other

attributes in addition to the signal of neural activity. The challenges

are getting rid of noise, trying to pull out relevant characteristics, and

accurately classifying the signal. By translating the extracted feature

set to give it a proper class label, operational commands can be

made. There are two categories of classification algorithms: linear and

non-linear classifiers (Guger et al., 2021).

The goal of quantitative classification is to figure out an object’s

system of classification based on how it looks. To recognize distinct

types of brain activity, linear classifiers subscribe to the regime

of trying to establish a linear relationship/function between both

the dependent and independent variables of a classification method

(Schalk et al., 2004). This set of classifiers involves linear discriminant

analysis (LDA) and support vector machines (Wang et al., 2009).

It sets up a hyperplane, which is a linear numerical operation that

separates the different functions of the brain from the disentangled

collection of characteristics.

Because of its simple, strong, and non-overfit operation and

computing needs, the LDA, presuming the Gaussian distribution

of data, has been implemented in several BCI platforms (Wang

et al., 2009). Support Vector Machine (SVM) is a type of artificial

intelligence that can be used for both regression and classification

(Wang et al., 2009). Even though we mention regression issues, it is

best suited for classification. The primary goal of the SVM algorithm

is to track down a hyperplane in an N-dimensional space that

evidently summarizes the data points. When no algorithmic solution

can be found between the dependent and independent variables of

the classificationmethod, nonlinear classifiers are now used. Artificial

neural networks (ANNs), k-nearest neighbor (KNN), and SVMs are

some of these machine learning approaches (Lotte et al., 2018; Akhter

et al., 2020; Islam et al., 2020).

The ANNs are broadly utilized in an assortment of classification

and design acknowledgment assignments as they can memorize from

preparing tests, and, in this way, classify the input tests in a like

manner. These are the most broadly utilized ANNs for efficaciously
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characterizing multiclass neurological actions. They operate on the

basis of conducting a preparatory calculation to adjust the weights

pertaining to specific input and hidden layer neurons to minimize

the violent square error (Wang et al., 2009).

Herman et al. (2008) conducted a classification of EEG-based

BCI by investigating the type-2 fuzzy logic approach. They claimed

that their model exhibited better classification accuracy than the

type-1 model of fuzzy logic. They also compared this method with

a well-known classifier based on LDA. On the other hand, Aznan

and Yang (2013) applied the Kalman filter to an EEG-based BCI

for recognizing motor visuals in an attempt to optimize the system’s

accuracy and consistency.

The quintessential dispersion (CSP) was used to collect the

necessary information, and the radial basis function (RBF) was

used to categorize the signal. They also compared their results with

the LDA method and claimed that their RBF method showed a

better result.

Zhang H. et al. (2013) linked Bayes classification error to spatial

filtering, which is an important tool to extract and classify the EEG

signal. They claimed that by validating the positive relationship

between the Bayes error and the Rayleigh quotient, a spatial filter with

a lower Rayleigh quotient measuring the ratio of power features could

reduce the Bayes error. Zhang R. et al. (2013) proposed z-score LDA,

an updated version of LDA that introduces a new decision boundary

capable of effectively handling heteroscedastic class distribution-

related classification.

Agrawal and Bajaj (2020) proposed a brain state signal measuring

method based on non-muscular channel EEG to record the brain

activity acting as a source to facilitate communication between a

patient and the outside environment. They used fast and short-term

Fourier transforms to decompose the signals obtained from neural

activity into smaller segments. They implemented the classification

tasks using a support vector machine. Depending on the values of

the evaluation grades, the overall accuracy of the system was found

to be approximately 92%. Pan et al. (2016) suggested a framework

for a sentiment state detection system based on EEG-based BCI

technology. They categorized two emotional responses, including

happiness and sadness, using SVM. According to their observations,

roughly 74.17% precision was noticed for such two classes.

Bousseta et al. (2018) proposed a BCI system based on EEG

to control a robot arm by decoding the disabled person’s thoughts

obtained from the brain. They combined the principal component

analysis with the fast Fourier transform to perform the feature

extraction and then fed it to the radial basis function-based support

vector machine as a classifier. The outputs of this classifier were

turned into commands that the robot arm followed.

Amarasinghe et al. (2014) proposed a method consisting of three

steps based on self-organizing maps to recognize neural activities

for unsupervised clustering. They identified two thought patterns,

such as moving forward and resting. They also implemented the

classification process based on feed-forward ANNs. They claimed

that their mapping methods showed approximately 8% improvement

over ANN-based classification.

Korovesis et al. (2019) established an electroencephalography

BCI system that controls the movement of a mobile robot in response

to the eye blinking of a human operator. They used the EEG signals

of brain activity to find the right features and then fed those features

into a well-trained neural network to guide the mobile robot. They

achieved an accuracy of 92.1%. Sulaiman et al. (2011) extracted

distinguishing features for human stress from EEG-based BCI neural

activity. They combined the power spectrum ratio of EEG and

spectral centroid techniques to enhance the accuracy (88.89%) of the

k-nearest neighbor (kNN) classifier, detecting and classifying human

stress in two states, such as close-eye and open-eye.

Wang et al. (2009) conducted a review of various classification

approaches for motor imagery (BCI competition III) and finger

movement (BCI competition IV) on EEG signals. They compared the

results in terms of the accuracy of the classification. Gaussian SVM

(GSVM) and k-NN show the desired performance because these

types of classification are more vigorous than nonlinear classifiers,

as shown in Figure 4. However, learning vector quantization neural

networks (LVQNN) and quadratic discriminant analysis (QDA)

demonstrate the lowest accuracy. In addition, the performances

of linear discriminant analysis (LDA) and linear SVM are almost

identical. These demonstrate that the classical machine learning

methods are not yet optimal for this domain. Therefore, we need

to try out deep learning methods on large datasets in EEG-based

BCI applications.

4. Utilizing deep learning in EEG-based
BCI

Table 2 lists all the EEG-based BCI studies using deep learning

for the last 6 years. We have listed the five most important parts

of the studies: datasets, number of subjects, deep learning mode,

BCI application, and classification result. This table will assist future

researchers in determining the state of the art in this domain.

4.1. Data preprocessing

Due to the presence of artifacts and contamination, EEG data

arestill not being used for large-scale BCI studies (Pedroni et al.,

2019). Even though some deep learning studies for EEG-based

BCI say they did not use any preprocessing steps, most of the

time, preprocessing steps are very important. Some research works

combine the preprocessing steps in their deep learning pipeline and

call it as end-to-end framework (Antoniades et al., 2018; Aznan et al.,

2018; Zhang et al., 2021).Moreover, an additional CNN layer has been

used for the preprocessing in some cases (Amin et al., 2019a; Tang

et al., 2019).

Most of the time, frequency domain filters were used in research

to limit the bandwidth of the EEG signal. This is useful when there is

a specific frequency range of interest so that the rest can be safely

ignored (Islam et al., 2016; Kilicarslan et al., 2016). In 30% of the

studies, a signal below 45 Hz, or below a typical low gamma band, was

low-pass filtered. The filtered frequency ranges were grouped by task

type and artifact reduction methods. It shows that most research used

a technique to get rid of artifacts along with lowering the frequency

ranges that were studied.

From our observation, 20% of the studies manually eliminated

artifacts (Rammy et al., 2020; Atilla and Alimardani, 2021;

Sundaresan et al., 2021). It is easy to see unexpected outliers visually,

such as when data are missing or significant EEG artifacts are

evident. But it might be hard to tell the difference between noisy
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FIGURE 4

Classification algorithms and the corresponding accuracies of different classical classification methods based on a study.

channels that are always on and noisy channels that are only noisy

sometimes. Furthermore, since the way the data are processed is very

random, it is hard for other researchers to copy the methods. In

addition to this, 10% of the studies did not routinely eliminate EEG

artifacts. Independent component analysis (ICA) (Delorme et al.,

2007) and discrete wavelet transformation (DWT) were the most

common artifact removalmethods that were utilized in the remaining

two-thirds of the analyzed research (Kline et al., 2015).

The EEG electrodes also take up undesired electrical physiological

signals from eye blinks and neck muscles (Crespo-Garcia et al.,

2008; Amin et al., 2019b). Additionally, there are issues with motion

artifacts brought on by cable motion and electrode displacement

while the individual is moving (Arnau-González et al., 2017; Chen

et al., 2019a; Gao et al., 2019). There have been a lot of studies

performed on how to find and remove EEG artifacts (Nathan and

Contreras-Vidal, 2016), but it is not the primary focus of our review

work. In summary, one of the three methods (i.e., manual process,

automated process, or no removal of artifact) is considered in each

study to conduct the artifact removal procedure.

4.2. Datasets

One of the main limitations of the classical EEG-based BCI is

the number of subjects who participated in this study. Within the

course of this review, EEG-based datasets were covered. This scope

was taken into account as keywords to find the right research articles

on the Google Scholar and Research Gate websites. For this literature

review, more than 100 research studies were found on these two

websites by using the above criteria. Among these, around 47% of

research has been conducted based on the BCI competition dataset.

Moreover, 9%, 16%, and 7% of the studies have been conducted on

DRYAD, SEED-VIG, and EEGMI datasets, respectively (Figure 5).

Deep learning has enabled larger datasets and more rigorous

experiments in BCI. “How much data is enough data?” remains a

significant question when using DL with EEG data. We looked at

numerous descriptive dimensions to investigate this question: the

number of participants, the amount of EEG data collected, and the

task of the datasets. There are few studies that make use of their own

collected datasets (Tang et al., 2017; Vilamala et al., 2017; Antoniades

et al., 2018; Aznan et al., 2018; Behncke et al., 2018; El-Fiqi et al., 2018;

Nguyen and Chung, 2018; Alazrai et al., 2019; Chen et al., 2019b;

Fahimi et al., 2019; Hussein et al., 2019; Zgallai et al., 2019; Gao

et al., 2020b; León et al., 2020; Maiorana, 2020; Penchina et al., 2020;

Tortora et al., 2020; Atilla and Alimardani, 2021; Cai et al., 2021; Cho

et al., 2021; Mai et al., 2021; Mammone et al., 2021; Petoku and Capi,

2021; Reddy et al., 2021; Shoeibi et al., 2021; Sundaresan et al., 2021;

Ak et al., 2022). However, most of the deep learning studies have been

conducted based on publicly available EEG datasets, such as:

• The dataset used to validate the classification method and signal

processing for brain–computer interfaces was obtained from the

BCI competition (Tabar and Halici, 2016; Amin et al., 2019b;

Dai et al., 2019; Olivas-Padilla and Chacon-Murguia, 2019; Qiao

and Bi, 2019; Roy et al., 2019; Song et al., 2019; Tang et al.,

2019; Tayeb et al., 2019; Zhao et al., 2019; Li Y. et al., 2020;

Miao et al., 2020; Polat and Özerdem, 2020; Rammy et al., 2020;

Yang et al., 2020; Deng et al., 2021; Huang et al., 2021, 2022;

Tiwari et al., 2021; Zhang et al., 2021). This dataset comprises

EEG data obtained from participants. Class 1 was the left hand,

Class 2 was the dominant hand, Class 3 was both feet, and

Class 4 was the tongue in the cue-based BCI structure. For

each subject, two workouts were captured on interspersing time

frames. Each session consisted of six runs separated by relatively

short pauses. A phase includes 288 efforts, with each effort being

implemented 48 times.

• DRYAD dataset contains five studies that investigate natural

speech understanding using a diversity of activities along with

acoustic, cinematic, and envisioned verbal sensations (Amber

et al., 2019).

• CHB-MIT dataset contains EEG recordings from children who

have intractable seizures (Dang et al., 2021). After people

stopped taking their seizure medicine, they were watched for up
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TABLE 2 EEG-based BCI studies using deep learning for the last 6 years.

References Dataset (No. of subjects) Deep learning
modality

Application Classification
result

EEG-based BCI with deep learning

Tang et al. (2017) 2 able-body subjects (2) CNN Classifying left hand and right hand
movement

86.41%

Aznan et al. (2018) 4 subjects (4) CNN Classifying SSVEP frequencies 96.00%

Dose et al. (2018) Physionet EEG MI Dataset (109) CNN Stroke rehabilitation 80.38%

El-Fiqi et al. (2018) 2 datasets (5 and 12) CNN Person identification 96.80%

Amber et al. (2019) DRYAD (30) CNN Lie detection 99.60%

Nguyen and Chung (2018) 8 healthy subjects (8) CNN Developing a speller system 99.20%

Shoeibi et al. (2021) 21 patients with focal epilepsy (21) CNN, LSTM Diagnosing epileptic seizures 99.10% (CNN),
100% (LSTM)

Antoniades et al. (2018) 17 subjects (17) CNN Detecting epileptic discharges 68.00%

Völker et al. (2018) Flanker task dataset (31) CNN Decoding error 81.70%

Behncke et al. (2018) 5 males and 6 females (11) CNN Decoding robot errors 75.00%

Oh et al. (2020) 20 Parkinson patients (20) CNN Identifying Parkinson Disease 88.25%

Zeng et al. (2018) 10 healthy subjects (10) LSTM Predicting mental states of drivers 91.79%

Hussein et al. (2019) BCI (7) LSTM Detecting epileptic seizures 100%

Vilamala et al. (2017) 10 males and 10 females (20) CNN Scoring sleep stage 89–97%

Tabar and Halici (2016) BCI competition IV dataset 2b (9) CNN+SAE Classifying right and left hand
movement

72.40%

Olivas-Padilla and
Chacon-Murguia (2019)

BCI competition IV dataset 2a (9) CNN Classifying MI 67.50% - 82.09%

Tayeb et al. (2019) BCI competition IV dataset 2b (9) CNN Decoding MI movements 77.72%

Sundaresan et al. (2021) 8 with autism and 5 healthy subjects (13) CNN+RNN Classifying mental stress with autism 93.27%

Cai et al. (2021) 26 healthy subjects (26) CNN Classifying attentive state 72.73%

Ieracitano et al. (2021) 15 subjects (15) CNN Discriminating hand motion planning 76.21%

Reddy et al. (2021) 27 subjects (27) CNN Detecting drowsiness 85.42%

Petoku and Capi (2021) 462 trials of a single subject (1) CNN Detecting object movement 60.00%

Zhang et al. (2021) BCI Competition IV dataset 2a and 2b (18) CNN Classifying MI 88.40%

Mai et al. (2021) 4 males and 2 females (6) CNN Detecting emotional states 93.34%

Deng et al. (2021) BCI Competition IV 2a, III (12) CNN Classifying MI tasks 85.30%

Huang et al. (2022) PhysioNet dataset (109) CNN Classifying MI 92.00%

Cho et al. (2021) 12 subjects (12) Bi-LSTM Classifying MI task 68.00%

Atilla and Alimardani (2021) 14 subjects while driving (14) CNN Classifying drivers attention 89.00%

Mammone et al. (2021) 15 participants (15) CNN Decoding motion planning 90.77%

Ak et al. (2022) 5 subjects (5) CNN Controlling robot manipulator 90.00%

Huang et al. (2021) BCI competition IV dataset 2a (9) CNN Classifying MI 90.00%

Aldayel et al. (2020) DEAP (32) CNN Classifying preference in
neuromarketing

94.00%

León et al. (2020) 10 subjects (10) CNN, RNN Classifying SSMVEP signals 96.83%

Miao et al. (2020) BCI competition IVa (5), right index finger
MI dataset (10)

CNN Classifying MI 90.00%

Ko et al. (2020) SEED-VIG dataset (15) CNN Estimating driver vigilance 96.00%

Penchina et al. (2020) 11 subjects (11) RNN, LSTM Classifying anxiety in adolescents with
autism

93.27%

Tortora et al. (2020) 11 healthy subjects walking on a
treadmill (8)

LSTM Decoding gait AUC=90%

(Continued)
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TABLE 2 (Continued)

References Dataset (No. of subjects) Deep learning
modality

Application Classification
result

Rammy et al. (2020) BCI Competition IV dataset 2a (9) LSTM Recognizing motor imagination Mean kappa: 0.64

Liu J. et al. (2020) DEAP (32), SEED (15) CNN+SAE Classifying emotion 92.86% (DEAP),
96.77% (SEED)

Li Y. et al. (2020) EEGMMIDB (109) Recurrent-CNN Recognizing intention 97.36%

Maiorana (2020) 40 subjects (40) RNN, CNN Recognizing biometric 75.00%

Gao et al. (2020b) DEAP (32), SEED (15) CNN Recognizing emotion 90.63%

Hwang et al. (2020) SEED dataset (15) CNN Recognizing emotion 90.41%

Gao et al. (2020a) 15 right-handed healthy students (15) CNN Recognizing emotion 92.44%

Yang et al. (2020) BCI competition IV dataset 1 (7) CNN Decoding MI EEG 86.40%

Fahimi et al. (2019) 120 healthy subjects performed the Stroop
color test (120)

CNN Detecting attention 79.26%

Tang et al. (2019) BCI competition data IV 2a (9) CNN+SAE Classifying eMI task 79.90%

Roy et al. (2019) BCI competition IV 2b dataset (9) CNN Classifying brain states 80.32%

Fares et al. (2019) ImageNet-EEG (1) Bi-LSTM Classifying image 97.30%

Wilaiprasitporn et al. (2019) DEAP dataset (32) CNN, RNN Identifying person 99.90%

Qiao and Bi (2019) BCI competition IV 2a dataset (9) CNN+Bi-GRU Classifying MI 76.62%

Zgallai et al. (2019) 10 volunteers (10) CNN EEG-driven BCI smart wheelchair 70.00 (raw EEG),
96.00% (Fourier)

Gao et al. (2019) 8 subjects in fatigue states (8) CNN Evaluating driver fatigue 97.37%

Puengdang et al. (2019) 20 subjects (20) LSTM Authenticating person 91.44%

Song et al. (2019) BCI Competition IV dataset 2a (9) CNN Classifying MI 73.40%

Zhao et al. (2019) BCI Competition IV dataset 2a (9) CNN Classifying MI Mean kappa: 0.64

Chen et al. (2019b) DEAP dataset (32) CNN Recognizing emotion AUC: 99.88%

Chen et al. (2019a) 157 subjects (157) CNN Identifying biometric 96.00%

Dai et al. (2019) BCI Competition IV dataset 2b (9) CNN+VAE Classifying MI Kappa = 0.60

Amin et al. (2019b) BCI Competition IV dataset 2a (9) CNN Classifying MI 75.7%

Saha et al. (2019) KARA (14) CNN+LSTM Categorizing phonology 77.90%

Ozdemir et al. (2019) DEAP dataset (32) CNN Estimating emotional state 95.96%

Tiwari et al. (2021) BCI competition V dataset (3), Emotiv
dataset (16)

CNN Classifying left hand and right hand
task

72.51% (BCI V),
72.00% (Emotiv)

Dang et al. (2021) CHB-MIT datasets (24) CNN Detecting epilepsy 99.56%

Polat and Özerdem (2020) BCI competition 2003 (1) CNN Detecting cursor movements 90.38%

Chakladar et al. (2020) STEW dataset (48) Bi-LSTM Estimating mental workload 82.57%

Li F. et al. (2020) BCI Competition IV 2b (9) CNN Classifying MI 83.20%

Alazrai et al. (2019) 22 subjects (22) CNN Decoding MI tasks of the same hand 73.70%

Liu Y. et al. (2020) DEAP dataset (32) CNN Recognizing emotion 95.27%

Arnau-González et al. (2017) DREAMER dataset (23) CNN Identifying subject 94.01%

Zhu et al. (2022) MBT-42 (42), Med-62 (62) ConvNet, 3D-CNN Classifying MI 73.12% (MBT-42),
72.66% (Med-62)

Mattioli et al. (2022) EEGMotor Movement Dataset V 1.0.0 (109) 1D-CNN Classifying MI 99.38%

Du and Liu (2022) MRCP (12) InceptionEEG-Net
(CNN)

Classifying MI AUC: 0.91%

It covers the key features, namely: datasets, number of subjects, deep learning modality, BCI application, and classification results.
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FIGURE 5

Distributions of datasets that are explored for EEG-based BCI applications.

to a few days to find out more about their seizures and see if

they were good candidates for surgery. There are 23 patients in

the dataset, separated into 24 cases (a patient has 2 recordings,

1.5 years apart). There are 969 h of scalp EEG recordings in this

dataset, comprising 173 seizures. Seizures of various sorts can be

found in the dataset (clonic, atonic, and tonic).

• DEAP dataset (Koelstra et al., 2011) includes 32 individuals

who saw 1-min long music video snippets and judged

arousal/valence/like–dislike/dominance/familiarity, as well as

the frontal facial recording of 22 out of 32 subjects (Chen et al.,

2019b; Ozdemir et al., 2019; Wilaiprasitporn et al., 2019; Aldayel

et al., 2020; Gao et al., 2020a; Liu J. et al., 2020).

• The SEED-VIG dataset integrates EEG data with diligence

indicators throughout a driving virtual environment. In

addition, there are 18 conductive gels and eye-tracking (Ko et al.,

2020).

• SEED dataset wherein EEG was documented over 62 streams

from 15 participants as they regarded short videos eliciting

positive, negative, or neutral feelings (Gao et al., 2020a; Hwang

et al., 2020; Liu J. et al., 2020).

• The STEW dataset includes the raw EEG data of 48 participants

who took part in a multi-threaded workflow test using the

SIMKAP experiment (Chakladar et al., 2020).

• One participant observes an arbitrary picture (chosen from 14k

pictures in the ImageNet ILSVRC2013 training dataset) for 3 s,

while their EEG signals are documented. Over 70,000 specimens

are also included (Fares et al., 2019).

4.3. Deep learning modality

Deep Neural Networks (DNNs) are highly structured and

therefore can learn features from unrefined or modestly heavily

processed data, minimizing the need for domain-specific processing

and feature extraction processes. Furthermore, DNN-learned

attributes may be even more proficient or evocative than human-

designed attributes. Second, as in many realms where DL has

surpassed the previous condition, it has the potential to improve the

effectiveness of other analyses and classifications. Third, DL makes

it easier to make tasks such as conceptual sculpting and domain

acclimation, which are not tried as often and fail less often when

using EEG data. Deep learning techniques have made it feasible

to synthesize high-dimensional structured data, such as images

and audio.

Deep learning-based methods have been used to sum up

high-dimensional, well-organized content such as images and

speech. Computational methods could be used by readers to grasp

transitional depictions or complement data. Deep neural networks

combined with techniques such as linkage synchronization make it

easier to learn representations that do not depend on the domain,

while keeping information about the task for domain adaptation.

Similar methods can be implemented with EEG data to obtain more

accurate depictions, and as a result, improve the performance of

EEG-based models across a wide range of subjects and tasks.

Various deep learning algorithms have been employed in EEG-

based BCI applications, whereas CNN is clearly the most frequent

one. For example, Arnau-González et al. (2017), Tang et al. (2017),

Vilamala et al. (2017), Antoniades et al. (2018), Aznan et al. (2018),

Behncke et al. (2018), Dose et al. (2018), El-Fiqi et al. (2018), Nguyen

and Chung (2018), Völker et al. (2018), Alazrai et al. (2019), Amber

et al. (2019), Amin et al. (2019b), Chen et al. (2019a,b), Fahimi

et al. (2019), Gao et al. (2019), Olivas-Padilla and Chacon-Murguia

(2019), Ozdemir et al. (2019), Roy et al. (2019), Song et al. (2019),

Tayeb et al. (2019), Zgallai et al. (2019), Zhao et al. (2019), Aldayel

et al. (2020), Gao et al. (2020a,b), Hwang et al. (2020), Ko et al.

(2020), Li Y. et al. (2020), Liu J. et al. (2020), Miao et al. (2020),

Oh et al. (2020), Polat and Özerdem (2020), Atilla and Alimardani

(2021), Cai et al. (2021), Dang et al. (2021), Deng et al. (2021), Huang

et al. (2021), Ieracitano et al. (2021), Mai et al. (2021), Mammone

et al. (2021), Petoku and Capi (2021), Reddy et al. (2021), Tiwari

et al. (2021), Zhang et al. (2021), Ak et al. (2022), and, Huang

et al. (2022) have explored deep learning-based algorithms. However,

more recent BCI studies have implemented other deep learning

modalities including,

• Long short-term memory (LSTM) (Zeng et al., 2018; Fares et al.,

2019; Hussein et al., 2019; Puengdang et al., 2019; Saha et al.,
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TABLE 3 Maximum accuracy obtained from different algorithms.

References Dataset Max.
accuracy

(%)

Algorithms
used

Rammy et al. (2020) BCI competition IV 100 LSTM

Wilaiprasitporn
et al. (2019)

DEAP 99.90 CNN, RNN

Amber et al. (2019) DRYAD 99.60 CNN

Dang et al. (2021) CMB-MIT 99.56 CNN

Li Y. et al. (2020) EEGMMIDB 97.36 R-CNN

Fares et al. (2019) ImageNet-EEG 97.30 Bi-LSTM

Hwang et al. (2020) SEED 96.77 CNN

Arnau-González
et al. (2017)

DREAMER 94.01 CNN

Huang et al. (2022) Physionet 92.00 CNN

Chakladar et al.
(2020)

STEW 82.57 Bi-LSTM

Völker et al. (2018) Flanker task 81.70 CNN

Saha et al. (2019) KARA 77.90 CNN+LSTM

Tiwari et al. (2021) Emotiv 72.00 CNN

2019; Chakladar et al., 2020; Penchina et al., 2020; Rammy et al.,

2020; Tortora et al., 2020; Cho et al., 2021; Shoeibi et al., 2021),

• Recurrent neural network (RNN) (Wilaiprasitporn et al., 2019;

León et al., 2020; Li F. et al., 2020; Penchina et al., 2020; Mai

et al., 2021; Sundaresan et al., 2021), and

• Autoencoders (AE) and variational AE (VAE) (Tabar and Halici,

2016; Dai et al., 2019; Tang et al., 2019).

5. Results and discussion

5.1. Dataset-specific studies

Different classification algorithms give different maximum

accuracy values for different datasets, as shown in Table 3. The LSTM

algorithm gave the highest accuracy, which was based on the BCI

competition dataset. All researchers achieved an accuracy of over 80%

for this dataset, that is, this dataset has the highest accuracy so far.

We have found the highest classification accuracy for any algorithm

on the BCI competition dataset from various studies, as shown in

Figure 6.

For the DEAP dataset (Koelstra et al., 2011), all researchers

achieved an accuracy of roughly over 90% (Figure 7), that is,

this dataset has the highest reliability so far. Unlike the previous

dataset, this one has received little attention in terms of deep

learning applications. As with the previous two datasets, there are a

few works on the SEED dataset. However, the published works have

achieved over 90% accuracy based on CNN or CNN+SAE (Gao et al.,

2020a; Hwang et al., 2020; Liu J. et al., 2020). We can apply smarter

algorithms to this dataset to explore further.

Due to insufficient work on the rest of the datasets shown in

Figure 8, we cannot comment on them. However, we think that

whether the accuracy can be increased on the rest of the dataset, it

can be worked on in future.

5.2. Deep leaning models for BCI studies

Among the 110 publications that have been studied in this

study, discriminative models, particularly CNN, are utilized most

frequently. This is right since almost all BCI problems can

be put into the category of classification problems. More than

75% of the models are powered by CNN algorithms, and we

can summarize them as follows: (i) CNN can use EEG data

to find hidden features and spatial correlations that can be

used to classify something. As a result, CNN structures are
used for classification in certain research while features are
engineered in others; (ii) CNN has had considerable success in

various research areas (especially in imaging and computer vision
domains), making it exceedingly well-known and simple to use
(through the available public code). Surprisingly, several BCI
techniques naturally produce two-dimensional visuals that can be
processed by CNN, and EEG data could be converted into two-

dimensional images in the meantime for additional processing

by CNN.

On the contrary, only 15% of the model-based articles used

a recurrent neural network (RNN), even though RNN is capable

of predicting temporal feature learning. One likely reason for this

is that it takes time for an RNN to process a long sequence,

and EEG signals are often long sequences. EEG signals, for

example, are typically divided into 30-s segments with 2,500

time points at a 120 Hz sampling rate. Moreover, RNN takes

more than 25 times as long to train as CNN for a sequence of

2,500 items.

Furthermore, among the typical models, the deep belief network

(DBN), particularly the DBN-restricted Boltzmann machine (RBM),

is the most often used model for feature extraction. DBN is

commonly utilized in BCI for two reasons: 1) It is an efficient

way to learn the top-down generative parameters that show how

variables in one layer depend on variables in the layer above.

2) The values of the latent variables in each layer can be

guessed by a single bottom-up pass that starts with an observed

data vector in the bottom layer and uses the generative weights

in the opposite direction. But most of the work that used

the DBN-RBM model was published before 2018, which shows

that DBN is not popular right now. Before 2018, researchers

used DBN to learn about features, and then a classifier that

did not use deep learning. Now, more and more studies use

CNN or hybrid models for both learning about features and

classifying them.

Finally, there are nine articles suggesting hybrid models for BCI

research. Combinations of RNN and CNN account for approximately

a third. It is logical to integrate RNN and CNN for both temporal and

spatial feature learning, given that RNN and CNN are renowned for

their exceptional temporal and spatial feature extraction capabilities.

Combining representative and discriminative models is yet another

sort of hybrid model. This is easy to understand since the first is

used to pull out features and the second is used to put things into

groups. There are nine articles that use this form of hybrid deep

learning model, which encompasses almost all types of BCI signals.

In addition, 12 studies have presented alternative hybrid models,

including two discriminative ones. Several research, for instance, have

advocated the combination of CNN with MLP in which the CNN

structure is utilized to extract spatial data that are then given to an

MLP for classification.
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FIGURE 6

A comparative schematic of accuracies by various deep learning approaches [i.e., Convolutional neural network (CNN) (Islam et al., 2021), long

short-term memory (LSTM), stacked autoencoder (SAE), and variational autoencoder (VAE)] on the BCI competition dataset.

FIGURE 7

A graph of accuracies by various deep learning approaches on the DEAP dataset.

5.3. BCI applications and deep learning

Deep learning-based BCI systems are mostly used in the

healthcare industry to identify and diagnose mental illnesses,

including epilepsy, Alzheimer’s disease, and other disorders (Dose

et al., 2018). First, research focusing on sleep-stage recognition

based on sleeping spontaneous EEG is utilized to identify sleeping

disorders (Vallabhaneni et al., 2021). As a result, the researchers

do not need to seek out patients with sleeping issues since it is

simple to gather the sleeping EEG signals from healthy people in this

condition. The diagnosis of epileptic seizures has also garnered a great

deal of interest. The majority of seizure detection is dependent on

spontaneous EEG and mental illness signs (Antoniades et al., 2018;

Hussein et al., 2019; Dang et al., 2021; Shoeibi et al., 2021). CNN and

RNN are common deep learning models in this context, as are hybrid

models that combine RNN and CNN. Several methods (Turner et al.,

2014) combined deep learning models for feature extraction with

classical classifiers for detection. To diagnose seizures, researchers

used a VAE in feature engineering followed by SVM.

Smart environments are a possible future application scenario

for BCI. With the rise of the Internet of Things (IoT), BCI can

be linked to a growing number of smart settings. For instance, an

aiding robot may be used in a smart house (Zhang et al., 2018c)

in which the robot is controlled by brain impulses. In addition,

Behncke et al. (2018) examined how to operate a robot using

visually stimulated spontaneous EEG and fNIRS data. BCI-controlled
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FIGURE 8

The accuracies of the SEED dataset based on CNN or CNN+SAE.

exoskeletons might assist individuals with compromised lower limb

motor control in walking and everyday activities (Kwak et al., 2017).

In future, research on brain-controlled equipment may be useful

for developing smart homes and smart hospitals for the elderly and

the crippled.

In comparison to other human–machine interface approaches,

the greatest benefit of BCI is that it allows patients who have

lost most motor functions, such as speaking, to interact with the

outside world (Nguyen and Chung, 2018). Deep learning technology

has considerably enhanced the efficiency of the brain’s signal-based

communications. The P300 speller is a common paradigm that allows

individuals to type without a motor system, which can turn the user’s

intent into text (Cecotti and Graser, 2010). In addition, Zhang et al.

(2018b) suggested a hybrid model that combines RNN, CNN, and AE

to extract relevant characteristics fromMI EEG to detect the letter the

user intends to write. The suggested interface consists of 27 characters

(26 English alphabets and the space bar) split into three character

blocks (each block containing nine characters) in the first interface.

There are three possible choices, and each one leads to a separate

sub-interface with nine characters.

A prominent topic of interest for BCI researchers is the

security industry. A security issue may be broken down into

authentication (also known as “verification”) and identity (also

known as “recognition”) components (Arnau-González et al., 2017;

El-Fiqi et al., 2018; Chen et al., 2019b; Puengdang et al., 2019;

Maiorana, 2020). The goal of the former, which is often a multi-

class classification task, is to identify the test subject (Zhang et al.,

2017). This is usually a simple yes-or-no question that only looks

at whether the test subject is allowed or not. Existing biometric

identification/authentication systems rely primarily on the unique

inherent physiological characteristics of people (e.g., face, iris, retina,

voice, and fingerprint). Anti-surveillance prosthetic masks that may

defy face recognition, contact lenses that can fool iris detection,

vocoders that can compromise speech identification, and fingerprint

films that can fool fingerprint sensors are all vulnerable. Due to their

great attack resilience, EEG-based biometric person identification

systems are emerging as attractive alternatives. Individual EEG

waves are almost impossible for an impostor to replicate, making

this method extremely resistant to spoofing assaults faced by other

identificationmethods. Deep neural networks were used byMao et al.

(2017) to identify the user’s ID based on EEG signals, and CNN was

used for personal identification. Zhang et al. (2017) presented and

analyzed an attention-based LSTM model on both public and local

datasets. The researchers (Zhang et al., 2018a) subsequently merged

EEG signals with gait data to develop a dual-authentication system

using a hybrid deep learning model.

Several articles simply aim to categorize the user’s emotional state

as a binary (positive/negative) or three-category (positive, neutral,

and negative) issue using deep learning algorithms (Chen et al.,

2019b; Ozdemir et al., 2019; Gao et al., 2020a,b; Hwang et al., 2020;

Liu J. et al., 2020; Liu Y. et al., 2020; Sundaresan et al., 2021). Diverse

articles employed CNN and its modifications to identify emotional

EEG data (Li et al., 2016) and lie detection (Amber et al., 2019).

Most of the time, the CNN-RNN deep learning model is used to

find hidden traits in spontaneous emotional EEG. Using EEG data,

Xu and Plataniotis (2016) employed a deep belief network (DBN) as

a particular feature extractor for the emotional state categorization

task. Moreover, on a more basic level, some studies seek to identify

a positive/negative condition for each emotional dimension. For

identifying emotions, Yin et al. (2017) suggested a multiple-fusion-

layer-based ensemble classifier of AE. Each AE is made up of three

hidden layers that remove unwanted noise from the physiological

data and give accurate representations of the features.

For traffic safety to be assured, a driver must be able to keep up

their best performance and pay close attention. It has been shown that

EEG signals may be beneficial in assessing people’s cognitive status

while doing certain activities (Almogbel et al., 2018). A motorist is

often considered alert if their response time is less than or equal to

0.7 s and weary if their reaction time is more than or equal to 2.1 s. By

extracting the distinctive elements from the EEG data, Hajinoroozi

et al. (2015) investigated the prediction of a driver’s weariness. They

investigated a DBN-based dimensionality reduction strategy. It is
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important to be able to tell when a driver is tired since that can make

accidents more likely. Furthermore, it is practical to identify driver

weariness in daily life. The technology that is used to record EEG data

is easy to find and small enough to use in a car. In addition, the cost

of an EEG headset is reasonable for the majority of individuals. Deep

learning algorithms have greatly improved the accuracy of tiredness

detection. In conclusion, driving sleepiness based on EEG may be

identified with excellent accuracy (83–98%) (Fahimi et al., 2019; Ko

et al., 2020; Atilla and Alimardani, 2021; Cai et al., 2021). The self-

driving situation is where driver fatiguemonitoring will likely be used

in future. Since the human driver is often expected to react correctly

to a request to intervene in most self-driving scenarios, the driver

must always be aware. As a result, we think that using BCI-based drive

fatigue detection can help the development of autonomous vehicles.

Human operators play an important role in automation systems

for decision-making and strategy formulation. Human functional

states, unlike those of machines or computers, cannot always meet

the needs of a task because working memory is limited, and psycho-

physiological experience changes over time. A lot of researchers have

concentrated on this subject. The mental effort may be calculated

using spontaneous EEG. Bashivan et al. (2015) introduced a DBN

model, a statistical technique for predicting cognitive load from single

trial EEG.

5.4. Recommendation for future research

However, there are still plenty of deep learning premises and

domains to be used in EEG-based BCI, which will not only improve

the performance but also make them more generalizable. Here are

a few suggestions for future researchers regarding where they can

uncover novelty utilizing deep learning.

• Graph Convolutional Networks (GCNs): One of the

fundamental functions of the BCI is controlling machines using

only the MI and no physical motions. For the development

of these BCI devices, it is very important to be able to classify

MI brain activity in a reliable way. Even though previous

research has shown promising results, there is still a need to

improve classification accuracy to make BCI applications that

are useful and cost-effective. One problem with making an

EEG MI-based wheelchair is that it is still hard to make it

flexible and resistant to differences between people. Traditional

techniques to decipher EEG data do not include the topological

link between electrodes. So, it is possible that the Euclidean

structure of EEG electrodes does not give a good picture of how

signals interact with each other. To solve the problem, graph

convolutional neural networks (GCNs) are presented to decode

EEG data. GCN is a semi-supervised model that is often used

to get topological properties from data in non-Euclidean space.

GCNs have been used successfully in a number of graph-based

applications. Graphs can show complicated relationships

between entities. GCN not only successfully extracts topological

information from data but also it has interpretability and

operability. Recently, researchers are shifting to GCN from

CNNs for various applications as it can capture relational

data better than CNNs. Though some studies have recently

reported GCN in EEG-based BCI (Hou et al., 2020; Jia et al.,

2020), it is mostly undiscovered. Any research in this domain

using GCN might be the breakthrough needed to trigger deep

learning-based BCI studies.

• Transfer Learning: The study of deep neural network-based

methods for successfully transferring information from relevant

disciplines is known as “deep transfer learning”. Transfer

learning focuses on dealing with facts that defy this notion by

utilizing knowledge acquired while completing one assignment

for a different but related job. Transfer learning uses data that

have already been used to increase the size of the dataset.

This means that there is no need to calibrate from scratch,

transferred information is less noisy, and TL can loosen BCI

constraints. Session-to-session transfer learning in BCIs is based

on the idea that features extracted by the training module and

algorithms can be used to help a subject do the same task in a

different session. To find the best way to divide decisions among

the different training sections, it is important to look at what

they all have in common. As TL has a lot more opportunities

in BCI applications, we have a few recommendations for

future researchers.

The majority of TL research has focused on inter-subject

and intersession transfer. Cross-device transfers are beginning

to gain interest, although cross-task transfers are mostly

unexplored. Since 2016, there has, to the best of our knowledge,

been only one similar research (He and Wu, 2020). Transfers

between devices and tasks would make EEG-based BCIs far

more realistic.

Utilizing the transferability of adversarial cases, adversarial

assaults–one of the most recent advancements in EEG-based

BCIs, may be carried out across several machine learning

models. However, specifically considering TL across domains

may boost the attack’s performance further. In black box attacks,

for example, TL can use publicly available datasets to reduce the

number of queries to the victimmodel or better approximate the

victim model with the same number of queries.

Regression issues and emotional BCI are two fresh uses

of EEG-based BCIs that have been piquing curiosity among

researchers. It is interesting that they are both passive BCIs.

Although affective BCI may be used to create both classification

and regression problems, the majority of past research has been

on classification issues.

• Generative Deep Learning : The primary purpose of generative

deep learning models is to produce training samples or

supplement data. In other words, generative deep learning

models help the BCI industry by making the training data

better and giving it more of it. After augmenting the data,

discriminative models will be used for classification. This

method is meant to make trained deep learning networks more

reliable and effective, especially when there is not a lot of

training data. In short, the generative models use the input

data to make a set of output data that is similar to the input

data. This section will present two common generative deep

learning models: variational autoencoder (VAE) and generative

adversarial networks (GANs).

VAE is an important type of AE and one of the best

algorithms for making things. The standard AE and its

variations can be used for representation, but they cannot be

used for generation since the learned code (or representation)
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might not be continuous. Therefore, it is impossible to make a

random sample that is the same as the sample that was put in.

In other words, interpolation is not supported by the standard

AE. Therefore, we can duplicate the input sample but cannot

construct one that is similar. This trait is what makes VAE so

valuable for generative modeling: the latent spaces are meant to

be continuous, which canmake a huge contribution to capturing

EEG data features for BCI applications (Lee et al., 2022).

Machine learning and deep learning modules must be

trained on a significant amount of real-world data to perform

classification tasks; however, there may be restrictions on

obtaining enough real data or the time and resources required

may be simply too great. GANs, have seen an increase in activity

in recent years, and are primarily used for data augmentation

to address the issue of how to produce synthetic yet realistic-

looking samples to mimic real-world data using generative

models so that the training data sample number can be

increased. In comparison to CNNs, GANs have, to the best of

our knowledge, been studiedmuch less in BCIs. This is primarily

due to the incomplete evaluation of the viability of using a

GAN to generate time sequence data. The spatial, spectral, and

temporal properties of the EEG data produced by the GAN are

comparable to those of actual EEG signals (Fahimi et al., 2020).

This opens up new avenues for future research on GANs in

EEG-based BCIs.

6. Conclusion

Deep learning (DL) has historically resulted in significant

breakthroughs in supervised classification tasks, which were

envisaged to be the concentration of the majority of research

chosen for assessment. Remarkably, numerous studies spotlighted

the new use cases facilitated by the study results. For example,

generating visual effects based on EEG, deriving EEG, learning from

other participants, and learning about attributes are all different

ways to learn. One of the main reasons for using DL is that

it can manage raw EEG data without mandating a substantial

preprocessing step, which is alluded to in the literature as an

“end-to-end structure.” Given that EEG is clearly linked to certain

parts of the brain, we thought that RNNs would be much

more widespread than models that do not explicitly take time

into account.

Adding to its prospects is the willingness of deep learning in

the EEG to extrapolate across respondents and facilitate transfer

learning across activities and domains. Regardless of the fact that

intra-subject models are still the most efficacious when only restricted

evidence is accessible, ensemble learning may well be the best way to

overcome this restriction given the obvious determining factor of the

rate of EEG data. Using a predictive model, one can train a neural

network on a sample of subjects before fine-tuning it on a single

individual, which is likely to result in favorable results with less data

from the individual. DNNs are typically regarded as “black boxes”

when likened to more conventional means; therefore, it is crucial

to scrutinize trained DL models. Indeed, simple model inspection

techniques such as showing the weights of a linear classifier do not

apply to deep neural networks, making their decisions far more

difficult to comprehend.

This study presents an overview of EEG-based BCIs

incorporating deep learning, with a concentration on the

epistemological advantages and pitfalls, as well as the invaluable

efforts in this area of study. This study shows that more research

needs to be conducted on how much data are needed to use deep

learning in EEG processing to its fullest potential. This type of

research could look at the relationship between performance and

data volume, effectiveness and data augmentation, performance, data

volume, and network depth. For each BCI application, researchers

have examined measurement techniques, control signals, EEG

feature extraction, classification techniques, and performance

evaluation metrics. Tuning hyper-parameters could have been

the key to increasing the efficiency of deeper frameworks in deep

learning mode by adjusting hyper-parameters. As mentioned earlier

about the lack of hyper-parameter search in this domain, this issue

should be addressed in future studies.
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