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Abstract. Birds embody particular phonic and visual traits that dis-
tinguish them from 10,000 distinct bird species worldwide. Birds are
also perceived to be indicators of biodiversity due to their propensity
for responding to changes in their environment. An effective, automatic
wildlife monitoring system based on bird bioacoustics, which can support
manual classification, can be pivotal for the protection of the environ-
ment and endangered species. In modern machine learning, real-life bird
audio classification is still considered as an esoteric challenge owing to
the convoluted patterns present in bird song, and the complications that
arise when numerous bird species are present in a common setting. Ex-
isting avian bioacoustic monitoring systems struggle when multiple bird
species are present in an audio segment. To overcome these challenges,
we propose a novel Faster Region-Based Convolutional Neural Network
bird audio diarization system that incorporates object detection in the
spectral domain and performs diarization of 50 bird species to effectively
tackle the ‘which bird spoke when?’ problem. Benchmark results are pre-
sented using the Bird Songs from Europe dataset achieving a Diarization
Error Rate of 21.81, Jaccard Error Rate of 20.94 and F1, precision and
recall values of 0.85, 0.83 and 0.87 respectively.

Keywords: Deep Neural Networks · Audio Classification · Diarization
· Automatic Wildlife Monitoring.

1 Introduction

Bioacoustics, a blend of biology and acoustics, has facilitated several pioneering
biodiversity monitoring systems resulting in major advances towards the conser-
vation of species prone to extinction [1, 2]. Most of these systems are based on
monitoring avian phonetics since bird songs are acknowledged to be the most
prominent, reliable, and consistent indicators of biodiversity, capable of provid-
ing invaluable insights on the state of the ecology [2]. Unfortunately, tracking
birds manually can be an onerous task [3].

Recent advances in machine and deep learning have made possible the au-
tomation of biodiversity monitoring systems. However, the precision of these
systems has been severely undermined due to the presence of numerous bird
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species vocalising in an environment, which can also be further occluded by
other environmental sounds [4]. Consequently, this research aims to improve
upon traditional bird audio classification approaches by adopting an object de-
tection approach to bird audio diarization, in which objects are in the form of
bird audio vocalisations in the spectral domain. This will group an input audio
stream into homogeneous segments based on a bird species identity, hence re-
vealing ‘which bird sang when’ along with the number of distinct bird species
singing within a specified time-frame in an ecosystem [5].

This research uses the Bird Songs from Europe corpus, a subset of the Xeno-
canto database containing intrinsic audio recordings of the 50 most common
bird species in Europe [6]. A Faster Region-Based Convolutional Neural Net-
work (R-CNN) model with a pre-trained ResNet50 Feature Pyramid Network
(FPN) backbone was trained with spectrograms and their corresponding anno-
tations obtained from pre-processed bird audio segments. The Faster R-CNN
classifier [7] performs object detection based on features extracted to locate bird
specific spectral patterns for effective bird species recognition. The rest of this
paper is structured into four sections. Section 2 examines the background of this
research and details existing approaches in bird audio-based wildlife monitoring,
followed by the methodology, experiments and results in Section 3. Discussions
are provided in Section 4 and Section 5 provides conclusions and future work.

2 Literature Review

Global concern of ecological deterioration has led to much research on automated
bioacoustics monitoring. Accordingly, several annual challenges, such as Confer-
ence and Labs of the Evaluation Forum (CLEF), Detection and Classification
of Acoustic Scenes and Events (DCASE), Neural Information Processing Scaled
for Bioacoustics (NIPS4B), and Machine Learning for Signal Processing (MLSP)
have led to the development of some ground-breaking architectures for acoustic
wildlife monitoring [1, 3]. Even though, modern systems can identify the major-
ity of the species present in a natural setting, a highly accurate automatic bird
audio-based wildlife monitoring system capable of identifying all the vocalising
species is still missing [3].

The majority of approaches, which contemplate passive wildlife monitoring
centred on avian phonetics, share three identical pre-processing measures: a)
Noise Filtering, b) Bird audio detection, and c) Feature extraction. Initially, the
audio segments are filtered from environmental noise followed by bird audio de-
tection on the filtered chunks that enables the system to identify segments with
bird audio, which leads to the extraction of the features relevant for bird species
recognition [1]. Early systems of passive bioacoustic monitoring used traditional
speech recognition-based techniques, such as template-matching (Dynamic Time
Warping) and Hidden Markov Models (HMMs), as they were the most effective
audio processing systems of the time [8]. Algorithms that demonstrated success
with speech recognition struggled when it came to bird species recognition, as
avian phonetics are composed of complex patterns unlike those found in the
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human voice [8]. Substantial approaches have been developed since this early
work, among these systems employing Support Vector Machines (SVMs), Ma-
chine Learning and CNN based approaches, have demonstrated gradual progress
comparatively [1, 2].

Initially, SVMs were not able to achieve much success with bird audio clas-
sification, while classifiers utilising decision trees as a base demonstrated better
results [9]. Later, it was discovered that SVMs based on syllable segmentation
algorithms outperformed the avian phonetics classification models of that time
when feature selection computed from combined Mel Frequency Cepstral Coeffi-
cients (MFCCs) [10]. The segmentation algorithm was successfully able to filter
environmental noise and extract bird audio syllables through the application of
a pre-emphasis filter, which focused on high frequencies that were most likely to
represent avian phonetics [11]. SVMs also achieved success with multi-class bird
audio classification, demonstrating an average accuracy of 98.7% while catego-
rizing 7 distinct bird species from the Xeno-canto database [12] using a Gaussian
radial basis function kernel [10].

Further work described how the traditional SVM model was extended to
classify 11 species extracted from the Xeno-canto database [12] with 92.8% accu-
racy [13]. The approach was centred on MFCC-based feature extraction from an
acoustic event-based-sifting approach combined with a Gaussian Mixture Model
(GMM)-based frame selection for distinguishing specific spectral patterns from
the songs of the 11 bird species [13]. In 2018 [14], a two-windows method was
adapted to minimise processing time by 24% and node-level space requirements
by 43% as a speed boost for the SVM classifier. This approach was evaluated
on 214 wildlife recordings from the Xeno-canto database[12], based on 5 species,
and achieved a maximum accuracy of 93.85% [14]. Despite this strong perfor-
mance of the SVM with fewer bird species, the accuracy of the system decreased
rapidly as more bird species were included in the classification [14].

In recent years, machine learning-based classifiers have exhibited major im-
provements for recognising bird species from audio recordings and dominated
the leader boards in major competitions [2]. It was found that machine learning
classifiers worked relatively well with spectrograms for bioacoustic monitoring.
The second-place team for MLSP 2013 employed Extremely Randomized Trees
and obtained an area under the curve (AUC) score of 95.05% while categoriz-
ing 19 bird species[11]. This work, updated with randomized decision trees [15],
proved to be the winning system for the NIPS4B 2013 competition with an AUC
score of 91.7% while classifying 87 bird species [15].

Artificial Neural Network-based approaches to bird audio classification be-
gan in 1997 when a neural network trained with back propagation on manually
collected open source wildlife recordings was evaluated against 6 audio clips cor-
responding to 1 recording per species and demonstrated 82% accuracy for the
task [16]. Deep Neural Networks (DNN), Recurrent Neural Networks (RNN) and
CNNs have shown improvements with their ability to extract features and clas-
sify images with higher accuracy [16]. Currently, CNNs are mostly preferred for
effective feature extraction for spectrogram-based approaches [17].
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In BirdCLEF 2016, the winning solution incorporated a simple CNN archi-
tecture with five convolutions and one dense layer for the classification of 999
bird species, achieving an official mean Average Precision (mAP) of 0.686 and
0.555 for the foreground species and foreground species mixed with background
species, respectively [18]. However, when this system was evaluated for a sound-
scape with arbitrary bird species singing in the background, it obtained a mAP
score of 0.078 [18].

In BirdCLEF 2019 [19, 20], the Inception v3 model provided better classifica-
tion results for biodiversity monitoring, possibly due to the increased number of
parameters, which allowed the model to represent the mappings more accurately
[19]. The classification mAP (cmAP) is the standard evaluation metric consid-
ered for this challenge [20]. The Inception v3 model winning submission [20]
was trained with sophisticated data augmentation techniques, such as filtering
audio chunks with random transfer functions and applying local time stretching
and pitch shifting in time domain identification, along with the use of validation
data for fine-tuning the pre-trained network [20]. This result surpassed state-
of-the-art model performances by 20%, achieving a cmAP score of 35.6% while
classifying 659 bird species from intrinsic recordings belonging to the BirdCLEF
2019 evaluation set[20].

The winning submission of BirdCLEF 2020 [21] achieved a cmAP score of
13.1% while classifying 960 species. Even though the system outperformed other
competing systems, most of the species that were present in the test recordings
could not be recognised [21]. In this approach, a 1D convolution/Gabor wavelet
transformation first layer accepts augmented spectrograms and the remaining
layers of the network were determined by performing a Neural Architecture
Search (NAS).

The CNN has also performed well with a simultaneous segmentation and
classification approach using a five-layer encoder-decoder model [4]. The encoder
layers in the network encode high-dimensional features from the spectrograms
and the decoder layers decode the encoded features and their location in the
spectrogram, allowing the network to execute segmentation and classification
simultaneously [4]. The network was able to predict the classes for 19 species
with a True Positive Rate (TPR) of 98% on the MLSP 2013 dataset.

Existing systems and architectures are still struggling to perform highly ac-
curate classification of bird species in the wild [21]. The concept of speaker
diarization could be applied to perform diarization on bird audio to identify the
birds present in an environment and recognise which bird sang when [22]. In the
only diarisation-based research on bird audio, an accuracy of 53% was achieved
while identifying 10 bird species from the H.J. Andrews Long-Term Experimental
Research Forest (HJA) dataset [22]. The performance of the model was satis-
factory compared to the standard deep learning-based bird audio classification
approaches [11, 15] undertaken at that time. Research involving a bird activ-
ity detector [22], which detected segments voiced by birds followed by a change
point detector, detected a change in speaker/bird turns through the application
of Bayesian Information Criterion (BIC) with Agglomerative Clustering.
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Our proposed Faster R-CNN model approaches bird audio diarization by per-
forming object detection in the spectral domain and shows significant refinement
to the diarization based bio-acoustic monitoring approach.

3 Methodology

3.1 Data Acquisition and Pre-Processing

The acquisition of real-life bird audio datasets with sufficient recordings per
bird species extracted from a naturally occurring habitat is challenging. Several
datasets such as BirdCLEF and RefSys have insufficient recording samples per
bird species [23]. Thus, the balanced, medium-sized subset Bird Songs from Eu-
rope, consisting of 50 discrete European bird species with 43 high-quality natural
recordings per species [6] was used in this work. Pre-processing of the raw input
audio consisted of downsampling, conversion to the wav file format, segmenta-
tion, overlapping, bird audio detection, merging of audio segments, generation
of spectrograms, accurate data annotation and data partitioning for training,
validation, and evaluation. Firstly, the 16 kHz audio was downsampled to 8 kHz
and converted from mp3 to wav. The wav files were then segmented into uni-
form 1-second chunks with 50% overlap as depicted in Fig. 1, which played a
significant role in increasing the volume of training data.

A Pydub-based [24] bird audio detector operates as the filtering layer that
processes the incoming audio stream and combines 1-second segments with bird
songs from a certain species with a random 1-second segment representing a
different bird species to simulate a complex natural audio recording with mul-
tiple bird species in an audio segment, see Fig. 2. Spectrograms facilitate the
visualisation of the magnitude of the raw frequencies and signals in an audio
chunk as a spectrum of sound over contrasting time-frames [17]. Subsequently, a
Short-time Fourier Transfer (STFT)-based spectrogram of size 256 × 256 pixels
was generated using Librosa [25].

Timings for the ground-truth labels were provided by the bird audio detection
algorithm, which calculates the bird audio start and end time parameters for
the corresponding chunks associated with the bird species. These parameters

Fig. 1. 50% overlap for each 1-second audio segment
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Fig. 2. New waveform (left) and spectrogram (right) generated after merging 1-second
audio segments from two random species

in turn specify the start and end coordinates of the bounding boxes along the
x-axis, which display 2 seconds of audio across a visual stretch of 256 × 256
pixels containing the bounding boxes, see Fig. 2. To represent a time frame of
2 seconds, 1 unit along the axis of the spectrogram should correspond to 0.128
ms as the ratio between 256 and 2,000 yields 1:0.128. Hence, the time frame
can be represented in pixels by multiplying the time with 0.128 i.e. bbox =
time(ms) × 0.128 where bbox represents the corresponding bounding box co-
ordinate for specific time represented as time(ms). However, the coordinates
along the y-axis for the bounding box remain as the default, i.e. the minimum
value is set to ‘0’ and the maximum value is set to ‘256’.

The final step in the pre-processing phase deals with accurate annotation in
the Pascal Visual Object Classes (VOC) format, which stores bounding box co-
ordinates along with essential information for object detection [7]. Fig. 2 depicts
a spectrogram sample and visualises the bounding box and labels based on the
Pascal VOC format. A total of 297,075 spectrograms were obtained from 91.71
hours of intrinsic audio recordings, out of which 247,479 (80%) of the data was
used for training, 24,798 (10%) for validation, and the evaluation (test) set was
comprised of the remaining 24,798 (10%) spectrogram images.

3.2 Model Training

A Faster R-CNN model with ResNet50 FPN backbone pre-trained on the COCO
dataset with a Region Proposal Generator was used to train the model. Fig. 3
shows the Faster R-CNN object detection model’s functionality pipeline. When a
spectrogram is inputted, the Region Proposal Network acts as a selective search
layer that generates anchor boxes for all the spectrogram regions. Based on fea-
ture maps generated by the ResNet50 architecture, the Region Proposal Layer
computes the Region of Interest (ROI) proposals for specific regions in the spec-
trogram and selects the anchor box and segments that correspond with the ex-
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Fig. 3. Faster R-CNN Object Detection Pipeline

tracted features [7]. An Intersection over Union (IoU) score between ‘0’ and ‘1’ is
used to compute the magnitude of intersection between the generated proposals
and the ground truth labels where an IoU score closer to ‘1’ represents a stronger
intersection with the ground truth boxes for the spectrograms. Hence, the pro-
posal regions would undergo a procedure known as Non-Maximal Suppression
(NMS) that suppresses all the proposals with an IoU score less than 0.3, such
that only boxes with a strong association with the ground truth would be used
for training. Spatial pooling is used to select only the most important features
from the feature map extracted by the FPN. Finally, bounding box co-ordinates
are made more precise by performing regression and the Faster R-CNN classi-
fier predicts the labels for the corresponding bounding boxes based on features
extracted from that specific region [7].

To ensure that the model is optimally trained, the Fastai library [26] has
been implemented utilising functionalities from the IceVision package [27]. To
ensure optimal model training, Smith [28] suggests performing a cycle with two
steps of equal length where the model is trained by cycling the learning rate
(LR) between the maximum LR and the minimum LR, computed as one-tenth
of the maximum LR. In the end, the LR can be reduced lower than the minimum
LR i.e. to one-hundredth of the minimum LR, which has been deemed crucial
for optimal model training [28].

For transfer learning, the latest version of Fastai makes use of several fit one
cycle iterations to fine-tune modules with pre-trained weights more efficiently.
Fine-tuning in Fastai allows the model to freeze the backbone by stopping gra-
dient calculations and train only the head accompanied by randomly initialized
parameters for the first few epochs [28]. Then, the model can be unfrozen and
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Fig. 4. Predictions generated for test set spectrogram simulating multiple bird species

trained with all the layers, allowing gradient calculations for the parameters to
be adjusted until the model is optimally trained. Weights & Biases (W&B) call-
backs were used for visualising and tracking the model training [29]. The weights
of the model instance exhibiting minimum validation loss were saved and used
for generating predictions on the unseen test set for inference. During inferenc-
ing, this trained Faster R-CNN classifier [7] was used to generate predictions
for the spectrograms from the unseen test set which also contained additional 5
spectrograms obtained after combining audio-segments from more than two bird
species to test if the system could cope with the presence of multiple birds in a
common setting as shown in Fig. 4.

Using an NVIDIA GeForce GTX 1080 Ti GPU, the total time to train the
model was 8 days and 12 hours, with an average training time of 3 hours and 13
minutes per epoch. The model was trained for a total of 60 epochs, during the
first 5 epochs the backbone was frozen and only the model head was trained.
This was followed by the remaining 55 epochs to train all the layers and adjust
the parameters accordingly. For the first 5 epochs, the minimum validation loss
achieved was 6.89 with a minimum training loss of 4.09. During the remaining
55 epochs, the validation loss of the model started gradually decreasing from
0.793 to 0.478 until the loss plateaued in the 52nd epoch. Hence, the parameters
of the model at the 52nd epoch were saved for inferencing.

3.3 Model Testing

The trained model was evaluated with the 24,798 test set spectrograms, Fig. 5
outlines the Faster R-CNN Inference Pipeline. This model generates predictions
on the test set, and a confidence score between ‘0’ and ‘1’ is provided for each
prediction where a detection threshold of 0.5 is defined such that predictions
with confidence score less than 0.5 are discarded. The predicted outputs were
compared with the ground truth reference labels and Diarization Error Rate
(DER), Jaccard Error Rate (JER), F1, recall and precision were calculated as
evaluation metrics. A sample of predictions for the evaluation set can be seen
in Fig. 6, which simulates vocalisation of multiple bird species in a single audio
segment obtained by merging the audio segments from random species. The
proposed Faster R-CNN model is able to perform bird audio diarization with
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Fig. 5. Faster R-CNN Inferencing Pipeline

minimal DER and JER of 21.81 and 20.94, respectively, even under the complex
circumstances simulated by combining multiple species in a single audio segment.
The model achieved an F1 score of 0.85, with 0.83 precision and 0.87 recall value.

4 Discussion

From the obtained evaluation metrics it is evident that bird audio diarization
implemented using the Faster R-CNN model and centered on object detection in
the spectral domain is an improvement over previous diarization approaches [22].
This approach has also been shown to cope with the separation of 50 bird species
from intrinsic audio recordings compared to the pioneering work with diarization
on the HJA dataset that considered only 10 classes. There has been numerous
research in the literature focused on bird audio classification, which have used
the Xeno-canto database or one of its subsets, such as BirdCLEF, NIPS4B and
DCASE. We have chosen three of these models, which have used a similar num-
ber of species, in order to compare and validate the performance of our model.
Silla Jr. and Kaestner [30] approached acoustic bird species classification with 48
classes extracted from a different subset of the Xeno-canto database, using the
Global Model Naive Bayes (GMNB) algorithm. This approach was able to yield
an F1 score of 0.50, which outperformed other heirarchial-based classification
approaches. Incze et al. [31] used a pre-trained MobileNet-based CNN architec-
ture to classify bird species from another subset of the Xeno-canto database [12].
This approach initially showed promising results for audio classification of two
bird species with an accuracy of over 80%, which reduced to below 40% when the
number of classes was increased to 10. Finally, the model demonstrated an ac-
curacy of 20% when trying to classify 50 bird species. The authors discussed the
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Fig. 6. Sample Prediction (Left), Blbird = Blackbird; Njar = NightJar; RoFch =
RoseFinch; GrFch = GreenFinch, Sample Prediction (Right), GrWb = Great Warbler;
Lowl = Little Owl; Bowl = Boreal Owl; Ckoo = Cuckoo

need for a deeper network being employed in future. It was observed that trans-
fer learning on the pre-trained VGG16 CNN architecture achieved a bird audio
classification accuracy of 73.5% on the evaluation set, on the same Bird Songs
From Europe dataset consisting of 50 classes [23]. This demonstrated an im-
proved accuracy on the existing systems for bird species classification, with this
number of classes. Table 1 outlines the performance of these three approaches
against the performance achieved in this work, based on an evaluation of bird
species obtained from the Xeno-canto database.

Table 1 clearly shows that our proposed Faster R-CNN model outperforms
standard classification approaches and has the potential to cope with the chal-
lenges associated with automated biodiversity monitoring. It was seen that seg-
mentation of bird audio with 50% overlap plays a vital role in increasing the
training data. Spectrograms generate distinct patterns based on the energies
possessed by avian vocalisation and these patterns differ for every bird species.
Functionalities from the Fastai library [26] support model training [28] to achieve
minimal validation loss. This work, in performing object detection in the spectral
domain for effective spectral pattern recognition could provide a breakthrough
for biodiversity monitoring systems through diarization.

Table 1. Model Performances

Model Number of species Metrics

GMNB [30] 48 0.50 (F1)
MobileNet [31] 50 20% (Accuracy)
VGG16 [23] 50 73.5% (Accuracy)
Faster R-CNN 50 0.85 (F1)
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5 Conclusions

A huge amount of research has been invested to build a fully functional auto-
mated non-invasive biodiversity monitoring system. However, this research area
has lacked an exploration of diarization-based techniques. In this research, we
approached bird audio diarization through a Faster R-CNN model, performing
object detection in the spectral domain. The results achieved with this novel
approach to this challenging problem show promise. It was observed that the
augmentation techniques used, such as segmentation with 50% overlap, was cru-
cial for improving the model performance by increasing the training data by 50%.
The functionalities adopted from the Fastai library [26] were also extremely use-
ful for ensuring optimal model training. The inferencing pipeline presented in
this approach can be used directly with the pre-trained model weights to gener-
ate predictions in a real life-scenario.

Bird audio diarization is able to separate intrinsic avian vocalisations into
separate homogeneous segments according to their species, and determine the
length of their songs alongside identifying the number of species vocalising in an
ecosystem [5]. We believe that this system and its spectral object detection ap-
proach can play an important role in the monitoring of population dynamics of
bird species within an ecosystem. Our research demonstrates promising results
for the diarization of 50 bird species from a subset of the Xeno-canto database.
In future work, we aim to tackle larger and more challenging bird audio classifi-
cation problems presented by challenges such as BirdCLEF, MLSP and DCASE,
which would enable us to test and enhance our system further in this domain.
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