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Abstract

In Broadcast Encryption (BE) systems like Pay-TV, AACS, online content sharing and broadcasting, re-
ducing the header length (communication overhead per session) is of practical interest. The Subset Difference
(SD) scheme due to Naor-Naor-Lotspiech (NNL) is the most popularly used BE scheme. We introduce the
(a,b,v) augmented binary tree subset difference ((a,b,v)-ABTSD) scheme which is a generalization of the
NNL-SD scheme. By varying the parameters (a,b, ), it is possible to obtain O(nlogn) different schemes.
The average header length achieved by the new schemes is smaller than all known schemes having the same
decryption time as that of the NNL-SD scheme and achieving non-trivial trade-offs between the user storage
and the header size. The amount of key material that a user is required to store increases. For the earlier
mentioned applications, reducing header size and achieving fast decryption is perhaps more of a concern than
the user storage.

Keywords: Broadcast encryption, subset difference, binary trees, augmented trees, header length, transmission
overhead, user storage, decryption time.

1 Introduction

Content protection in systems like Pay-TV, online media broadcasting and digital rights management [DRM]
in optical discs, are based on broadcast encryption (BE) schemes. A symmetric key BE scheme assumes a
broadcasting center and a set A of users who can receive the encrypted broadcast. At the outset, the users are
provided long-lived keys which are stored on the user devices. Blocks of data are broadcast in sessions. For a
given broadcast, a non-empty subset of users is identified as privileged and the other users are said to be revoked.
Transmissions in each session are encrypted with a fresh random session key. The session key in turn is encrypted
a number of times using a subset of long-lived keys such that each privileged user has access to one of these
keys and no revoked user can access any of these keys. These encryptions of the session key are sent with the
encrypted data block as the header. The number of times the session key is encrypted is called the header length.
The communication overhead due to the scheme is measured by the header length.

The Advanced Access Content System [AAC] standard for digital rights management [DRM] in optical discs
suggests the use of the Subset Difference (SD) scheme proposed in 2001 by Naor, Naor and Lotspiech [NNLO1]
which we will call the NNL-SD scheme. Consequent upon this standardisation, this scheme has become the
most popularly used BE scheme. For a system with n users, the NNL-SD scheme requires each user to store
O(log2 n) secret key material. Further, for a broadcast having r revoked users, the worst case header length is



2r — 1. Decryption time required by a user is O(logn) which is the fastest among all proposed schemes providing
a non-trivial trade-off between the user storage and the header length.

1.1 Our Contributions

The starting point of our work is the NNL-SD scheme. For a system with n = 2% users, the NNL-SD scheme
uses a full binary tree 70 of height £y with the users as its leaves. The scheme identifies certain subsets of users
and employs a clever strategy for assigning keys to these subsets. In any broadcast, the set of privileged users
are covered using these subsets. A basic combinatorial intuition is that if we can somehow manage to increase
the number of allowed subsets, then it may be possible to cover the privileged users using a smaller number of
subsets. We follow up on this intuition.

Reducing the communication bandwidth can trivially be done if there is no restriction on the user storage.
This, however, is an unrealistic scenario. We consider the issue of reducing communication bandwidth while at
the same time ensuring that the increase in the user storage is not prohibitively expensive.

The new idea that we introduce uses the same underlying tree structure 7° as in the NNL-SD scheme and
includes all the subsets that were assigned keys in the NNL-SD scheme. The additional subsets which are to
be assigned keys are identified using small sub-graphs of 70 that are full binary trees of height a (> 1). These
additional structures are called a-trees. Each internal node of 79 (at height greater than or equal to a) is
augmented with an a-tree. Accordingly, the new scheme is called the a-augmented binary tree subset difference
(a-ABTSD) scheme. For a = 1, the new scheme is the same as the NNL-SD scheme. For a > 1, the flexibility of
having additional subsets arises by assigning keys to subsets of leaf nodes of each a-tree. As a result, the new
scheme is a proper generalization of the NNL-SD scheme.

For a scheme with n users, the user storage is still O(log®n). The difference with the NNL-SD scheme is
that the constant in the big-oh notation is proportional to 28~ where k = 2%. So, for a fixed n, the a-ABTSD
scheme is meaningful only if @ is small. It is shown that the worst case header length of the a-ABTSD scheme is
2r — 1 (irrespective of the value of a) as in the case of the NNL-SD scheme. More importantly, we show that for
any particular set of revoked users, the header size of the new scheme is never more than that of the NNL-SD
scheme. Further, compared to the NNL-SD scheme, in the a-ABTSD scheme, the maximum header size of 2r — 1
is attained for larger values of n.

The main gain in using the a-ABTSD scheme is the reduction in the average header length. We have carried
out experiments to study this. It turns out that for all values of r, the average header length of the new
scheme for a > 1 is lower than that of the NNL-SD scheme. The lowering effect of the header length becomes
more pronounced as either r increases or as a increases. Our results show that in scenarios where reducing
communication bandwidth is a major concern, the new scheme provides an attractive alternative to the NNL-SD
scheme.

We further propose two refinements to the a-ABTSD scheme. First, we restrict the cardinality (say b) of the
subsets of leaves of a-trees that are assigned keys. Note that b € {2,...,2% — 1}. For b = 2% — 1, the resulting
scheme is the same as the a-ABTSD scheme. This refinement is used to mitigate the increase in the user storage
while the (expected) header length stays better than the NNL-SD scheme. For a > 2 and b € {2,...,2% — 1}, we
denote by (a,b)-ABTSD the scheme resulting from the consideration of the parameter b. The second refinement
is obtained by introducing another parameter a < v < {y to the (a,b)-aABTSD scheme which controls the
maximum depth to which subset differences are allowed. This scheme is denoted as the (a, b, y)-aABTSD scheme.
For v = £y, the (a,b)-aABTSD scheme is obtained while for lower values of v, the (a,b,v)-aABTSD scheme has
lower user storage and higher expected header length compared to the (a, b)-aABTSD scheme.



1.2 Comparison

There are three main parameters of a BE scheme — the header length, the user storage and the decryption time
required by a privileged user. The new proposals have decryption time to be the same as that of the NNL-SD
scheme, which is known to be the smallest among all schemes providing non-trivial trade-offs.

Among the schemes having the same decryption time as the NNL-SD scheme, there are two directions for
trade-offs. One direction tries to reduce the user storage with a consequential increase in the header size and the
other direction tries to reduce the header size with a consequential increase in the user storage. Applications of
the first direction are resource constrained devices. The LSD scheme [HS02] and a subsequent work [BS14] have
concentrated on the first direction. The trade-offs obtained in these works are not comparable to the present
work.

The BDSD) scheme from [WYL14, WYT13] is an example of the second direction and reduces the average
header size at the cost of increasing the user storage. The (a,b,~y)-ABTSD scheme that we introduce provides
a wide variety of trade-offs. In particular, we show that the (X, 2,A)-ABTSD scheme has average header size
lower than that of the BDSD) scheme. Expectedly, the user storage of the new schemes is more than that of the
BDSD,, scheme. Details of the comparison and further comparison to the works [JHCT05, HLLO05] are provided
in Section 7. To the best of our knowledge, there are no other works which reduces the header size of the NNL-SD
scheme at the cost of increasing the user storage.

To summarise, among the schemes which have the same decryption time as that of the NNL-SD scheme, the
schemes proposed here provide new non-trivial trade-offs where the average header size obtained using the new
schemes is smaller than what could be achieved earlier. The resulting user storages are higher than previous
schemes, but, would be tolerable for some applications. Such applications would include the Advanced Access
Content System [AAC] for digital rights management [DRM] in optical disks and Pay-TV systems, where reducing
the header size is the primary concern and a tolerable increase in key size would be acceptable.

1.3 Previous And Related Works

Broadcast encryption was introduced in [Ber91] and was formally studied in [FN93]. The work [FN93] proposed
several schemes that were based on one-way functions and computational number-theoretic assumptions.

The subset cover framework for BE was proposed in [NNLO1]| that modelled almost all previously known BE
schemes. The subset difference scheme, its formal security analysis and a traitor tracing technique were presented
in this same work. Halevy and Shamir introduced the concept of layering in the underlying tree of the NNL-SD
scheme and reduced the user storage [HS02].

Analysis of the expected header length of tree-based schemes in [NNLO1, HS02] was done in [PB06]. It was
shown in [EOPRO8] that the standard deviations of the header lengths for these schemes are small compared
to the means as the number of users gets large. Detailed worst case header length analysis for the tree-based
schemes of [NNLO1] have been done in [MMWO09]. Efficient algorithms to compute the expected header lengths
for these schemes were provided in [BS13, BS14] which also proposed several extensions of the NNL-SD and the
LSD schemes.

A variant of the NNL-SD scheme was proposed in [GST04] which reduced the user storage to O(logn) at
the cost of increasing the decryption time to O(n). The works [JHCT05, CJKY08] proposed BE schemes which
were based on combinatorial structures different from that of a binary tree. A generic transformation to reduce
user storage was proposed in [HLLO5] and two concrete instantiations were provided. A modification of the
NNL-SD scheme which reduces the transmission overhead was described in [WYL14, WYT13]. A ternary tree
based subset difference technique was proposed in [FKTS08]. More recently, a generalization of the NNL-SD
scheme to work for k-ary trees for any k& > 2 was introduced in [BS15].

From a more combinatorial point of view, a trade-off between a given upper bound on the user storage and the
consequent lower bound on the header length was given in [LS98] in the context of BE schemes for low-memory



stateless and low-state devices. Lower bounds on the header length for subset cover algorithms over different
ranges of r were described in [AKI03].

We have considered the combinatorial framework of BE schemes. For applications such as the AACS and
Pay-TV, the framework would be instantiated with symmetric key ciphers. BE schemes have also been studied
extensively from the perspective of public-key cryptography. Many variants have been considered. These works
are outside the scope of the present work and so we do not discuss them here.

2 Subset Cover Framework

Most known symmetric key BE schemes fall under the subset cover framework [NNLO1]. In this framework, the
broadcast center defines a collection S of subsets of the set of users N and keys are assigned to each subset in
S. For a user u, let S, denote the subsets in S which contain u, i.e., S, = {5 : 5 € S and u € S}. A user u gets
secret information I, from which it can derive the keys for all subsets in S,,. This secret information I,, need not
be the actual keys, instead it can consist of sufficient information which allows u to derive the key for any subset
in § to which it belongs.

The message to be broadcast by the center in each session is encrypted with a random session key K. For
each session, the center knows the set of revoked users R. It forms a partition S, of the set of privileged users
N\ R using subsets in S, i.e., S. C S; for S1,59 € S, S1 NSy = 0; and Uges, S =N\ R.

This set of subsets S, is called the subset cover and the algorithm to find S, is called the cover gemeration
or cover finding algorithm. The session key is further encrypted for each subset S € S., using the key associated
with S. These encryptions of the session key are sent as the header with the encrypted data. The number, A, of
subsets in the cover S, i.e., h = |S,| is called the header length.

For decryption, a privileged user first determines the subset S in S, to which it belongs. Then it uses the key
corresponding to S to decrypt the portion of the header intended for S to obtain the session key K. Finally, it
uses K to decrypt the message.

2.1 The Naor-Naor-Lotspiech Subset Difference Scheme

The subset difference scheme introduced by Naor, Naor and Lotspiech (NNL-SD) [NNLO1] falls under the subset
cover framework. The number of users n (n = |N]) is assumed to be a power of two, i.e., n = 2% for some £y > 0.

A full binary tree T° of height £y forms the underlying structure for the scheme. Each user is associated with
a unique leaf of 7°. The nodes in the tree are numbered as follows. The root node is numbered 0. The left
(resp. right) child of an internal node i is numbered 2i + 1 (resp. 2i + 2). For any node i in 7°, the full binary
tree rooted at i is denoted as T°.

There are a total of £y + 1 levels in the tree 7°. The leaf nodes are at level 0; any internal node is at level
¢+ 1 if its children are at level £. So, the root node is at level £y. By level(i) we denote the level number of the
node 7 in the tree 70. If J is a set of nodes all of which are at the same level, we will denote this common level
by level(J).

Let i be a non-leaf node in 7° and j be a non-root node in 7¢. By 7\ 77 we denote the subgraph obtained
by taking away 77 from 7°. Let S; j be the set of leaf nodes of T%\ 7.

2.1.1 The Collection NNL-S
For the NNL-SD scheme, let us denote the collection of subsets which are assigned keys by NNL-S. Then
NNL-S = {N}U

{S;; : i is a non-leaf node of T°
and j is a non-root node of T°}. (1)



The size of the collection NNL-S is 1 + £o2f0t! — 260 41 = 2 4 ¢20+1 — 2o,

2.1.2 PRG as a Hash function

Let m be the key-size of the underlying symmetric cipher and suppose that PRG : {0,1}™ — {0,1}3™ is a
cryptographic pseudo-random generator. On input L, let the output of PRG(L) be Ry||R;||R2 where Ry, t =
0, 1,2, is an m-bit string. Let Gy : {0,1}™ — {0, 1} be a function such that G¢(L) = R;. A compact description
of the functions Gy, G; and G3 is as a hash function G : {0,1,2} x {0,1}" — {0,1}"™ where G;(L) = G(t,L).
More generally, in this work, for a finite non-empty set F', a hash function H : F' x {0,1}"™ — {0,1}" is to be
implemented using a pseudo-random generator PRG : {0, 1}™ x {0,1}™/ where f = |F|. We emphasize that the
underlying cryptographic primitive is a PRG and the description in terms of the hash function is only for the

sake of notational convenience.

2.1.3 Key Assignment To Subsets

A key Kj is assigned to the subset A'. For key assignment to the other subsets in S, a hash function G :
{0,1,2} x {0,1}™ — {0,1}™ (as mentioned above) is chosen by the center and is made available to all users in
the system. Each subset S; ; € S is assigned a key as follows.

e Every internal node i in 70 is assigned a uniform random m-bit seed L;.

e All non-root nodes j in the subtree T* derive seeds from L; in the following manner. Let j = tg,...,t, =i
be the sequence of nodes in the path from j to i. Then fore =p—1,...,0, t, = 2t,41 + s, where s, € {1,2}.

Define the label L; ; associated to S; ; to be L; ; E Goo(- G, »(Gs, (Li)) ).

e The key K; ; associated to the subset S; ; is defined to be K; ; = Go(Lij).

2.1.4 The Set I, For A User u

For a user u consider the set NNL-S,, of subsets in NNL-S which contain . If S;; is such a subset, then 7 is an
ancestor of the leaf node u and j is not an ancestor of u. The user u should be able to generate the keys of all
such subsets and no more. User u is at level 0 and suppose i is at level £. Further suppose u = ig,41,...,%7p = 1
be the path from w to i. Let ji,...,js be the siblings of i1, ..., 4 respectively. Corresponding to the ancestor i
at level ¢, user u is given the ¢ seeds L; j,,...,L;,. Since u has fy ancestors, the total number of seeds given to
w is Lo(£p + 1)/2 plus the key Kj assigned to the set N. Denote the set of all seeds given to u by NNL-T,,, i.e.,

NNL-Z,
= {Ky}U
{L; ; : i is an ancestor of u and j is the sibling
of some node in the path from wu to i }. (2)

It can be seen that from the seeds that u gets, it can derive the keys for all subsets to which it belongs and no
more.

3 The a-Augmented Binary Tree Subset Difference Scheme

The a-Augmented Binary Tree Subset Difference (a-ABTSD) scheme is a generalization of the NNL-SD scheme.
It assumes an underlying full binary tree 79 as in the case of the NNL-SD scheme and imposes additional
structure on this tree. The size of the structure is determined by a parameter a. For a = 1, the scheme turns
out to be the same as the NNL-SD scheme.



3.1 Underlying Structure

As in the case of the NNL-SD scheme, there are n = 2% users associated with the leaves of the underlying full
binary tree 79. The nodes and levels are also numbered as in the NNL-SD scheme.

For ease of later description, we introduce a few notions. Suppose J; and .Jo are two sets of nodes of 7 such
that there is a node j € J; and nodes j1,j2 € Jo such that Ji \ {j} = J2 \ {J1,72} and j1, jo are the two children
of j. Then the set J; can be thought of as being obtained from .J; by replacing {j1,j2} by j. Call the operation
of replacing ji, jo by their parent j to be a moving-up step.

Given a set J, it is possible to repeatedly apply the moving-up operation to get a set .J’ such that the moving-
up operation can no longer be applied on J. We call J' to be a reduced set. Given a set .J, there is a unique
reduced set which can be obtained by repeatedly applying the moving-up step.

Let 7 be a full binary tree and J be a non-empty subset of the leaf nodes of 7. If J is either singleton, or,
J can be reduced to a singleton set using moving-up operation, then J is called a simple subset of T; otherwise,
J is called a non-simple subset of 7. Figure 1 and Figure 2 show examples of simple and non-simple subsets
respectively. By J5(7) we denote the set of all simple subsets of 7. Similarly, J,s(7) denotes the set of all
non-simple subsets of 7. Note that both Js(7) and J,s(T) consist of subsets of the set of leaf nodes of 7.

Figure 1: A full binary tree T with the set J; =  Figure 2: A full binary tree 7 where the set Jo =
{7,8,9,10} of leaf nodes that can be reduced to a  {7,9,10,12} of leaf nodes may be reduced to Jj =
singleton set J| = {1}. Hence, J; is a simple subset  {7,4,12} which is not singleton. Hence, J is a non-
of T. simple subset of T .

For the new scheme, additional structure is endowed to 79 in the following manner. Define an a-tree Al to
be a subgraph of 7° which is the full binary tree rooted at node j and of height a. So, the number of nodes in
an a-tree is 1 +2 4 ...+ 2% = 29%1 _ 1. The scheme is parameterized by the number a.

We provide an example to illustrate this notion. In Figure 3 where a = 2, the subtree rooted at node 4 is the
a-tree A% containing the nodes {4,9,10,19,20,21,22}. Another a-tree A} is the subgraph containing the nodes
{1,3,4,7,8,9,10}.

For a fixed value of a in 7, each a-tree is uniquely identified by its root node. Alternatively, suppose J is a
non-empty subset of leaf nodes of an a-tree A7 such that the nodes in J are at level ¢ (of 7). Then the root j
is the unique ancestor at level £ 4+ a of the nodes in J. So, given J, the node j is uniquely determined and we
will call 5 to be the a-pivot of J.

The level number of the root node of any a-tree in 79 is at least a. Hence, for a full binary tree with n = 2%
leaves, the number of distinct a-trees is the number of internal nodes at levels between £y and a. Since there are
2f0=t nodes at level £ in 79, hence the number of a-trees is

14+2+... 4+ 2f-a _glo—atl



For any internal node i of 7° and any non-root node j in 7% 7\ 77 is the subgraph of 7% obtained by
taking away 77. We generalize this notion in the following manner. As before, let i be a non-leaf node in 7
and let J = {ji,...,jc} be a non-empty subset of non-root nodes in 7%. Define 7; to be the subgraph of T*
formed by taking away all of 771,... 77 from 7. In other words,

Ty =T\ (T U UTH).

Let S; j denote the set of leaf nodes of the subgraph 7; ;.

Suppose J; and Jo are two sets of nodes in 7 such that J is obtained from .J; by a moving-up step. Then
it is easy to see that the set of leaf nodes of 7; j, is the same as the set of leaf nodes of 7; 7, and so S; s, = S; s,-
We say (i,J1) and (i,J2) are two representations of the set S; s, = S; 5. If J' is a reduced set obtained by
successively applying the moving-up operation to a set J, then S; ;y = S; ;. By an extension of terminology, we
will call the representation (i,.JJ’) to be the reduced form representation of the set S; ;.

3.2 The Collection S

Let i be an internal node of 7° and J be a non-simple subset of AJ where 4 is a node of 7¢. We call such a pair
(i,J) to be allowed.

Suppose (i,.J) is an allowed pair where the nodes in J are at level /. Then the level of the a-pivot j of J is
¢+ a and so the level of i is at least £ + a. This shows that there cannot be an allowed pair (i, .J) where the level
of 4 is less than a.

The collection & consists of the following subsets:

e all NNL-SD subsets S; ;; and
e S, j for all allowed pairs (i, J).
In other words,

S = NNL-SUA-S (3)

where A-S £ {Si.j: (i,J) is allowed}.

For S; ; € A-S, J is non-simple and so J cannot be reduced to a singleton set using moving-up operations.
As a result, S; ; is not equal to any NNL-SD subset. So, the collections NNL-S and A-S are disjoint.

If a = 1, then any J which is a non-empty subset of the leaf nodes of an a-tree is necessarily simple. So,
there are no allowed pairs (i,.J) showing that A-S = (. As a consequence, in this case, the a-ABTSD scheme
collapses to the NNL-SD scheme.

As an example, let us consider the tree 79 in Figure 3 with 16 users. It shows the subset that has been
formed by excluding the users in 77, 72 and 710 from the users in 7°. The subset is denoted as S0,{7,9,10} -
Nodes {7,9,10} are leaves of the a-tree A}. Note that the set {7,4} can be obtained from the set {7,9,10} by a
moving-up operation. So, Sy (7,910} = So,{7,4}-

3.3 Key Assignment To Subsets In &

The key assignment strategy is an extension of the strategy for the NNL-SD scheme. The collection S consists of
two sub-collections NNL-S and A-S. We assume as in the case of the NNL-SD scheme that each internal node 4
of 70 is assigned an independent and uniform random m-bit seed L;. Further, for any non-root j in 7%, the seed
L; ; is also defined using G; as in the NNL-SD scheme and the key for the NNL-SD subset S; ; is K; ; = Go(L; ;).
In other words, keys to the subsets in NNL-S are assigned as in the NNL-SD scheme. For convenience of notation,

we define Liﬂ' é Lz
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Figure 3: The binary tree 7 that is the underlying structure of the a-ABTSD scheme for n = 16 users is shown
here. The red leaf nodes denote revoked users while the black ones denote privileged users. Here we assume
a = 2. The subset Sy (7,9 10y = {17,18,23,24,...,30} from the collection S (A-S in particular) is also shown. It
has all users in the subtree 7° but not in 77 U7T?UTC. Since J = {7,9,10} is a non-simple subset of the a-tree
.A%, (1,J) is an allowed pair. Using the moving up operation, the subset J may also be represented as Sy (7.4)-

Let 7 be a full binary tree of height a and as defined earlier J,,s(7) is the set of all non-simple subsets of 7.
Following the description in Section 2.1.2, we use a PRG to define a hash function

H[T] : Jns(T) x {0,13™ — {0, 1}"™. (4)

Keys to the subsets in A-S are defined using the hash function H. Note that H is defined with respect to the
tree 7. This is because the domain of H depends on 7. On the other hand, we expect H to act on any full
binary tree of height a in the same manner. So, when 7 is clear from the context, we will write H instead of

Let k = 2% which is the number of leaf nodes in any a-tree. Suppose S; s is in the collection A-S. Then

(i, J) is an allowed pair and suppose the a-pivot of .J is j. Then J is necessarily a non-simple subset of Aﬂ, ie.,
J € Tns(AL). The key K; j assigned to S; j is

Ki; £ H[AJ)(J, Lij). (5)

Note that j can be equal to ¢ and in that case L;; is simply L;.

3.4 Number Of Subsets In The Collection

As mentioned earlier, the count of the number of NNL-SD subsets is 2 + £y2f+1 — 2% We now consider the
number of subsets in A-S. The following result gives the number of simple and non-simple subsets of a full
binary tree of height a.

Lemma 1. Let T be a full binary tree of height a and k = 2*. Then the number of simple subsets of T, i.e.
|Ts(T)| equals 2k — 1. Consequently, the number of non-simple subsets of T, i.e. |Tns(T)|, equals 2% — 2k.

Proof. T has k = 2% leaf nodes and a total of 2k — 1 nodes. If J is a simple subset of 7, then J is either a
singleton subset of the set of leaf nodes of T or, can be reduced to one of the internal nodes of 7. So, the number
of simple nodes of T is 2k — 1. The total number of non-empty subsets of the leaf nodes of 7 is 2¥ — 1. Out of
these 2k — 1 are simple subsets. As a result, there are 2¥ — 2k non-simple subsets of 7. ]



Fix a node i of 70 with level(i) = £. Out of the 2F! — 1 nodes in 7%, 279! + ... 4 2 nodes are at the
bottom-most a levels. These nodes cannot be the a-pivot for any set J such that the pair (7, .J) is allowed. Each
of the remaining 2%t — 1 nodes in 7" will be the root of an a-tree that generate subsets. For a node 4, each
such a-tree will generate 2* — 2k subsets of the form S;,g where J is non-simple. Thus, the total number of
subsets of the form S; ; in A-S is

Lo
Z 2f0—5<2£—a+1 _ 1)(2](: _ 2]€ _ 2)
l=a

— (2k _ 2]{:)((&) _ a)2€o—a+1 _ gfo—a+1 + 1).
Hence, the total number of subsets in the collection S is

IS| = |NNL-S| + |A4-S|
2+ fp2l0t! — 2t
+(2F — 2k) (g — a)2f0—a+! — gfo—atl 4 7))
(6)

3.5 I, Per User u

Let u be a user, i.e. a leaf node of 7°. The information provided to u consists of two disjoint subsets which we
(1) (2)
call I;” and I,,”.

3.5.1 The Subset 151)

The first part is the same as that in the NNL-SD scheme, i.e., L(f) = NNL-I,. Recall that NNL-I,, consists of
seeds L; ; where ¢ is an ancestor of u and j is the sibling of some node in the path from u to i. As mentioned

earlier, the number of m-bit seeds in 1tV s |Iq(Ll)\ =14 49(fy+1)/2. From the seeds in I&l), u can derive keys of
the following type:

e key K; ; corresponding to any NNL-SD subset \S; ; containing u;

e key K; j corresponding to any subset S; ; containing u such that the a-pivot of J is in the subtree rooted
at the sibling of some node in the path from u to i.

The seeds in L(Ll) are not actual keys for subsets. These actual keys have to be derived from the seeds by one
or more applications of the hash functions G and/or H. Following Section 2.1.2, the applications of the hash
functions are actually applications of the underlying PRG.

3.5.2 The Subset I&Q)

Let 7 be a full binary tree of height a and v be a leaf node of 7. Let J,s,(7) denote the set of all non-simple
sets of T not containing v. In other words, J is in Jps,(7) if J is a non-empty subset of the leaf nodes of 7, J
cannot be reduced to singleton subset and v ¢ J.

Lemma 2. Let T be a full binary tree of height a and v be a leaf node of T. Then |Tnso(T)| = k=1 _ 2k +a+1.

Proof. Consider a non-empty subset of the leaf nodes of 7 not containing v. Since 7 has k leaf nodes, there are
a total of 2F~1 — 1 possibilities for J. Further J cannot be reduced to any of the ancestors of v in 7. O

Define 852) to be collection of subsets S; j in A-S satisfying the following conditions:



e ¢ is an ancestor of v and the a-pivot j of J is also an ancestor of u;
e the ancestor v of u at level(.J) is not in J.

Define

1182) = {K;j :Sisisin 8182)}. (7)
The size of L(f) is calculated as follows. If i is at level ¢, then the possible levels for the a-pivot j of J are
a,a+1,...,0 Fix alevel £ of j. We now need to find the number of non-simple subsets J satisfying the above
conditions. There are k = 2% leaf nodes of A}. The ancestor v of u at level ¢ is a leaf node of A}. By the above
condition, v should not be in J and so there are k£ — 1 leaf nodes of AJ which can be in J. Any subset J' of the
leaf nodes of A% which does not contain v cannot be reduced to any of the singleton nodes in the path from v to
j (both inclusive). There are a total of (2k —1) — (a+ 1) nodes in A} to which it may be possible to reduce .J’ by
applying moving-up operations. So, the number of .J satisfying the required conditions is 28~ —1 — (2k —a — 2).
For a node i at level ¢, there are (¢ — a + 1) possible choices for j and for each j there are 2871 — 2k +a + 1
choices for J. So, the number of keys in L(f) is

~

0

1) =

u

(l—a+1)2F 1 =2k +a+1)

|
(]

x (281 2k +a+1)
X(fo—a+2)(€0—a—|—1). (8)

w\»—tf”‘*

Recall that for a user u, S, denotes the collection of subsets in S which contain u. Also, NNL-S, denotes
the collection of all NNL-SD subsets which contain u. Define A-S, to be the collection of all subsets from A-S
which contain u. Then S, is the disjoint union of NNL-S, and A-S,. The set 1181) provides u with information to

)

any subset in A-S,. Further, the two sets I&l) and L(LQ) are disjoint and their union is the set I, which provides
u with information to generate keys for any subset in S,,. The total number of m-bit seeds that u needs to store
is the cardinality of I, and is given by the following.

generate keys for any subset in NNL-S,,. Similarly, the set LSQ provides u with information to generate keys for

| = I+ 1P
60(60 + 1)
2
+(2k*1 —2k+a+1)lp—a+2)(ly—a+1)
2

(9)

For a fixed k and as n grows, the expression in (9) is O(log? n) which is the same as that of the NNL-SD scheme.
This is much better than the number of keys being proportional to n. On the other hand, for a fixed n as k
increases, the number of keys also increases. The set L(LQ) consists of actual keys for the subsets in SQ(LQ).

In the supplementary material we show how to define the hash function H such that the definition of L(?)
can be altered to provide information using which seeds in 852) can be derived. This results in decreasing the
factor (2¥=! — 2k + a + 1) in the above expression.

Suppose the number of users is n. Then as discussed earlier, the user storage is not the same for all users.
Denote by us,(n) the maximum user storage with n users, i.e., us,(n) = max, |I,|. For 20071 < n < 2%,
use(n) = us,(2%). For a = 2, by direct considerations we are able to show the following.

us2(20) = 1+ 46o(lo +1)/2 + Lo(Ly — 1). (10)

10



The case for arbitrary a needs a more general approach. Using a cyclotomic coset based technique from [BS15],
we are able to show the following.
Lo(lg + 1
us.(20) = 1+ of 02+ )
(x2e —2) x (lp—a+2)(lp—a+1)

* 2

(11)

Here yj is the number of cyclotomic cosets of k-bit strings. Details of how this can be done is discussed in the
supplementary material.

4 Cover Finding Algorithm

The algorithm takes as input the set R of revoked users and outputs the subset cover S.. If R = () then the only
set in the subset cover is the set N of all users. If R # (), then the subset cover consists of NNL-SD subsets S;
or S; ; for allowed pairs (i,.J). The subset cover algorithm that we describe below identifies NNL-SD subsets
Si,; with S; (3. For any allowed pair (i, J), the algorithm obtains S; ;» where J' is the reduced form of J.

The algorithm runs iteratively and maintains a list £ of nodes on the paths joining revoked leaf nodes with
the root. The list £ is initially populated with the revoked leaf nodes, all marked as covered. The algorithm runs
from left to right on this list and keeps adding the parent nodes of each node in the list until the root. Each node
Jj in the list has an associated list SDnodes[j] of its descendant nodes. For a node j at level level(j) > a, the nodes
in SDnodes[j] are in an a-tree rooted at j or at some descendant of j. For a node j at level level(j) < a, the list
SDnodes[j] will have nodes from the subtree 77. While investigating the child nodes of i in the list, SDnodes][i]
and the status of ¢ are updated. The algorithm works as follows.

Algorithm C. Takes as input the set R # () of revoked users and outputs the subset cover S.. Each subset
in S, is in reduced form.

1. Form the initial list £ with all revoked leaf nodes of 7°. Mark each node j as covered and set SDnodes[j] =
{j}. Set S to be the empty set.

2. Process nodes in £ from left to right. Let L£[t] be the node that is processed at the ! iteration. If L[t] is
the root node, go to step 3. Let i be the parent of L[t]. At the t*" iteration:

(a) If L[t] and L[t + 1] have the same parent, proceed to the next iteration for L[t + 1].

(b) Else, append i to £. Node ¢ can have at most two children in £. Let the children of 7 in £ be {j1, ja}
where (1 < d < 2). The following mutually exclusive cases occur:
i. Case when all d children of ¢ are covered:
A. If d =1, mark 7 as intermediate and set SDnodes[i| = {ji}.
B. For d = 2, mark i as covered and set SDnodes[i] = {i}.

ii. Case when d =1 and j; is intermediate:
Mark i as intermediate and copy SDnodes[j1] to SDnodes][i].

iii. Case when d = 2 and at least one node in {j1, jo} is intermediate:

A. If for some j € {j1,jo2}, there is a j* € SDnodes[j] such that level(j) — level(j') > a, then for
each j € {j1,j2} that is marked as intermediate, add S} spnodes[;] t© Sc. Subsequently, mark i
as covered and set SDnodes[i] = {i}.

B. Otherwise, mark i as intermediate and set SDnodes[i] to SDnodes[j1] U SDnodes|ja].

11
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Figure 4: Example of a subset cover for R = {31,33,39,43} in the a-ABTSD scheme with a = 2 and n = 32
users. The subsets in the cover are Sz (3133}, So (39}, S10,{43} and Sp (13-

3. If the root node is marked as intermediate, add Sy spnodesjo] to the cover S..

The subset cover S¢ output by the algorithm is a collection of subsets of the form S; spnodes|i]-

Figure 4 shows an example where a = 2, n = 32 and R = {31, 33,39,43}. Hence, the list £ eventually gets
populated with the nodes {31, 33,39,43,15,16,19,21,7,9,10,3,4,1,0} that lie on the paths joining the revoked
leaves with the root node. The subsets generated by the algorithm working on the above list are Sg (39}, S10 {43}
53 (31,33} and So (13-

The cover finding algorithm may be understood as finding an NNL-SD cover and in the process, combining
those subsets in the cover whose union occurs in A-S, i.e., the union is a subset which arises due to the additional
a-tree that has been added to the full binary tree. The correctness of the cover finding algorithm is provided
in the supplementary material. It is also shown that the maximum header length of the a-ABTSD scheme for
a > 1 is never more and in general less than that of the NNL-SD scheme. Further, the maximum header length
is shown to be 2r — 1 and it is also proved that this bound is tight.

4.1 Decryption Time

Each user is at a leaf of 7° which is a full binary tree having n leaf nodes and hence has height logn. In a
broadcast, each privileged user u has to use information present in I, to derive a key corresponding to the subset
of the broadcast to which it belongs. Such information is essentially an m-bit intermediate seed and the process
of deriving a key consists of repeatedly applying the proper hash function. For any intermediate seed, at most
log n applications of the hash function lead to a key. So, u can derive the proper key in O(logn) time. This time
is the same as that required for the NNL-SD scheme.

5 The (a,b)-ABTSD Refinement

The a-ABTSD scheme is parameterised by the height a € {1,...,¢y} of the additional a-tree structure where
lo = logn is the height of the tree 79. The two ends of the trade-off determined by a are the following.

1. At one end, for a = 1 the scheme is identical to the NNL-SD scheme.

2. At the other end, for a = logn = £y the collection S is the collection of all non-empty subsets of A/. This
is called the power-set scheme where, given any set R of revoked users, the set of privileged users '\ R is
in S and hence has a key assigned to it. The subset cover S. = {N \ R} and hence the header length will
be 1. The user storage, on the other hand, will be O(x,, log®n) (which is exponential in n) as can be seen
from (11).

12



For intermediate values of a € {2,...,¢y — 1}, there are ¢y — 2 = O(logn) different storage/header-length
trade-off points which lie between the NNL-SD scheme and the power set scheme. As the value of a increases,
an increasing number of subsets are assigned keys and hence the expected header length reduces while the user
storage increases.

This hierarchy of trade-offs can be further refined as we now explain. First consider a fixed value of a. We
introduce an additional parameter b € {2,...,2% — 1} to restrict the number of subsets that are assigned keys.

The a-tree A}, is defined as before to be the subgraph of 70 that is a full binary tree of height a rooted at
node j. We recollect from Section 3 that a subset J of leaf nodes of A} is said to be simple if it can be reduced
to a single node by the moving-up operation. Let ¢ be an internal node of 70 and J be a non-simple subset of
leaves of AJ, where j is a non-leaf node of 7.

We call a pair (i,.J) to be b-allowed if J is non-simple and |J| < b. For a > 1, we define the (a,b)-ABTSD
scheme where § is defined to be:

S = NNL-SUA-S (12)

where A-S £ {S; s : (i, J) is b-allowed}.

For a = 1, we still have only the NNL-SD scheme; for 2 < a < ¢, the parameter b in the (a,b)-ABTSD
scheme can take any of the 2¢ — 2 values in the set {2,...,2% — 1}. The (a,2* — 1)-ABTSD scheme is just the
a-ABTSD scheme. All possible choices of a and b give rise to a total of Zﬁozl( @ 2) =20t 27, —1=0(n)
possible schemes having different storage/header-length trade-off points which lie between the NNL-SD scheme
and the power set scheme. For a fixed a, as b increases the number of subsets in the collection increases leading to
an increase in the user storage and a decrease in the (expected) header length. Note that the worst case header
length for all intermediate schemes is 2r — 1 (same as NNL-SD) where r is the number of revoked users. As the
parameter values are increased, the probability of occurrence of the worst case header length never increases and
decreases in general.

The cover generation algorithm C (in Section 4) of the a-ABTSD scheme can be modified to obtain the cover
generation algorithm for the (a,b)-ABTSD scheme. This modification consists of modifying only Step 2)-b)-iii)-
A) of Algorithm C in the following manner. No other step of Algorithm C needs to be changed.

C1:= (for some j € {j1,j2}, there is a j* € SDnodes[j] such that level(j) — level(j') > a).

C2:= (3_jcglleaves(i, j')| > b).

If conditions C1 or C2 (or both) are true, then for each j € {j1,j2} that is marked as intermediate, add S; spnodes|;]
to S¢ and subsequently mark i as covered and set SDnodes[i] = {i}.

Here S = SDnodes[;j1] U SDnodes[j2], leaves(u,v) denotes the leaf nodes of the a-tree rooted at node u that are
in the subtree rooted at node v and |leaves(u,v)| = 20~ (level(u)—level(v))

The first condition in the disjunct of the ‘if’ condition above is the same as that for the a-ABTSD scheme.
Also, the method of adding subsets to the cover remains unchanged. The only change is the introduction of the
condition based on the parameter b. This condition captures the requirement that in a b-allowed pair (7, J), the
cardinality of J is at most b. So, if the cardinality of the current J (= Ujcgleaves(, ;') is more than b, then
subsets are added to the cover.

The key assignment method for the (a,b)-ABTSD scheme remains almost the same as that of the a-ABTSD
scheme with the only difference being the fact that keys are assigned only to subsets represented by b-allowed
pairs (i, J). For user storage, consider the expression given by (9). The factor (28~ — 2k +a+1) (where k = 2%)
in (9) counts the number of non-simple subsets J of the leaf nodes of an a-tree which do not contain a fixed
leaf node of the same a-tree. For the restricted (a,b)-ABTSD scheme, we have to replace this factor by &g
which counts the number of non-simple subsets J of cardinality at most b of the leaf nodes of an a-tree which
do not contain a fixed leaf node of the same a-tree. It is complicated to find the formula for ,;, but, an easy
upper bound is &, < Z?:l (kzl) Replacing (281 — 2k 4+ a 4 1) by €ap in (9) provides the user storage for the
(a,b)-ABTSD scheme to be the following: 1+ £y(ly + 1) + &4 (b0 —a+1)(bg —a + 2) /2.
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5.1 The (a,b,7)-ABTSD Scheme

Consider the (a,b)-ABTSD scheme with @ > 1. The collection S consists of the NNL-SD subsets along with
additional subsets of the type S; ; with (i, J) being b-allowed. Note that the condition for b-allowed requires the
a-pivot of J to be a node in 7.

It is possible to define a restricted variant of the (a, b)-ABTSD scheme. In the restricted variant, the additional
subsets are of the type S; y with (¢, J) being b-allowed and additionally, the distance between i and the nodes in
J is at most a pre-determined value v (a <y < £y). We denote this variant as the (a, b, y)-ABTSD scheme.

For a node i in 7° with level(i) > a, the nodes in J for a subset S; ; of the (a,b,7)-ABTSD scheme can
be at most 7y levels below level(i). When v = a, the node ¢ will be the root of the a-tree for which nodes in J
are leaf nodes. As the value of v is increased, more and more subsets get added to the collection S. For fixed
values of the parameters a, b and ~, denote by Sp (resp. S¢) the collection of subsets in the (a, b)-ABTSD (resp.
(a,b,7)-ABTSD) scheme. Note that Sp C S¢ and Sp \ S¢ consists of subsets S; ; where (7, J) is b-allowed and
the difference between level(i) and the level of nodes in J is more than .

One consequence is that the expected header length of the (a,b,y)-ABTSD scheme will in general be more
than that of the (a,b)-ABTSD scheme. At the same time, the user storage required for the (a,b,~)-ABTSD
scheme will in general be lower than that of the (a,b)-ABTSD scheme. For b = 2% — 1, when v = /g, the
(a,2% — 1,£4y)-ABTSD scheme is the same as the a-ABTSD scheme. When v < {y, the user storage of the
(a,2* — 1,7v)-ABTSD scheme will be lesser than the a-ABTSD scheme and the expected header length will in
general be more than the a-ABTSD scheme.

The cover generation algorithm of the (a,b,v)-ABTSD is obtained by altering step Step 2)-b)-ii) of Algorithm
C in the following manner. This change is in addition to the change in step Step 2)-b)-iii)-A mentioned for the
(a,b)-ABTSD scheme mentioned in Section 5.

Case when d = 1 and ji is intermediate:

C3:= (There is a j' € SDnodes[j1] such that (level(i) — level(j') > v)).

If condition C3 is true, add S spnodes)j] 10 Sec and subsequently mark i as covered and set SDnodes[i] = {i}.
Else, mark i as intermediate and copy SDnodes[j1] to SDnodes][i].

The key assignment algorithm is also an easy simplification of the key assignment algorithm for the a-ABTSD
scheme and we skip the details.

To determine user storage, consider a user u at a leaf node of 7°. In the (a,b)-ABTSD (or the a-ABTSD)
scheme, for an ancestor ¢, a user u gets seeds from level(i) — a + 1 a-trees rooted on the path between i and
u. Hence, we needed to consider 1 + 2 + ...+ (¢g — a + 1) a-trees from which keys are assigned to u. For
the (a,b,v)-ABTSD scheme, we need to consider at most (v — a + 1) a-trees for each ancestor i of u. These
a-trees have leaf nodes that are at a distance at most v from an ancestor ¢ of u on the path between v and 1.
Corresponding to each such a-tree, the user u gets £, seeds. Counting the seeds corresponding to the NNL-SD
subsets, the total user storage is 1+ ¢o(lo + 1) + &p(lo —a+1)(y —a+1)/2.

Note that the additional number of seeds (over and above those corresponding to the NNL-SD seeds) provided
to a user in the (a,b,v)-ABTSD scheme is &, 5(¢p —a+1)(y—a+1)/2. In contrast, for the (a,b)-ABTSD scheme,
the additional number of seeds is &g 4(fo — a + 1)(fo — a + 2)/2. The linear versus the quadratic dependence on
{p is a consequence of the fact that the number of subsets in A-S for the (a,b,~v)-ABTSD scheme is restricted
by the parameter v as compared to that in the (a,b)-ABTSD scheme. The consequence on the header length is
that the expected header length of the (a,b)-ABTSD scheme will in general be noticeably lower than that of the
(a,b,7)-ABTSD scheme.

Varying choices of a, b and ~y give rise to a total of O(nlogn) possible schemes having different storage/header-
length trade-off points which lie between the NNL-SD scheme and the power set scheme. For a fixed a, as b or
7y is increased one at a time or simultaneously, the number of subsets in S increases. As a result, the (expected)
header length is reduced while the storage requirement increases.
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6 Experimental Studies

As we have already noted, the header length is never more than that of the NNL-SD scheme. This, however,
does not indicate what will happen on average. In this section, we report on this aspect and also compare the
average header length and user storage as a varies.

In order to compute the expected header length, one may consider a situation where r users out of n are
randomly revoked without replacement. Then for every non-leaf node i in 7V, one can associate a binary valued
random variable X; which takes the value 1 if a subset of the form S; ; or S; ; is generated and takes the value
0 otherwise. The header length is then )  X; and by linearity of expectation, the expected header length is
S Pr[X; =1].

We have considered the possibility of obtaining an algorithm to compute Pr[X; = 1]. This, however, becomes
too complicated to be useful. Instead, we chose a simulation based approach to get a fair idea of the expected
header length. First, we fix the parameter a for the scheme. For given values of n and r, we generate random
revocation patterns using Floyd’s Algorithm [BF87]. For each such revocation pattern, the cover generation
algorithm finds the exact cover and hence we get the header length. The number of iterations is chosen so that
the average value of the header length stabilizes. It turns out that 100 iterations are sufficient.

Table 1 shows that for different values of r, the expected header length of the 1-ABTSD scheme (the complete
tree version of the NNL-SD scheme) is always more than that of the a-ABTSD scheme with a > 1. In fact, as a
increases, there is a steep fall in the expected header length for fixed n and r. As an example, we see that for
n =107 and r = 0.4n, the expected header length due to the NNL-SD scheme is 2.29 times that of the a-ABTSD
scheme with a = 3.

We compare the performance of the a-ABTSD scheme by varying the parameter a. Table 1 shows how the
mean header length for a given value of a (MHL,) varies with n and r. We observe the following:

1. For a fixed n, as the parameter a is increased, the user storage increases.

2. For fixed n and a, the ratio MHL,/r decreases steadily as r increases. This behavior is true for all a > 1
(including the NNL-SD scheme).

3. For fixed n and r, as a increases, the ratio MHL,/r decreases steadily. This holds for any value of r.

4. For fixed a and r/n, the value of MHL,/r is approximately the same for all values of n. Hence, these
properties hold good for the full-tree versions (with n = 2f) of the scheme too.

For certain values of r/n, the ratio MHL,/r is shown in Table 2. This behavior is further depicted by plotting
the values of Table 2 in Figure 5.

The results of the refinements of the (a,b,)-ABTSD scheme are shown in the following plots (data for these
plots are provided in the corresponding tables as indicated with each figure). Figure 6 shows how the header
length is affected by varying v € {a,..., 4} for a fixed a € {3,4,5} and b = 2% — 1. It is clear that the expected
header length practically stabilises after a point and only the user storage keeps increasing. Figure 7 shows how
the header length is affected by varying b € {2,...,2% — 1} for a fixed a € {3,4,5} and v = £y. Increasing the
value of b improves the header length while the user storage increases. Figure 8 shows how the header length is
affected by varying a € {2,...,8} for b € {2,3} and v = /.

7 Comparison to Previous Works

There are three parameters of a BE scheme to be considered, namely, average header size, user storage and the
decryption time (required by a user). Schemes in the literature provide a variety of trade-offs between these
schemes. Here we discuss how the new schemes compare with the literature.
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Table 1: User storage and mean header lengths in the complete a-ABTSD scheme for values of a between 1 and
4. For a fixed n, we report MHL, /r for three different choices of r namely, r = (0.1n,0.2n,0.4n).

H n ‘ a H usq(n) ‘ MHL,/r H n ‘ a H usq(n) ‘ MHL,/r H
11 55 (1.11,0.97,0.71) 1| 105 (1.11,0.97,0.71)
Lo 2145 (0.96,0.78,058) | |4 [ 2] 287 (0.96,0.78,0.53)
3| 1279 (0.75,0.53,0.31) 3 || 2757 (0.75,0.53,0.31)
4 1| 115247 | (0.52,0.31,0.16) 4 || 271629 (0.52,0.30,0.16)
11 153 (1.11,0.97,0.71) 1| 210 (1.11,0.97,0.71)
Lo L2425 [ (0.96,078,0.53) | | [ 2 | 590 (0.96,0.78,0.53)
3| 4233 (0.75,0.53,0.31) 3 || 6024 (0.75,0.53,0.31)
4 || 432123 | (0.52,0.30,0.16) 4 || 629652 (0.52,0.30,0.16)
1 || 300 (1.11,0.97,0.71) 1| 378 (1.11,0.97,0.71)
107 2 || 852 (0.96,0.78,0.53) 108 2 || 1080 (0.96,0.78,0.53)
3 || 8902 (0.75,0.53,0.31) 3 || 11428 (0.75,0.53,0.31)
4 11 950634 | (0.52,0.30,0.16) 4 || 1234578 | (0.52,0.30,0.16)

Table 2: Values of the ratio MHL, /r (for any n) corresponding to the varying ratio r/n for each a. Note that
as the value of a increases, the scheme performs better in terms of communication overhead as compared to a
lesser value of a.

) r/n (0.01, 0.05, 0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 0.90, 1.00)
1 (1.23, 1.18, 1.11, 0.97, 0.84, 0.71, 058, 0.46, 033, 0.2, 0.1, 0.00)
2 (1.20, 1.08, 0.96, 0.78, 0.64, 0.53, 044, 0.35, 027, 0.18, 0.10, 0.00)
3 (1.15, 0.93, 0.75, 0.53, 0.39, 0.31, 025, 0.20, 0.17, 0.13, 0.08, 0.00)
4 (1.07, 0.73, 052, 0.30, 0.21, 0.16, 0.13, 0.10, 0.09, 0.08, 0.06, 0.00)
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Figure 5: Plot showing how MHL, /r varies with r/n.
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Figure 6: Variation of MHL 4, )/ with r/n (data from Table 4 of the Supplementray Material) for a € {3,4,5}
(independent of n) where b = 2% — 1 and varying v = ¢ € {a, ..., {}.

The original NNL-SD scheme as well as the LSD scheme [HS02] require O(logn) computation time. The
goal of the LSD scheme was to modify the NNL-SD scheme so as to reduce the storage requirement at the
cost of increasing the header size. This trade-off is in the opposite direction to the trade-off considered in this
paper which reduces the header size of the NNL-SD scheme at the cost of increasing the user storage. So, the
applicability scenarios of the LSD scheme and the current schemes are different.

The modifications of the NNL-SD scheme provided in [WYL14, WYT13] also requires O(logn) decryption
time. In these works, a scheme called BDSD) was introduced where in addition to the NNL-SD subsets, keys
were assigned to subsets S; (;, j,) where j1 and ja are two descendants of ¢ on the two child subtrees of ¢ and at
the same distance A + 1 from ¢. The parameter \ varied between 1 and logn. As the value of A is increased,
the number of additional subsets increases. This results in (expected) header lengths which are smaller than the
NNL-SD scheme.

The (a, b, c)-ABTSD scheme with b = 2 and a = ¢ = A contains all subsets of the BDSD) scheme. Additionally,
the (A, 2,\)-ABTSD scheme also contains subsets S; r;, i,3 Where ji and j2 may belong to the same subtree of
i. The additional subsets with keys result in the (expected) header length of the (\,2,\)-ABTSD scheme to
be better than the BDSD) scheme. The variation of the expected header length in the (\,2,A)-ABTSD scheme
with the values of a = v = X is shown in Figure 9. The user storage for the BDSD, scheme is O(2*logn)
while that of the (A, 2, A)-ABTSD scheme is O(£y 2 logn), where in general ) » will be greater than 2*. So, the
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(A, 2, A\)-ABTSD scheme and the BDSD), scheme provide different trade-offs.

More generally, the (a, b, ¢)-ABTSD scheme provides a much larger variety of storage/header-length trade-off
points by appropriately varying the parameters a, b and c.

The interesting SSD scheme [GST04] modifies the NNL-SD scheme to reduce the user storage to O(logn)
while ensuring that the header size remains the same as the NNL-SD scheme. The trade-off is that the decryption
time increases to O(n). The technique used in [GST04] is interesting and it may be possible to combine this
technique with the techniques in the current work. This may lead to schemes which have O(logn) user storage
but lower header sizes. Exploring this option is a possible future work.

The works [JHCT05, CJKY08] describe a scheme which shows several complicated trade-offs between the
three basic parameters of a BE scheme. It is difficult to make a direct comparison between this scheme and the
present one. Instead, we consider the trade-off given towards the end of Section V of [CJKYO08] for n = 10%:
the decryption time is about 100 evaluations of a PRG; the user storage is 7633 m-bit strings; and the header
size is given in several cases depending upon the value of r. For the 2-ABTSD scheme, the decryption time
is about 27 applications of a hash function (following Section 2.1.2, this is also about 27 applications of the
underlying PRG); user storage is 1080 m-bit strings; and the expected header size is comparable. Compared to
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the 3-ABTSD scheme, the decryption time remains same, the user storage goes up to 11428 but, the expected
header size comes down. The key issue is that the decryption time of the new schemes is lower and then there
is a wide range of trade-offs between the user storage and the header size.

In [HLLO5], a generic transformation for BE schemes was proposed to reduce the storage requirement at the
cost of increased header length. Two instantiations were described. The first scheme required O(logn) storage
and O(logn) decryption time, but, O(rlogn/(loglogn)) header size. Taking n = 10%, this shows the header size
to be about 5r which is more than that of the NNL-SD scheme. The second scheme achieves a different trade-off.
Again, taking n = 108, the decryption time is about 100 evaluations, the storage requirement is about a few
thousands m-bit strings and the header size is at most 10° + /2 which for small r is not good.

8 Conclusion

Broadcast encryption is applied in paid services like cable TV, online broadcasting services (audio, video, gam-
ing and document sharing), content protection in optical discs, etc. for implementing digital rights manage-
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ment [DRM]. Starting from the famous NNL-SD scheme [NNLO1], several schemes have been proposed in the
literature with varying trade-offs.

For many applications, the decryption time required by a user should be small as otherwise there will be a
noticeable lag in performance. The least known decryption time is O(log n) where n is the number of users. The
new schemes also achieve this decryption time. Restricted to schemes with O(logn) decryption time, the schemes
proposed in this work provide new trade-offs for reducing the average header size at the cost of increasing the
user storage. For many applications, reducing the communication overhead is significantly more important than
an increase in the user storage. Such applications will benefit from the trade-offs attainable by the new schemes
proposed in this work.
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Supplementary Material

Reducing User Storage

A user u is provided with the set I, as secret information. This set is the union of two disjoint sets L(Ll) and L(?)
where |L(Ll)| =1+4y(lp+1)/2 and |L(L2)| = (281 —2k+a+1)(ly —a+2)(lo —a+1)/2. So the user storage is
|| = 14+Lo(lo +1)/2+ (251 =2k +a+1)(lo — a+2)(lp — a+ 1)/2 where k = 2% (see (9)). For a given £y, the
quantity |IL(L1)\ =14 £4y(lp +1)/2 is fixed and does not change with the value of a. As the value of a increases,
the component ]I£2)| = (21 —2k+a+1)(lp —a+2)(lg — a +1)/2 increases. The main increase is due to the
exponential factor 251 which is actually doubly exponential in a. Here we describe a technique to somewhat
mitigate this increase. For small concrete values of a, the decrease in user storage is quite significant.

Recall that the information provided in L(f) is used by u to generate keys for the subsets in A-S,. For a
specified value of a, the new key generation method will provide a user u with a different set, to be denoted
Hf)(a), which will enable u to generate keys for the subsets in A-S,.

It is to be noted that the technique for decreasing user storage described in this section does not change the
definition of the collection S of subsets to which keys are assigned in the a-ABTSD scheme. Hence, the cover
generation algorithm remains the same. Only the method of assigning seeds to nodes and keys to SD subsets is
altered.

Suppose the number of users is n. Then as discussed earlier, the user storage is not the same for all users.
Denote by us,(n) the maximum user storage with n users, i.e., us,(n) = max, |I,|. For 2071 < n < 2%,
us,(n) = us,(2).

The Basic Idea

Consider a subset S; j for an allowed pair (¢, ). Let j be the a-pivot of J. Then J is a non-simple subset of
the set of leaf nodes of Af;, ie., J € Jns(Ag). The key Kj; ; is assigned to S; ; using the hash function H as
Kij= H[AJ)(J, L) where j is the a-pivot of J and L = Li; (5). Let u be a user and consider the set 112, The
key K; jis in L(E) if the following condition holds: the a-pivot j of J is an ancestor of u and the ancestor v of u
at level(J) is not in J.

Let 7 be a full binary tree of height a having k = 2% leaf nodes. Any subset J of the leaf nodes of T can
be encoded by a k-bit string str(J) where the +-th bit from the left of str(J) is 1 if and only if the i-th leaf node
of T is in J. By extension of this notation, str(J,s(7)) denotes the set of k-bit strings encoding the non-simple
subsets of T. Define

H : str(Jps(T)) x {0,1}™ — {0,1}™. (13)

For o € str(Jns(T)) and L € {0,1}™ define L, = H(o, L). If w is a leaf node of T, define keys[L, T](w) to be the
set of all L, such that the w-th bit of ¢ is 0.

Let i be an internal node of 70 and j be a node of 7. Let v be a leaf node of the a-tree AJ. The seed L;;is
the derived seed from L; which is assigned to the node j. Let w a leaf node of A%. The keys in keys[L; j, .Afz} (w)
are to be made available to users in 7%. This is captured by the following definition.

Using the definition of H in (13), the key K; ; for the subset S; s is defined to be

Ki,J = H(str(J),Ll-,j) (14)
where as before, j is the a-pivot of J. Suppose u is a user. Then the set L(?) is the following.

12 = [Jkeys[Lij, A (v) (15)

L
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where 7 is an ancestor of u; j is node on the path from u to ¢ and level(j) > a; v is the ancestor of u at level
level(j) — a. '

Our basic idea of reducing key storage is that instead of directly providing keys[L; ;, A%](v) we provide
sufficient information for the keys in this set to be computed. This is achieved by defining the function H in a
different manner. Note that the function H can itself be defined with respect to a full binary tree 7 of height a
and without reference to the tree 7°. Once H is defined, the definition of K; ; follows and the set keys[L; ;, A%](v)
is also obtained from the definition of keys[L, T](w).

In the rest of this section, we show how to define suitable H. In the next subsection, we describe this method
for the special case of a = 2 and in the subsequent subsection we consider the case of general a.

The Case a = 2

For a = 2, k = 2% = 4. For a = 2, the factor 2=! — 2k +a + 1 = 3 and so from (9) the maximum number of
seeds to be stored by a user is

14 lo(lo+1)/2 + 3oy — 1) /2. (16)

We show how to reduce the factor 3 to 2 by suitably defining the function H.
Let 7 be a full binary tree of height a. Then the simple subsets of 7 are encoded by the 6 strings
0001, 0010, 0100, 1000,0011, 1100 and the non-simple subsets of T are encoded by the 8 strings 0101,0110,0111, 1001, 101
So, given an m-bit string L and a string o encoding a non-simple subset of T, we have to define L, = H (o, L).
Let the leaf nodes of 7 from the left be 6y,...,03. Then

keys[L,T](60) = {Lo1o1, Loi10, Lo111};

[
keys[L, T1](01) = {L1ioo1, L1010, L1011 };
keys[L, T](02) = {Loiot1, L1oo1, L1101 };
keys[L, T1](03) = {Lo110, L1010, L1110}

Each of these sets contains 3 m-bit strings which gives the factor 3 in (16). Since L and 7 will be clear
from the context we will drop them from the notation. We show how to define H such that any of the sets
keys(6p), . .., keys(f3) can be obtained from 2 m-bit strings.

We define a new tree Ty. This tree has no relation to the tree 79. It is solely used to define the function
H. The tree T} is defined as follows. The root node has four children nodes numbered 0, 1,2, 3. The child node
numbered ¢ has two children numbered (7,0) and (¢, 1). The structure is shown in Figure 10.

Define, two hash functions F; : {0,1,2,3} x {0,1}" — {0,1}" and F» : {0,1} x {0,1}"* — {0,1}"™". These
hash functions are chosen by the broadcast center and made available to the users in the system.

Given an m-bit seed L, define

Li = F(,L) for i =0,1,2,3;
Lip, = Fy0b,L;)
= Py(b, F1(i,L)) fori=0,1,2,3
and b=0,1.
Define

Li110 = L1y, L1010 = L1,1, L1101 = Loy,
Lo1o1 = L2,1, L1011 = L3y, Lioo1 = L3,
Lo111 = L4y, Lot1o = La,1-

Then each of the sets keys(fp), ..., keys(f3) can be obtained from 2 m-bit seeds as indicated below.
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Figure 10: The structure of Ty for a = 2.

(6o) : Eg and ELIS
keys(61) : EQ and 2071;
( ) : El and Egyl;

) : EQ and E371.

It is easy to verify that the above information is sufficient to obtain any set keys(6;). For example, the users
under the node 45 + 3 in 7° will be able to get the seeds {Lo101, Lo110, Lo111}-

Fix a user v and an ancestor i of u at level £. For every node j which is an ancestor of u at levels between 2
and ¢, the set IL(LQ)(Q) contains two m-bit seeds. Since £ can vary from 2 to {y, we have

-1
P @) = 2x W’z) = lo(lo — 1). (18)
Based on this we obtain the following improvement to (16).
USQ(QEO) = 1+€0(€0+1)/2+€0(€0—1) (19)

General Case

The technique for a = 2 is somewhat specific since in this case the number of non-simple subsets of an a-tree
turns out to be 8 which is a power of 2. More generally, Lemma 1 shows that the number of non-simple subsets
of an a-tree is 2 — 2k where k = 2®. The expression 2¥ — 2k will not be a power of 2 for a > 2. For this case,
we directly use the technique from [BS15] which dealt with the same problem in a different context. We explain
this below.

The k-ary Tree Subset Difference Scheme

The underlying structure of the NNL-SD scheme is the binary tree 7°. The work [BS15] generalizes the idea
to work with k-ary trees for any k > 2. So, suppose that 7° is a k-ary tree. Then each internal node has k
children. Let i be an internal node of 79 and J be a non-empty subset of nodes having a common parent j. Let
S; s denote the leaf nodes of the graph formed by taking away from 7 the subtrees whose root nodes are in J.
The collection S for the k-ary tree scheme consists of all such subsets S; ;.

Key assignment in the k-ary tree scheme is done as follows. Each node is assigned a seed L; and a hash
function is iteratively used to define the seed L;; for any node j in the subtree rooted at i. Given L;; and the
subset J of children nodes of j, a key L; ; is defined. In [BS15] this is first defined directly and then later it is
shown how to define this in a different manner so that the user storage reduces.

Coming back to the a-ABTSD scheme, we note the similarity between the subsets and the key assignment
procedure of the two schemes. The relevant difference is that in the k-ary tree scheme the subset J is a non-empty
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Table 3: Effect of reduction of user storage. In the second row the entry for a = 2 is from (18) and the entries
for a = 3 and a = 4 are from (20).

storage a=2|a=3]|a=
2121 /(lbg —a+2)(lo—a+1) from (8) | 3 | 116 | 32741
211 (a)|/(lo — a +2)(fo — a + 1) 1 36 | 4116

subset of the children nodes of j, whereas in the a-ABTSD scheme, the subset J is a non-simple subset of the
leaf nodes of the a-tree rooted at j. For both cases, the key to S; ; is assigned from the seed L; ;. So, in both
cases the problem is given an m-bit seed L and the subset J, how to define the key based on L and J?

Using Cyclotomic Cosets to Reduce User Storage

A solution to this problem has been given in [BS15] which uses the notion of cyclotomic cosets. We do not
provide the solution here and instead refer the reader to [BS15] for details. Our main observation is that the
solution provided in [BS15] also works in the present case. The difference is that the method of [BS15] assigns
keys to all non-empty subsets of the children nodes of j, whereas in the present case, we only need to assign keys
to all non-simple subsets of the leaf nodes of the a-tree rooted at j. This difference, however, is not significant.
We simply ignore the keys that are assigned to the simple subsets.

On the other hand, it is also possible to actually modify the key assignment procedure in [BS15] so that keys
are only assigned to non-simple subsets. We have carried this out for a = 3 and k = 2% = 8. The work required
us to examine the 2¥ — 1 = 256 non-empty subsets and eliminate the keys assigned to 2k — 1 = 15 simple subsets.
These details are quite tedious and so we do not report them. Directly using the key assignment procedure
from [BS15] in the present context shows that IL(?)(a) for a user u consists of (xx —2)(lp —a+2)(lp —a+1)/2
m-bit keys where xj is the number of cyclotomic cosets of k-bit strings, i.e., for a > 2,

1) () — (x2e —2) X (b —2a +2)(l—a+1) (20)
So, for a > 2,
usa(2z°) = 1+ 60(602+ D)
(x2e =2) X (lo —a+2)(lop —a+1)
+ 2 .
(21)

For the case of a = 2 and k = 4, x4 = 6. Hence, from (21) usy(2%) would be 1 + £o(ly + 1)/2 + 20o(fy — 1).
Previously, however, we have seen that usy(2%) = 1+ £o(fp +1)/2 + £o(£o — 1). So, for the case of a = 2, directly
using the solution from [BS15] is sub-optimal. This is one of the reasons why we considered the case of a = 2 as
a special case.

For small value of a the reduction that is achieved is shown in Table 3. It is clear that the reduction achieved
is significant in practical terms.

Application to the (a,b)-aABTSD Scheme. We consider whether the user storage of the (a,b)-aABTSD

scheme can be further reduced using the cyclotomic coset idea. For a = 2, the parameter b can be either 2 or 3;
for b = 3, we obtain the 2-ABTSD scheme and this has already been discussed. There is a possibility that the
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(2,2)-ABTSD scheme may lead to user storage lower than that of the 2-aABTSD scheme. This, however, does
not turn out to be true and the user storage for the (2,2)-ABTSD scheme is the same as that of the 2-ABTSD
scheme. So, for a = 2, there is no motivation for considering the (2,2)-ABTSD scheme. On the other hand, for
a >3 and b < 2% — 1, it is possible to obtain schemes with reduced user storage using the cyclotomic coset idea.
Closed formulas for these cases are complicated to obtain and so we do not present them.

Correctness of the Cover Finding Algorithm

The cover generation algorithm outputs sets of the type Sjspnodes|j]- To show the correctness of the algorithm
we need to argue two things.

1. Each subset produced by Algorithm C is in S.
2. The subsets that are produced form a partition of the set of privileged users.
Lemma 3. If Algorithm C produces a subset S; j, then every element of J has been marked covered.

Proof. J is of the form SDnodes[j] for some node j. Further, all nodes in SDnodes|j] are marked covered. This
can be seen from the manner in which the SDnodes[j] is built up. Nodes enter SDnodes[j] either in Step 1 or in
Step 2(b)(i) and in both cases they are marked covered; the set SDnodes[j] grows in Step 2(b)(iii)(B) through the
union of two other sets of the same type and hence the property of having only covered nodes is preserved. [

Lemma 4. If a subset S; j is produced by Algorithm C, then J is a reduced set.

Proof. All nodes in J are marked covered. Let if possible j; and ja be siblings in J and i is their parent. Then
both j; and jo are marked covered. When the node i is considered in Step 2(b), then d is 2 and Step 2(b)(i)(B)
is executed which results in SDnodes|i] being set to {i} and ji, j2 do not enter any SDnode[i]. So, they cannot
be members of any J such that S; ; is produced by Algorithm C at a later point of time. O

Lemma 5. For any set SDnodes|j|, if i1,i2 € SDnodes|j], then level(i1) — level(iz2) < a. Further, all nodes of
SDnodes[j] belong to some a-tree.

Proof. Let J = SDnodes[j]. If J is a singleton set, then this is clearly true; if J contains more than one element,
then J must have been formed by the merger of two SDnodes set in Step 2(b)(iii)(B). Such merger can take place
only if the maximum of the differences in the levels of the nodes in the resulting set is less than a.

For the last statement, again it is easy to see this if J is a singleton set. On the other hand, if J has
been formed by merger (one or more times), then each such merger is a union of the SDnodes of two siblings.
Consequently, this corresponds to a moving-up operation within the same a-tree. O

Lemma 6. Any subset produced by Algorithm C is in the collection S.

Proof. Suppose S spnodes;] is produced. Then all the nodes in J = SDnodes[j] are in the subtree rooted at j.
By Lemma 5, the nodes in J are in some a-tree and by the previous statement, the root of this a-tree is also in
T7. So, Sj s isin S. O

Lemma 7. If u is a leaf node corresponding to a revoked user, then Algorithm C wvisits all ancestors of u.

Proof. Whenever a node i is processed by Algorithm C, its parent is added to £. Further, every node in L is
processed before the algorithm terminates. Since the initial list £ contains the node u, every ancestor of u is
processed by Algorithm C. O

Lemma 8. Any privileged (i.e., non-revoked) user is in one of the subsets produced by Algorithm C.

27



Proof. Let v be a privileged user. Since there is at least one revoked user, there is a minimal subtree 7 of 7
which contains both v and some revoked user u. Let j; and jo be the two children of ¢ and suppose v is a leaf
node of 772. By the minimality of 77, it follows that u is necessarily in 771 and further all leaf nodes of 772 are
privileged.

Since ¢ is an ancestor of the revoked node u, by the previous lemma, Algorithm C will process both nodes
i1 and i. The node i is added to £ when node 41 is processed. Since all nodes in 7% are privileged, node i,
does not enter L. So, 7 has exactly one child in £ and either by Step 2(b)(i)(A) or by Step 2(b)(ii), ¢ is marked
intermediate and SDnodes|[i] is set to either {j1} or to SDnodes[ji]. In both cases, v is in S; spnodes|;]- From this
point onwards, Algorithm C ensures the following. If i’ is an ancestor of 7, then either the set Si SDnodesi’] 18
produced, or, Sy spnodes|i”] CONtains v. Since, the second case cannot continue indefinitely, at some point of time,
Algorithm C will produce a set Sjr spnodes[i] for some ancestor i’ of i and so v will be in this subset. O

From Lemmas 7 and 8, we get the following result on the correctness of Algorithm C.

Theorem 9. Algorithm C produces a sub-collection of subsets of S which form a partition of the set of privileged
users.

The complexity of Algorithm C is given by the following theorem.
Theorem 10. Algorithm C requires O(rlogn) time where r is the number of revoked nodes.

Proof. As proved in Lemma 7, the algorithm processes every ancestor of any revoked node. There are O(logn)
such ancestors and so the total time taken by the algorithm is proportional to rlogn. O

It has already been remarked that for a = 1, the a-ABTSD scheme collapses to the NNL-SD scheme.
Theorem 11 shows that for @ > 1 and any revocation pattern, the header length of the a-ABTSD scheme is never
more than that of the NNL-SD scheme. The proof has been provided in the supplementary material.

Theorem 11. For a given R (revocation pattern) the header length due to the NNL-SD scheme is at least as
large as that of the a-ABTSD scheme.

Proof. For a given value of a, let J, be the collection of all nodes j in 7° such that S SDnodes|j] € Sec- Let us
consider a node i in 7° that have both children {ji,j2} in £ and at least one of them is marked as intermediate.
When a = 1, for every intermediate child j of i, there is a j' € SDnodes[j] such that ¢; — ¢;; > 1. Hence,
S sDnodes]j] € Se and hence j € Jy=1. For a > 1, if for some j € {j1,j2}, there is a j' € SDnodes|j] such that
¢; — €y > a, only then all intermediate children of ¢ generate SD subsets. Otherwise, 7 is marked as intermediate
and SDnodes|j] is included in SDnodes[i] and is carried upwards. Hence, Jo=1 C Jy>1. Thus, the header length
due to a revocation pattern for the a-ABTSD scheme will be at most that of the NNL-SD scheme. O

It follows from Theorem 11 above that the worst case header length for the a-ABTSD scheme will be less
than or equal to that of the NNL-SD scheme. From [NNLO1] we know that for a given r, the worst case header
length of the NNL-SD scheme is 2r — 1. Hence we get the following theorem.

Theorem 12. For a given r in the a-ABTSD scheme, the mazimum header length that can be achieved for any
n, is 2r — 1.

This upper bound is tight, as we discuss next. We consider the a-ABTSD scheme with a = 2 for n = 32 users
in Figure 11 where R = {31,39}. The subset cover for this revocation pattern is S. = {53 (31}, S {39}, S0,{1} }-
Hence, the header length is 2|R| — 1 = 3. A similar example can be constructed to show the tightness of this
upper bound for any general value of a with larger values of n. The subtrees rooted at nodes 3,4,5 and 6 in
Figure 11 where a = 2, are of height a + 1 = 3 each. For any general a, these subtrees should be full subtrees of
height @ + 1 each. It is to be noted that the tree 7V in such a case will be of height a + 3 and the total number

28



of users will be 2413, There will be two revoked users, one in each of the subtrees rooted at nodes 3 and 4. The
subset cover will have three subsets. Two of these subsets will be rooted at nodes 3 and 4. The third subset will
be Sy ¢34y = So,{1}- Hence, the upper bound given by Theorem 12 is tight for any a > 1.

0

© : 6
o 0 11 12 13 14
e e e e 2 2 2 2% 27 28 2 30
@ @ @ @ @ @ @ @ a7 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62

Figure 11: Example to show that the upper bound 2r — 1 of the header length in the a-ABTSD scheme with
a = 2 is tight. The subset cover for R = {31,39} in the binary tree 7° with n = 32 users contains the subsets

53,131} O4,{39} and Sp (13-

N
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Other Issues

In this section, we comment on three issues. The issues are important and the reason for discussing them in the
supplementary material is that previously known techniques apply in a straightforward manner to the present
construction.

Accommodating Arbitrary Number Of Users

The NNL-SD [NNLO1] scheme assumes the number of users n to be a power of two. The a-ABTSD scheme
retains this assumption and hence assumes an underlying full binary tree. In practice this may be restrictive.
We extend the a-ABTSD scheme for arbitrary number of users by assuming a complete binary tree instead of
full. A complete binary tree with 200~ < n < 2 leaves is formed by adding child nodes to the leaf nodes of a
full tree with 2f0~1 leaf nodes, starting from the left. These newly added leaves are said to be at level 0. The old
leaves are at level 1. The newly constructed complete tree has n leaves, some of which are filled from the left of
level 0 and the others (if 2071 < n < 2%) are on the right at level 1.

Since the underlying tree 79 is a complete tree (that may not be full) and hence an a-tree may also be a
non-full complete binary tree. Thus, an a-tree A’ is a complete tree rooted at node i in 7° and is of height a.
Let us call the path joining the root node and the right-most internal node at level 1 to be the dividing path. Any
subtree of 70 rooted at a node other than the dividing path, is full. Hence, only the a-tree rooted at the node
on the dividing path at level @ may be non-full. The subsets that are included in the collection S are formed as
before. A subset S; ; € S is such that all nodes in J are within a single (possibly non-full but complete) a-tree.

The user storage requirement of the a-ABTSD scheme assuming n = 2% is given by (9) where /g is the height
of the underlying tree. Let us denote this storage requirement as us,(2%). Then the user storage of the scheme
assuming the complete tree structure will be at least us,(2~1) and at most us,(2?), depending on where a user
is placed in the tree with respect to the dividing path. All users are attached to some node on the dividing path.
Users that are to the left (respectively right) of the dividing path and are attached to it at nodes on or above
level a, receive us,(20) seeds (respectively us,(2/071) seeds). For the users that are attached to the dividing path
at a level less than a, the number of seeds can be easily calculated from the number of users attached to the
dividing path at those levels.
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The cover generation algorithm for the complete tree version of the scheme would have an additional pre-
processing step for the leaf nodes at level 0. First, all the revoked leaf nodes at level 0 are inserted into the list
L in left-to-right order. These nodes are processed one after another as in the cover generation algorithm. The
parent of each leaf in £ gets appended to it and their respective data structures are appropriately updated. Once
all revoked leaves at level 0 have been processed, all their parents at level 1 are in the list. The remaining revoked
leaf nodes that are at level 1 in 7P, are then appended to £. Then onwards, the cover generation algorithm
proceeds exactly as it did for full trees. The worst-case header length remains 2r — 1 for the complete tree version
of the scheme. We have implemented this algorithm and results are reported later.

Full Resilience

A user obtains secret information I, which allows it to obtain a set of keys. Let us denote this set as IC,. It
is to be noted that under certain reasonable cryptographic assumptions on the hash functions G, F} and Fy,
user u does not obtain any information about keys that are not in K. Further, if K is a set of keys and U
is the set of all users such that £ N K, = 0, then U,eK, does not provide any information about K (again
under reasonable cryptographic assumptions on G, F; and Fy). This can be argued formally along the lines of
the argument provided in [NNLO1]. We skip the details and only remark that this can be intuitively seen by
considering the hash functions to be one-way and the outputs of the hash functions to be independent.

Traitor Tracing

Traitor tracing is an important feature of BE schemes. It is the mechanism to identify leaked user keys from a
pirate decoder by treating it as a “black-box”. Traitor tracing for the NNL-SD scheme was discussed in details
in [NNLO1]. They showed that traitor tracing can be done on any scheme that assigns keys to subsets which
satisfy the bifurcation property. The bifurcation property states that given any subset that is in the collection S
and hence has been assigned a key, it is possible to partition the set into two (or a constant number of ) almost
equal subsets from S. The bifurcation value is defined to be the ratio of the size of the largest subset to that
of the set itself. For the BE schemes of [HS02, BS13, BS14], the subsets used in these schemes all belong to
the collection S for the NNL-SD scheme with the same number of users. Hence, their respective traitor tracing
mechanisms are almost the same as the NNL-SD scheme.

For the a-ABTSD scheme that we have proposed in this work, keys are assigned to subsets that are in
general different from those in the NNL-SD scheme. Hence, the traitor tracing for these schemes do not directly
follow from the NNL-SD traitor tracing algorithm. However, the subsets of this scheme do follow the bifurcation
property. Here we state very briefly how these subsets can be split into roughly equal sized subsets from their
respective collection S.

In the a-ABTSD scheme, the subsets in the collection S are of the forms S; j or S; ;. Any subset of the form
S;; can also be written as S; ; where J is a simple subset of Ag. Assume that all subsets in S are of the form
S;,; where J is a non-empty subset of the leaf nodes of AJ for some j in the subtree rooted at i. Subsets where
J = {j} is a singleton set are split into two as was done in [NNLO1]. The node j will be in either of the two
subtrees rooted at 2i + 1 or 2i + 2. If j is in 721!, the subsets after split will be S2i41,j and Sj2i41. If j is in
T2%2 the subsets after split will be S2i+2,; and S; 2;42. Hence, the maximum bifurcation value in this case is
2/3.

For the subsets S; ; where |.J| > 1, let us consider the a-tree A, rooted at node i. The a-tree Al containing
the nodes in J is either this same a-tree (when ¢ = j) or it is rooted at a descendant j of i. In any case, the
subsets formed by the split are as follows. The subtrees rooted at leaves of A% form a subset each in the split.
From each of these 2% subtrees, all users under nodes in J are excluded. As a result, some of these 2 subtrees
may be completely excluded. When ¢ = j, the maximum bifurcation value is 1/(2% — |.J|) which in the worst case
would be 1/2. In case j is in the subtree of ¢, the nodes in J will be contained in at least one (but not all) of the
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Table 4: For a € {3,4,5}, b=2% -1,y € {a,...,lo}, the values of the ratio MHL 4 /7 varying with the ratio
r/n. These values are same for all values of ¢y > 20. The user storages are reported for ¢y = 20.

’ v r/n usq (1) H (0.01, 0.05, 0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70,  0.80,  0.90,  1.00) H
3;3 498 (1.o1, 1.15, 0.87, 0.57, 0.41, 0.31, 0.25, 0.21, 0.17, 0.13, 0.08, 0.00)
3,4 786 (155, 1.00, 0.77, 0.53, 0.39, 031, 025, _ 02I, 017, 0.13, _0.08, _ 0.00)
35 1074 (135, 095, _ 0.75, 053, 039, 031, 025 _ 02I, 017, 0.13, _ 008, __ 0.00)
3,6 1362 (1.i8, 0.94, 0.75, 0.3, 039, 031, 025 _ 02i, 0.17, 0.3, _0.06, 0.00)
3,7, ..., 00 > 1650 (1.15, 0.93, 0.75, 053, 039, 031, 025 _ 021, 0.17, 0.13, 0.08, 0.00)
1,4 35136 (0.00, 0.00, 0.55, 0.31, 0.21, 0.16, 0.13, 0.10, 0.09, 0.08, 0.06, 0.00)
1,5 70063 (0.00, 0.00, 0.52, 0.30, 021, 016, 013, 010, 009, 008, _ 006, _ 0.00)
1,6 104989 (0.00, 0.00, 0.52, 0.30, 021, 016, 013, 0.0, 009, 008, _ 0.06, _ 0.00)
47,..., 0 > 139916 || (0.00, 0.00, 0.52, 0.30, 0.21, 0.16, 0.13,  0.10,  0.09, 0.08,  0.06, _ 0.00)

Table 5: For a =3, b € {2,...,7}, v = {o, the values of the ratio MHL 4 )/ varying with the ratio r/n. These
values are independednt of n.

’N usq (1) H (0.01, 0.05, 0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70,  0.80,  0.90,  1.00) H

2 2154 (1.i7, 097, 0.82, 0.66, 0.7, 050, 043, 035, 027, 0.18, _ 0.10, 0.00)
3 3288 (1.i6, 095, 0.77, 057, 047, 042, 038, 033, 026, 0.18, _ 0.10, 0.00)
1 1422 (1.16, 0.94, 0.75, 0.53, 041, 035, 031, 028, 024, 018, 0.0, 0.00)
5 5070 (1.i5, 0.94, 0.75, 0.53, 0.40, 0.31, 026, 023, 020, 0.16, 009, 0.00)

6,7 5394 (1.15, 0094, 075, 053, 040, 031, 0.25_ _ 0.20, 0.17, 0.13, 0.08, 0.00)

2% subtrees under the a-tree AY. The users in the subtrees of J are excluded from the respective subtrees at the
leaves of A%. Since j is in the subtree of i, one of the child subtrees of i would not have any node in J. There
will be at least 22! subtrees at the leaves of A%, that will not have any node in J. As a result, the bifurcation
value in this case will be between 1/29~! and 1/2%. This goes to show that the bifurcation property also holds for
subsets in the a-ABTSD scheme. Hence, traitor tracing mechanisms can be devised for the scheme introduced
in this work in a manner similar to the one described in [NNLO1].

The number of queries required by the traitor tracing algorithm depends on the bifurcation value. At every
step of the traitor tracing algorithm, a subset S of users that contains a traitor is divided into subsets S1,...,5;
using the bifurcation property as mentioned above. Each subset S; is tested for containment of a traitor. The
ratio |St|/|S| is at most the bifurcation value. Lesser the bifurcation value, lesser is the size of the remaining
subset from which the traitors have to be traced. The bifurcation value of the NNL-SD scheme is 2/3. The
bifurcation value of the a-ABTSD scheme is at most 2/3 for a > 2. Hence, traitor tracing in the a-ABTSD
scheme will be at least as efficient as the NNL-SD scheme, if not better on an average.

Experimental Data
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Table 6: For a =4, b € {2,...,15}, v = £y, the values of the ratio MHL , 4 )/ varying with the ratio r/n. These
values are independent of n.

’ b usq (n) H (0.01, 0.05, 0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 0.90, 1.00) H

2 6279 (1.1, 0.83, 0.70, 0.62, 0.56, 0.50, 042, 035, 027, 0.18, 0.10, 0.00)
3 19139 (1.10, 0.76, 0.57, 0.47, 0.44, 0.41, 038, 033, 026, 0.18, 0.10, 0.00)
1 52519 (1.10, 0.75, 0.53, 0.37, 0.34, 033, 03I, 028, _ 024, 0.18, 0.10, 0.00)
5 116243 || (1.10, 0.75, 052, 033, 028, 027, 025 _ 0.23, 0.20, 0.16, 0.09, 0.00)
6
7
3

212191 (1.10, _0.75, 0.52, 0.3, 0.24, 0.23, 0.22, 020, 0.17, 0.13, 0.08, 0.00)
324757 || (1.09, 0.75, 0.52, 0.31, 0.22, 0.20, 0.20, 0.19, 0.17, 0.13, 0.08, _0.00)
429953 || (1.08, 0.74, 0.52, 0.30, 0.21, 0.18, 0.17, 0.18, 0.16, 0.13, 0.08, 0.00)

9 511162 || (1.08, 0.74, 0.52, 0.30, 0.21, 0.17, 0.15, 0.16, 0.15, 0.13, 0.08, 0.00)
10 560581 (1.08, 0.74, 0.52, 0.30, 0.21, 0.6, 0.4, 0.14, 0.15, 0.12, 0.08, 0.00)
11 583412 || (1.07, 0.74, 0.52, 0.30, 0.21, 0.16, 0.13, 0.12, 0.12, 0.11, 0.08, 0.00)
12 591359 || (1.07, 0.74, 0.52, 0.30, 0.21, 0.16, 0.13, 0.11, 0.09, 0.08, 0.07, 0.00)
13 593671 (1.07, 0.74, 0.52, 0.30, 021, 0.16, 0.13, 0.11, 0.09, 0.08, 0.07, 0.00)
14 593960 || (1.07, 0.73, 0.52, 0.30, 0.21, 0.16, 0.13, 0.10, 0.09, 0.08, 0.06, 0.00)
5 593960 || (1.07, 0.73, 0.52, 0.30, 0.21, 0.16, 0.13, 0.10, 0.09, 0.08, 0.06, 0.00)

Table 7: For a =5, b € {2,...,15}, v = {o, the values of the ratio MHL , 4 )/ varying with the ratio r/n. These
values are independent of n.

’M‘ (0.01, 0.05, 0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 0.90, 1.00) H

(1.01, 0.72, 067, 062, 056, 050, 042, 035, 027, 0.18, 0.10, 0.00)
(0.99, 0.58, 0.48, 0.46, 0.44, 0.41, 0.38, 0.33, 0.26, 0.18, 0.10, 0.00)

9 (0.99, 0.1, 030, 0.17, 0.16, 016, 0.5, 0.16, 0.15, 0.13, 0.08, 0.00)
10 (0.99, 0.51, 0.30, 0.16, 0.14, 0.14, 0.14, 0.14, 0.14, 0.12, 0.08, 0.00)
11 (0.99, 0.51, 0.30, 0.16, 0.13, 0.13, 0.13, 0.12, 0.12, 012, 008, 0.00)
12 (0.98, 0.1, 030, 0.16, 012, 012, 013, 0.11, 0.10, 0.10, 0.08, 0.00)
13 (0.98, 0.51, 0.0, 0.6, 0.1, 0.11, 0.11, 0.10, 0.09, 0.08, 0.07, 0.00)
14 (0.98, 0.51, 0.30, 0.16, 0.11, 0.10, 0.11, 0.10, 0.09, 008, 0.07, 0.00)
15 (0.97, 0.51, 0.30, 0.16, 0.11, 0.09, 0.10, 0.10, 0.09, 0.8, 0.06, 0.00)
16 (0.97, 0.1, 030, 0.6, 0.11, 009, 009, 0.10, 0.09, 0.08, 0.06, 0.00)
17 (0.97, 0.51, 0.30, 0.16, 0.10, 008, 008, 0.09, 0.09, 0.08, 0.06, 0.00)
18 (0.97, 0.51, 0.30, 0.16, 0.10, 0.08, 0.07, 008, 009, 008, 006, 0.00)
19 (0.97, 0.51, 0.30, 0.16, 0.10, 0.08, 0.07, 0.08, 008, 008, 006, 0.00)
20 (0.97, 0.1, 030, 0.6, 0.0, 008, 007, 007, 0.8, _ 0.08, 0.06, 0.00)
21 (0.97, 0.51, 0.30, 0.16, 0.10, 0.08, 0.06, 0.6, 007, 007, 006, 0.00)
22 (0.96, 0.51, 0.30, 0.16, 0.10, 0.08, 0.06, 0.06, 007, 007, 006, 0.00)
23 (0.96, 0.51, 0.0, 0.6, 0.10, 008, 006, 0.06, 0.06, 0.07, 0.06, 0.00)
24 (0.96, 0.51, 0.30, 0.16, 0.10, 008, 0.06, 0.05, 0.05, 0.06, 0.06, 0.00)
25 (0.96, 0.51, 0.30, 0.16, 0.10, 0.08, 0.06, 0.05, 005, 006, 006, 0.00)
26 (0.95, 0.51, 0.30, 0.16, 0.10, 0.08, 0.06, 0.05, 005, 005, 005, _ 0.00)
27 (0.95, 0.51, 0.0, 0.6, 0.0, 008, 006, 0.05 _ 0.05, _0.05, 0.05, 0.00)
28 (0.95, 0.51, 0.30, 0.16, 0.10, 0.08, 0.06, 0.5, 005, 004, 004, 0.00)
29 (0.95, 0.51, 0.30, 0.16, 0.10, 0.08, 0.06, 0.05, 005, 004, 004, 0.00)
30 (0.95, 0.51, 0.30, 0.6, 0.0, 008, 006, 0.05 _ 0.05, 0.04, 0.03, 0.00)
0 0

Table 8: For a € {1,...,6}, b =2 for a > 1, 7 = £y, the values of the ratio I\/IHL(a,bﬁ)/r varying with r/n. These
values are independent of n.

r/n

use(n) | (0.01, 0.05, 0.10, 0.20, 0.30, 0.40, 0.0, 0.60, 0.70, 0.80, 0.90, 1.00

( )
210 (1.23, 1.18, 1.11, 0.97, 0.84, 0.71, 0.58, 0.46, 0.33, 0.22, 0.11, 0.00)
571 (1.20, 1.08, 0.96, 0.78, 0.64, 0.53, 0.44, 0.35, 0.27, 0.18, 0.10, 0.00)
2154 (.17, 0.97, 0.82, 0.66, 0.57, 0.50, 0.43, 0.35, 0.27, 0.18, 0.10, 0.00)
( )
( )
( )

6279 || (1.11, 0.83, 0.70, 0.62, 0.56, 0.50, 0.42, 0.35, 0.27, 0.18, 0.10, 0.00
19410 || (1.01, 0.72, 0.67, 0.62, 0.56, 0.50, 0.42, 0.35, 0.27, 0.18, 0.10, 0.00
147997 | (0.8%, 0.69, 0.66, 0.62, 0.56, 0.50, 0.42, 0.35, 0.27, 0.18, 0.10, 0.00

O U | W N~
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Table 9: For a € {1,...,6}, b= 3 for a > 1, v = £y, the values of the ratio MHL,
values are independent of n.

ap)/T varying with r/n. These

r/n

usq(n) 0.01, 0.05, o0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 0.90, 1.00

( )
210 || (1.23, 1.18, L.11, 097, 0.84, 0.71, 0.8, 0.46, 0.33, 0.22, 0.11, 0.00)
751 (1.20, 1.08, 0.96, 0.78, 0.64, 0.53, 0.4, 0.35, 0.27, 0.18, 0.10, 0.00)
3288 || (1.16, 0.95, 0.77, 0.57, 0.47, 0.42, 0.38, 0.33, 0.26, 0.18, 0.10, 0.00)
( )
( )
( )

19139 1.10, 0.76, 0.57, 047, 0.44, 0.41, 038, 0.33, 0.26, 0.18, 0.10, 0.00
132690 0.99, 0.58, 0.48, 0.46, 044, 041, 0.38, 0.33, 0.26, 0.18, 0.10, 0.00
2201839 || (0.82, 0.48, 047, 0.46, 0.44, 041, 0.38, 0.33, 0.26, 0.18, 0.10, 0.00

| O | W N =

Table 10: For a =y € {3,...,8} and b = 2, the values of the ratio MHL 44,)/7 varying with r/n. These values
are independent of n.

. r/n usq(n) || (0.01, 0.05, 0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 0.90, 1.00)
3 318 || (2.25, 1.46, 1.09, 0.72, 0.8, 0.50, 0.43, 0.35, 027, 0.18, 0.10, 0.00)
4 567 || (1.83, 1.11, 0.78, 0.62, 0.56, 0.50, 0.42, 0.35, 0.27, 0.18, 0.10, 0.00)
5 1410 || (1.60, 0.80, 0.67, 0.62, 056, 0.50, 0.42, 0.35, 0.27, 0.18, 0.10, 0.00)
6 4395 || (1.24, 069, 0.66, 062, 0.56, 050, 0.42, 0.35, 0.27, 0.18, 0.10, 0.00)
7 15204 || (0.89, 0.68, 0.66, 0.62, 056, 050, 042, 035 027, 0.18, 0.10, 0.00)
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