
Software Development Risk Management

Model – A Goal Driven Approach

Shareeful Islam
Institut für Informatik

Technische Universität München
Germany

islam@in.tum.de

ABSTRACT

Software development project is often faced with unanticipated

problems which pose any potential risks within the development

environment. Controlling these risks arises from both the technical

and non-technical development components already from the early

stages of the development is crucial to arrive at a successful project.

Therefore, software development risk management is becoming

recognized as a best practice in the software industry for reducing

these risks before they occur. This thesis contributes for a goal-

driven software development risk management model to assess and

manage software development risk within requirement engineering

phase.

Categories and Subject Descriptors

D.2.9 [Software Engineering]: Management| Life cycle,

Programming teams, Software quality assurance

General Terms

Software development

Keywords

Software development risk, risk management, goal-driven modeling,

and risk modeling.

1. PROBLEM STATEMENT
Despite the advancements in technology, software development

projects face similar problems repeatedly. A study found that 20%

of software projects failed and that 46% experienced cost and

schedule overruns or significantly reduced functionality [11]. The

software system is constantly error prone which poses for several

problems including constant expansion of the system scope, missed

business needs, cost and schedule overruns and even project failure.

Research suggests that failed projects suffer from the poor

management of people related problems rather than technical

problems [11]. Humans involve during every link of software

development activities incur error, make wrong assumption, show

poor team performance, etc certainly influence for any potential risk.

End-user involvement is one of the most important contributors to

successful project development. It is imperative that risk

management need to be considered a holistic view that spans both

technical and non-technical dimensions based on the development

components [7].

Software risk management generally focuses on goals relating to

schedule, cost, and quality. Nevertheless, certain goals such as

offshore and co-ordination projects work within different cultures

and locations, supporting critical business process, compliance with

the demanded regulations, security and safety have gained

importance recently. Though there are several contributions in the

area of software risk management, still a lot need to be done for

integrating in the development process. Risk management is usually

performed during design or later development phase. But in that

case, counter measures may introduce revision of the whole design

or alteration of the elicited system requirements and related artifacts.

These may lead unanticipated problems during the development and

jeopardy to the project success. Considering risk management since

the early phase can avoid such problems and contributes to mitigate

these risks. However, comprehensive details are still missing in the

literature regarding the integration of the risk management during

requirement engineering phase. We summaries the following

research questions:

a) How risk management can systematically integrate at early

development stage to significantly improve the overall software

project outcomes?

b) What are the main goals require to be attained during early stage

from the perspective of project success?

c) How risks that obstruct the goals assess, trace and control from

the early technical and non-technical development components?

2. RESEARCH CONTRIBUTIONS
To answer these questions, the aim of this research is to propose a

modeling framework to support software development risk

management, considering both technical and non-technical

components, during the early development stage. The research

contributes a goal- driven software development risk management

modeling (GSRM) framework to assess, reason, control, and trace

software development risk. The main focus is to integrate risk

management activities within Requirement Engineering (RE) phase

so that risks are identified and controlled from the early stage. We

delimit scope for this research within the context of business

information system focusing elicited business, user and system

requirements, project constraints (e.g. schedule, budget),

development process, resulting software product, and human &

organizational factors. The reasons for considering the approach

within RE are that poor requirements are one of the main causes of

the project failure [6], cost relates to fix errors during the testing

phase is fifty times more than the cost of fixing in RE phase [3]. We

strongly believe that if software development risks manage during

Copyright is held by the author/owner(s)..

ESEC/FSE’09, August 24–28, 2009, Amsterdam, The Netherlands.

ACM 978-1-60558-001-2/09/08.

the RE phase then it can effectively contribute for the completion of

the software project.

The work prefers to consider the existing modeling techniques to

accommodate the risk management activities rather than developing

a new one. We have chosen goal modeling language for software

development risk management. Goal modeling language such as

KAOS, i*, and Tropos has long been recognized in Requirement

Engineering community for elicit, analyze, negotiate, document, and

modify user and system requirements. But the methodologies do not

consider software development risks during the requirements phase.

However some recent contributions such as [2], [5] focus on risk

management activities in RE phase. In [2], Ansar et al. contribute

towards a Tropos goal risk framework by extending Tropos

methodology. However the approach does not consider software

development risk factors from the early development components

rather only consider risk relating to the requirements. Similarly in

[5], Boness et al. also considered risk relating to requirements

during later stage of RE. Our approach consider beyond on these

concepts. We extend KAOS (Keep All Objective Satisfied) goal

model methodology to accommodate risk management considering

both technical and non-technical early development components.

KAOS defines obstacle as a construct that can be used to identify

undesirable behavior against the strategic interest of a stakeholder

[15]. GSRM adopts this construct and defines software risks as

obstacles that contribute negatively to fulfill specific development

goals. GSRM undertakes goal and obstacle concept from the KAOS

and further extends with risk assessment and treatment for managing

software development risk.

3. PROPOSED APPROACH

3.1 Goal-Driven Software Development Risk

Management Model (GSRM)
GSRM is a combination of four layers to manage risk in software

development risk [8]. The advantage of using layer based concept is

that any techniques can be applied in any layer to perform its task

without affecting the other layers. This section provides a short

overview of these four layers.

Goal layer. GSRM starts with identifying, elaborating and modeling

the goals based on the early development components from the

perspective of project success. There are several directions to define

project success including project that meet agreed business

objectives and complete on time and within budget, satisfy user,

technically realistic requirements, realistic estimation of schedule

and cost, etc [1, 13]. Therefore, to attain project success, goals

require identifying and elaborating from the early technical and non-

technical development components. In GSRM, we identify goal

based on these definitions such as clear business needs and project

scope, realistic time and budget estimation, error free user and

system requirements, and so on. The goals involved in the

development activities must be achieved, maintained, ensured,

managed, improved and reduced depending on its nature to carry

out a successful development project [15] such as ensure [clear

business needs and project scope], maintain [realistic schedule],

maintain [stay under budget], manage [human factors], reduce

[errors from requirements], etc. These goals are sometimes high

level and if require, can be stated at different levels of abstraction

from higher level coarse grained to lower level finer-grained goal.

Satisfaction of these sub-goals certainly attains the main goal. This

allows to model early development components where the goal

fulfillment provides strong support within the development

environment.

Risk-obstacle layer. The risk-obstacle layer identifies the potential

software development risk factors as obstacles from the early

development components that negatively influence the goals.

Obstacles are the dual notation to the goals (e.g. undesirable ones)

[15]. Same obstacle obstructs more then one goal such as

misinformation, human errors, requirement error, ineffective

development process obstruct goal such as maintain [realistic

schedule], reduce [errors from requirements]. Generally, these risk-

obstacles identification is done through checklist, questionnaires and

brainstorming session with the stake holders. In GSRM, we follow a

set of questionnaires based on the early development components as

well as brainstorming session to identify these risks. The identified

risks are analysis further through the assessment layer.

Assessment layer. The assessment layer is used to precisely

annotate the individual risk obstacle. The main purpose is to analyze

the risk event caused by the identified risk factors. Each risk event

characterized with two properties: likelihood and severity.

Likelihood specifies the possibility of a risk event occurrence and

models as a property of the risk event. And severity quantifies the

negative impact by the risk event. Same risk factor can pose more

than one risk event as well as same risk event can obstruct more than

one goal. This representation allows to model situation where an

event influences by more than one risk factor and at the same time

negatively impacts on single or several goals. An obstruction link is

established from risk event to the specific goal it obstructs. The layer

considers risk metric values to identify the likelihood of the risk

event by measuring the risk factors. Same measurement level

follows for the risk metric relating to risk factors, risk event

likelihood and risk severity. It makes the whole risk analysis process

simple and effective during early stage. We use Bayesian subjective

probability to determine the likelihood of the individual risk event

caused by single or several independent risk factors. In GSRM, risk

analysis explicitly considers the risk events having only negative

impact to the goals. Note that we do not consider any event that has

positive influence to the goal. Therefore, if the risk events are

improbable then it implies that the confidence of the related goal

fulfillment is high. Hence, risk event likelihood and severity give us

certain belief about the dissatisfaction (DSAT) and satisfaction

(SAT) of the goal fulfillment within development environment. The

risk assessment layer finally prioritized the risk based on the

likelihood, severity and its influence towards goal dissatisfaction

through obstruction link.

Treatment layer. Finally, the treatment layer identifies the possible

control actions and selects the most suitable ones to mitigate the risk

and there by to attain the goal. Once the goals, risk factors and risk

events are identified and analyzed by goal, risk -obstacle and

assessment layer, then GSRM focuses to implement the suitable cost

effective counter measure as early as possible. Therefore control

actions are agent within the development environment such as

human, tools, etc define as active system components perform

specific role to satisfy the goal [15]. Different mitigation strategies

follow to control the risk. Additionally it is also necessary to analyze

the cost-benefits before implementing a suitable control action. In

GSRM, we allow relation among treatment, risk -obstacle and goal

layer. The link establishes from control action to goal is called

contribution link facilitates tracing from control action to the goal.

Therefore, it is useful to model, reason, and trace situation within

the development environment where a control action adopts to

mitigate a risk and contributes positively to attain the goal. Figure 1

depicts different layers of GSRM. Note that, we follow the same

notations for goal, obstacles and treatment agent in GSRM as in the

KAOS model [15].

<<trace>>
<<reason>>

goal

sub-goal

(G1.2)

sub-goal

(G1.1)

AND refinement

OR

risk

metric
risk

metric

treatment

layer

new

goal

assessment

layer

goal layer

risk-

obstacle

layer

risk

metric

risk

factor

risk

factor

risk

event

risk

event

s-subgoal

(G1.2.2)

s-subgoal

(G1.2.1)

risk

factor

agent

sub

agent

sub
goal

sub

goal

sub
alternative

process

alternative

process

Figure 1. Goal-driven software development risk management

model

3.2 GSRM within the context of RE
We propose to begin the goal and risk identification activities nearly

in parallel to the requirement elicitation activities. More specifically

when business needs identify through business modeling and system

vision prepares for customer approval, then GSRM starts with the

goal identification and elaboration. Generally, system vision

summarizes the elementary artifacts of business specification

including overviews of business rules, domains, business goals,

business process, project scope, and related features. Therefore goals

and risks relating to the business needs and project scope identify at

this stage. Although, note that if require, certain goals and associate

risk factors, especially from the early non-technical development

components identify before elicitation of the business specification

and system vision. It allows to identify risk before the definition of

the user and system requirements. As mentioned, the activities

involve within GSRM are iterative, depending on the input artifacts,

several iterations can carry out within requirement elicitation,

analysis and validation. However, at the end of RE activities when

requirement specification continues for the subsequent development

phase, then certain relevant goals such as errors free requirements,

accurate and competence project team members, adequate

development facilities, and so on are attained. Figure 2 shows the

model within the context of RE. During the initial iteration, goals

and risks identify from the business specification, system vision as

well as from the other non-technical development components.

Further iterations identify risk from the elicited user and system

requirements and other relevant artifacts.

business specification

B
u

s
in

e
s
s
 m

o
d

e
li
n

g

system

vision

requirements specification

user requirements

software development

risk(SDR)

prioritized

risk

business

process

business

goals
business

rules

domains

R

e
q

u
ir
e

m
e

n
t
e

n
g

in
e

e
ri
n

g

 goal risk model

system equirements

use case

model

goals SDR

functional quality architectural

goals

features

stakeholder

G
S

R
M goal risk model

control

action

Figure 2. GSRM within the context of RE

3.3 Expected Outcome
The proposed model provides quantitative evidence that certain

goals within the early development components such as error free

requirement, active customer/user involvement through out the

development, realistic estimation of schedule and budget, clear

business needs and project scope, and manage human &

organizational factors are fulfilled. These facilitate to reduce

unanticipated problems within subsequent development phases.

However, we need to validate the effectiveness and feasibility of the

proposed framework to manage risk during at early development

stage.

4. PROGRESS
We have identified early development components, goals and sub-

goals based on the published experience paper considering the

perspective of project success. Furthermore, a set of questionnaires

were already developed to identify the risk factors that obstructs

these goals. These questionnaires will be used to conduct a survey

study to the experienced software practitioners. Currently, we are

planning to conduct a survey study within the context of offshore

outsourced software development. Initially, the survey context is

from a developing country with limited IT infrastructure facilities.

At this stage of the research, we have chosen eight Bangladeshi

software companies as vendor that produce software for its offshore

clients for the survey purpose. It facilitates to revise the goals and

identify risk factors from a different culture with less advancement

in software development infrastructure. Our survey study is based

on Delphi survey process to obtain the possible risk factors and rank

the top ten risk factors considering early development components.

Identified risk factors are analysis through the assessment layer and

control actions are proposed through the treatment layer.

Afterwards, we would like to apply the model in running software

development projects to determine the feasibility and validity of the

approach.

5. RELATED WORKS
Lots of works have already been done in the area of risk

identification, analysis and the overall software risk management.

Short overviews of these works that are relevant to our work are

given below. Boehm, one of the pioneers in the area of software risk

management, proposed risk driven spiral model in 1991, consisting

of an iterative set of activities [4]. Since then, several works

contributed around the theme. Karolak proposed Software

Engineering Risk Management (SERIM) by four interconnected risk

tree based on 81 risk factors with three main risk elements

technology, cost and schedule [9]. Kontio emphasized on

effectiveness of group work (including the brainstorming sessions)

by the Riskit methodology to identify the stakeholder goals and risks

that threaten the goal [10]. There is however a consensus that the

risk management must comprise two general phases risks

assessment and control. In GSRM, we include goal identification

and elaboration step, similar as Riskit, before risk assessment and

control. Islam et al. provide the short overview of the GSRM in [8].

It is generally agreed that, to be successful, the activities should

perform iteratively involving repeated risk assessment and project-

wide risk mitigation. In GSRM, it is also possible to perform several

iterations of software development risk management depending on

the nature of the input artifacts.

There are also several contributions on risk identification and

analysis. Well known top-ten risk list are provided by Boehm [4] in

1991 and more extensive list published by Schmidt et al. [14] in

2001. These lists are usually compiled from the surveys of the

experienced stake holders. Research also showed that perception of

risk varies between stake holders, overtime, within project context

and between cultures [14] [16]. However most of these studies were

conducted in developed countries with sophisticated IT

infrastructure facilities. But, because of the rapid increase of the

offshore outsourced software development the survey requires to

focus on the risk factors from the developing countries with limited

IT infrastructure facilities [12]. Some researches have already

contributed to identify the risk factors from the developing country

like China and India [12] [16]. We focus to identify the early

software development risk factors from Bangladesh having limited

IT infrastructure facilities. Furthermore, little work has been

undertaken on the potential effects of these risk factors. To address

this issue, our survey study not only identifies the risk factors but

also quantify the potential effects of these factors. Furthermore we

will also implement the proposed model to running software

development projects.

6. REFERENCES
[1] The Standish group report chaos http:// www. standishgroup.

com.

[2] Y. Asnar and P. Giorgini. Modelling risk and identifying

countermeasures in organizations. In Proceedings of 1st In.

Workshop on Critical Information Infrastructures Security,

2006.

[3] B. Boehm. Software Engineering Economics. Prentice Hall

PTR, 1981.

[4] B. Boehm. Software risk management: Principles and practices.

IEEE Software, 8(1):32{41}, 1991.

[5] K. Boness, A. Finkelstein, and R. Harrison. A lightweight

technique for assessing risks in requirements analysis. In The

Institution of Engineering and Technology, 2008.

[6] Robert L. Glass. Software Runaways: Monumental Software

Disasters. Prentice-Hall, 1998.

[7] S. Islam and W. Dong. Human factors in software security risk

management. In Proceedings of the first international workshop

on Leadership and management in software architecture

(LMSA), in ICSE08, 2008.

[8] S. Islam, M. A. Joarder, and S. H. Houmb, Goal and risk

factors in offshore outsourced software development from

vendor's viewpoint. In Proceedings of the empirical experiences,

metrics and tools for project management in globally distributed

software development (EGSD) in ICGSE 2009.

[9] D. Karolak. Software Engineering Risk Management, IEEE

Computer Society Press, 1996.

[10] J. Kontio. Software Engineering Risk Management: A Method,

Improvement Framework, and Empirical Evaluation. PhD

thesis, Helsinki University of Technology, 2001.

[11] S. McConnell. Rapid Development. Microsoft Press, 1996.

[12] K. Na, J. Simpson, T. James, X. Li, T. Singh, and K. Kim.

Software development risk and project performance

measurement: Evidence in Korea. J. System. Software,

80(4):596{605), 2007.

[13] J. D. Procaccino, J. M. Verner, S. P. Overmyer, and M. E.

Darter. Case study: factors for early prediction of software

development success. Information and Software Technology,

44(1):53 {62}, 2002.

[14] R. Schmidt, K. Lyytinen, M. Keil, and P. Cule, Identifying

software project risks: An international delphi study. J.

Manage. Inf. Syst., 17(4):536, 2001.

[15] A. van Lamsweerde. Requirements Engineering: From System

Goals to UML Models to Software Specifications. Wiley,

2009.

[16] H. Tsuji, A. Sakurani, K. Yoshida, A. Tiwana, and A. Bush,

Questionnaire-based risk assessment scheme for Japanese

offshore software outsourcing. In SEAFOOD 2007, LNCS

4716.

