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Abstract

Human identification at a distance (HID) faces challenges
due to the difficulty of acquiring traditional biometric modal-
ities like face and fingerprints. Gait recognition offers a
viable solution since it can be captured at a distance. To
advance the algorithm development and provide fair eval-
uations, the International Competition on Human Identifi-
cation at a Distance (HID) has been held annually since
2020, with HID 2024 marking the fifth edition. Despite
increased difficulty, participants demonstrated remarkable
capabilities, surpassing previous accuracy levels. This paper,
co-authored by competition organizers and top participants,
provides a comprehensive summary of HID 2024, including
an overview of the competition, and insights into the meth-
ods employed by the top teams. Specifically, inspired by the
achievements of the 5 competitions of HID, we also provide
the insights for the future directions on gait recognition.

1. Introduction
Human identification at a distance faces many chal-

lenges [11] because most traditional biometric modalities,
like faces, fingerprints, iris, are difficult to acquire. Gait
may be the only promising biometric modality [9, 2] for
this purpose because it can be collected even when faces are
obscured or too small to be detected.

In the past two decades, gait recognition has been im-
proved obviously particularly with deep learning. Some
typical algorithms, such as GaitSet [1], GaitGL [7] and Gait-
Base [4], have been developed, showing promising results.
Some recent methods like BigGait [15] employs large vision
models to improve gait recognition. However, the accuracy
of gait recognition can be influenced by various factors, and

different experimental settings can yield different outcomes.
Real-world applications of gait recognition often lead to a no-
ticeable decrease in accuracy, as highlighted in recent studies
[21, 19]. The studies in [4] show the gait recognition models
trained on some indoor datasets cannot achieve promising
results on in-the-wild datasets. These findings demonstrate
that gait recognition still has a long way to go before it can
achieve the desired accuracy and robustness in real-world
scenarios.

To improve gait recognition research and enable fair com-
parisons and evaluations in complex environments, the Inter-
national Competition on Human Identification at a Distance
has been organized since 2020. HID 2024 is the 5th edition
of the series. In the first 3 competitions, the dataset was
a subset of CASIA-E [13]. The accuracy on it reached to
95.9% in HID 2022, and was almost saturated. So a new
dataset, SUSTech-Competition, was introduced in HID 2023
for the first time. The full set of CASIA-E was made public
available after its introduction paper [13] was accepted by
IEEE TPAMI. Since HID 2023, there is no training data
provided by the competition organizers. Participants needs
to collect their own training data. This change can introduce
a cross-domain challenge. It makes the competition more
challenging compared to previous editions. Our aim is to
encourage the research community to develop gait recog-
nition methods for a wider range of applications. Despite
the increased difficulty, the participants in HID 2023 demon-
strated their exceptional capabilities and achieved promising
results. The participants in HID 2024 put the accuracy to a
higher level than the previous HID 2023 as show in Figure 1.

The paper has been composed by the competition orga-
nizers and the participants from the top teams. It summaries
the competition HID 2024. Specifically, in Section 2, an
overview of the competition is provided. It includes details
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Figure 1. The top results of HID 2024 and the previous 4 competitions. The dataset for HID 2020, 2021 and 2022 is CASIA-E, and it is
SUSTech-Competition for HID 2023 and 2024. The results of HID 2020 and HID 2021 have been calibrated according to the same standard
as HID 2022.

about the dataset, the evaluation metric, fair competition
organization, and some statistical information. Section 3
presents the results achieved by the top-performing teams,
along with descriptions of their methods. Some analyses are
given in Section 4. Finally, in Section 5, we conclude the
paper.

2. Dataset and Competition Details
2.1. Dataset

The dataset used in HID 2024 is the same as the one in
the previous competition and is SUSTech-Competition. How-
ever, the test set has been changed by randomly selecting
another set of samples. The dataset was collected during the
summer of 2022, with the approval of the Southern Univer-
sity of Science and Technology Institutional Review Board.
The full dataset comprises 859 subjects and encompasses
various variations, including clothing, carrying conditions,
and view angles, as shown in Figure 2. To alleviate the par-
ticipants’ data preprocessing burden, we provided human
body silhouettes in the competition. These silhouettes were
obtained from the original videos using a deep person de-
tector and a segmentation model provided by our sponsor,
Watrix Technology.

All silhouette images were resized to a fixed size of 128×
128, as illustrated in Figure 2. We intentionally did not
manually remove low-quality silhouettes, as the presence
of noise reflects real-world application scenarios and adds
to the challenge of the competition. This approach ensures
that the competition provides a realistic simulation of real
applications.

The same as HID 2023, we did not provide a spe-
cific training set to participants. Instead, participants can
use any dataset, such as CASIA-B [17], OUMVLP [14],

Figure 2. Some RGB images and their corresponding silhouettes
from the dataset SUSTech-Competition. Many variations are in-
cluded in the dataset.

CASIA-E [13], GREW [21], Gait3D [19], SUSTech-1K [12],
CCPG [6], CCGR [22], DroneGait [5] or their own datasets,
to train their models. Since the training set and the test set
would be from different datasets, the cross-domain challenge
will be introduced. Participants have to consider this aspect
for achieving good results. The gallery in the test set con-
sists of only one sequence per subject, with the labels of the
sequences provided to the participants. The probe contains
five randomly selected sequences per subject. The probe
samples may exhibit variations in view, clothing, carrying
conditions, and occlusions compared to the gallery samples.
These settings make the competition challenging and align it
closely with real applications.

Specifically, the test set in HID 2024 is different from
the one in HID 2023 even they are both from SUSTech-
Competition. They are all randomly selected subsets from
SUSTech-Competition. Besides, the samples from the test
probe set, including HID 2023 and all the test probe set
samples provided in HID 2024, have been strictly prohibited
from being used in any way during the training phase.



2.2. Performance metric

As the previous competitions of the series, the evaluation
metric is the rank-1 accuracy, which provides a straightfor-
ward and easily implemented metric. It can be calculated as
follows:

Accuracy =
TP

N
(1)

where TP represents the number of true positives, and N
corresponds to the total number of probe samples.

2.3. Competition policies

The evaluation process for HID 2024 was designed to
be user-friendly, convenient, and secure against hacking
attempts. The following rules were established to meet these
requirements:

1. The competition consists of two phases. The first phase
runs from March 11 to May 10, 2024, with only 10%
of the test samples. The second phase takes place from
May 11 to May 20, 2024, and includes the remaining
90% of the samples. The results obtained in the second
phase are considered final. The first phase is 2 months
long, while the second phase is significantly shorter,
with only 10 days. This design was implemented to
prevent sample label hacking.

2. To prevent the ID labels of the probe set from being
deduced through multiple submissions, each team is
limited to a maximum of 5 submissions per day during
the first phase and 2 submissions per day during the
second phase. Only one CodaLab ID is allowed per
team, and only registrations using institutional emails
(not public emails) are accepted.

3. The accuracy of the submissions is automatically eval-
uated on CodaLab, and the rankings are updated on
the scoreboard accordingly. This immediate feedback
ensures a user-friendly evaluation process.

4. The top teams on the final scoreboard are required to
submit their programs to the organizers. The submitted
programs are executed to reproduce their results, and
the reproduced results should align with those displayed
on the CodaLab scoreboard.

2.4. Competition statistics

A total of 90 registrations were received for HID 2024,
and registrations with public emails (e.g., Gmail) had been
rejected. Among the valid registrations, which amounted
to 23 teams submitted their results to CodaLab during the
second phase. The best scores and the numbers of submis-
sions of each day can be found in Figure 3. Most teams
actively participated the competition. The programs of the

top teams were carefully evaluated to verify the reproducibil-
ity of their results. After a thorough evaluation, the top 7
teams were selected based on their performance. The meth-
ods employed by these top teams will be introduced in the
following section.

3. Methods of the Top Teams
The competition organizers invited all top teams to sub-

mit their source code for review. Seven teams submitted
their course code, and passed the code review. The 7 teams
also provided their method descriptions. The subsequent
part of the section provides an in-depth exploration of the
methods employed by each team. The technologies utilized
by these teams, along with their corresponding results, are
summarized in Table 1.

3.1. Team: SCUT-BIPLAB

Members: Weiming Wu, and Kun Liu
South China University of Technology
{auauweimingwu, aulkun}@mail.scut.edu.cn
Method: The method utilized the OpenGait [4] framework
for model training, specifically using the DeepGaitV2 series,
which includes the P3D and 3D modules, both underpinned
by 22-layer ResNet architectures. The training regimen
incorporated the framework’s standard data augmentation
algorithms, employing a batch size of 16× 8 over 130,000
iterations. Hyperparameters are those predefined for the
DeepGaitV2 model in OpenGait. The experiment were on 2
pieces of RTX 3090 GPUs.

Dataset merging was crucial for model training, and can
involve multiple scenarios such as normal walking, car-
rying objects like umbrellas and backpacks, and different
clothes including pants and skirts. The merged dataset con-
sisted of silhouette sequences from several popular datasets,
Gait3D, CASIA-B, CCPG, and SUSTech1K. Some selected
sequences from CASIA-E, OUMVLP, and CCGR were also
included. In total there were 8,940 subjects across diverse
viewing angles in the training set. Each training sample was
resized to 64.

The test samples exhibited a range of challenges, includ-
ing low quality, noise and distortions. A random sampling
approach was employed to eliminate low-quality samples
and noise. Some rotations were also introduced to data aug-
mentation. These preprocessing steps were applied to both
the gallery and probe samples.

Post-training, the models, particularly the P3D and 3D
variants, were deployed to analyze the gallery and probe
test samples. Final model outputs were fused through an
ensemble approach leveraging multiple inference results.
This ensemble was executed by conducting dual inferences
per model: the first maintaining the original sequence order
of samples, and the second processing them in reverse. The
ultimate results submitted were derived by calculating the



Figure 3. The best scores and the numbers of submissions of each day during the competition.

Table 1. The technologies used by the top 7 teams and their accuracies in HID 2024.
Team rank 1 2 3 4 5 6 7

Team Name SCUT-BIPLAB jchu SJTU-ICL GRgroup BRAVO-FJ dashengge HUST-MCLAB
Data cleaning ✓ × × ✓ × × ×

Data alignment ✓ ✓ ✓ ✓ ✓ ✓ ✓
Data augmentation ✓ ✓ ✓ ✓ ✓ ✓ ✓

Re-ranking ✓ ✓ ✓ ✓ ✓ ✓ ✓
Ensemble ✓ ✓ ✓ × ✓ × ✓

Training data
Gait3D, CASIA-B, CCPG,
SUSTech-1K, CASIA-E,

OUMVLP, CCGR

Gait3D, CASIA-B,
CCPG, SUSTech-1K

CCPG, Gait3D, GREW,
CASIA-B, CASIA-E,

OUMVLP, SUSTech-1K
CAISA-E

GREW,
HID 2022 HID 2022

SUSTech-1K,
Gait3D

Pseudo-labelling × × × × ✓ (on HID2022 data) × ×

Architecture
DeepGaitV2 (P3D&3D)

[3]
DeepGaitV2 (3D)

[3]
DeepGaitV2 (P3D) [3],

SwinGait [3]
GaitGL+Gem

[7]
DeepGaitV2 (P3D)

[3]
DeepGaitV2 (P3D),

SwinGait, GaitBase [4]
DeepGaitV2 (P3D),

SwinGait [3]
GPU RTX 3090 * 2 N/A A100 * 4 RTX 3090 * 4 A6000*4 N/A N/A

Accuracy(%) 84.9 84.1 83.5 79.8 75.1 68.2 66.5

mode from these multiple inference sequences, ensuring
robust and accurate outcomes.

3.2. Team: jchu

Members: Jiacong Hu, and Xiaochuan Liao
South China University of Technology
{202321018015, au tairistu}@mail.scut.edu.cn
Method: The DeepGaitV2-3D model is employed to tackle
the challenges posed by diverse gait data. The whole pro-
cess includes dataset selection, data augmentation, network
design, and ensemble learning. To improve the model’s gen-
eralization capabilities, a comprehensive training set was
compiled from four datasets: Gait3D, CASIA-B, CCPG,
and SUSTech1K. The 4 datasets contains both indoor and
outdoor data, as well as constrained and unconstrained en-
vironments. Data augmentation includes rotation, horizon-
tal flipping, perspective changes, cropping, etc. A novel
temporal technique termed reranking, which reconstructs
sequences by truncating at random points and reversing the
order of spliced subsequences. To further improve the model,
a modified Hierarchical Progressive Pooling (HPP) architec-

ture is employed to replace the standard GAP+GMP with
a summation of the top two maxima and integrating a two-
layer MLP-like attention module prior to the BNNeck. This
method, referred to as DGv2+, adjusts weights across differ-
ent sites and channels of embeddings.

Ensemble learning was leveraged by three distinct traing
configurations: a 22-layer DGv2+ 22 model with unaligned
data, a 22-layer model with spatially aligned data, and a
30-layer model also with unaligned data. These models were
trained with a batch size of 8× 8, 240,000 iterations for the
22-layer models and 260,000 for the 30-layer model. Ensem-
ble decision-making was implemented by aggregating votes
from the three models to determine the most possible ID of a
given gait sequence. Individual and integrated performances
of these models are summarized in Table 2.

Table 2. The rank-1 accuracies of three models and their ensemble.
Method Accuracy (%)

DGv2+ 22 w/o alignment 82.10
DGv2+ 22 w/ alignment 82.05

DGv2+ 30 w/o alignment 82.90
Ensemble 84.14



3.3. Team: SJTU-ICL

Members: Zepeng Wang, and Ke Xu
Shanghai Jiao Tong University
{wzp.ck, l13025816}@sjtu.edu.cn
Method: The method includes two models: the CNN-based
DeepGaitV2, and the Transformer-based SwinGait [3]. The
models have been designed to adapt to the challenges of
varied gait recognition data and incorporate strategies of
dataset integration, advanced data augmentation, and novel
network design enhancements. A comprehensive train-
ing set, by combining CASIA-E [13], CCPG [6], CASIA-
B [17], Gait3D [19], SUSTech-1K [12], OUMVLP [14],
and GREW [21], was formed to enhance the model’s per-
formance. The input size of images was fixed to 128× 128
pixels.

In the test phase, the cosine similarity was chosen as the
primary distance metric due to its enhanced performance
in preliminary tests. Ensemble learning was adopted by
training with 6 different models with various combinations
of datasets and augmentation techniques. The final decision
of a sequence was made through a voting mechanism among
the 6 models for robust decision-making.

The implementation was carried out on OpenGait [4]
with four A100 (40GB) GPUs. The initial training involved
360,000 iterations using an SGD optimizer with a detailed
learning rate schedule that adjusted from 1 × 10−1 to 1 ×
10−4. The novel GaitMix augmentation was integrated at
this stage to enhance the initial training. A fine-tuning was
carried out using an AdamW optimizer to further improve
the model performance over an additional 160,000 iterations
with a learning rate schedule from 1 × 10−4 to 1 × 10−5.
Each training batch consisted of 32 identities with 4 samples
for each.

3.4. Team: GRgroup
Members: Jingjie Wang, Jianlong Yu, Senmao Tian, and
Ming Wang
Supervisor: Shunli Zhang and Xiang Wei
Beijing Jiaotong University
{23111492@bjtu.edu.cn}
Method: The method employs the GaitGL+Gem model as the
primary training framework in OpenGait. Data augmentation tech-
niques, specifically horizontal flipping and random erasing, are
utilized to enhance dataset variability. The sole training dataset
employed is the CAISA-E dataset.

The data preprocessing pipeline is executed in two phases. Ini-
tially, silhouette sequences that contain entirely black or white
images are discarded after assessing the pixel ratios of the fore-
ground regions. Subsequently, the midpoints of the upper and lower
body in the remaining images are identified and used to rotate the
silhouettes, ensuring alignment perpendicular to the x-axis.

To improve the model’s cross-domain capability, it undergoes
a fine-tuning phase using the HID2024 gallery dataset, which has
demonstrated substantial potential for enhancing cross-domain ap-

plicability. The results from this phase indicate notable improve-
ments in model performance.
Experimental Setup: The computational framework consisted of
four GeForce RTX 3090 GPUs. The training regimen included a
batch size of 32 × 8, encompassing 80,000 iterations during the
pre-training phase and an additional 8,000 iterations during the
fine-tuning phase. The rest of the hyperparameters were aligned
with the standard configurations of the GaitGL model as specified
in OpenGait.

3.5. Team: BRAVO-FJ
Member: Meng Zhang, and Kazuki Osamura
Supervisor: Rujie Liu, Narishige Abe, and Hidetsugu Uchida
Fujitsu Limited
{zhangmeng, osamura.kazuki, rjliu,
abe.narishige, u.hidetsugu}@fujitsu.com

Method: The model employed in this research is DeepGaitV2
enhanced with a Pseudo 3D convolution module (P3D) [10]. Data
augmentation techniques such as random perspective transforma-
tion, random horizontal flipping, and random rotation are applied,
with respective probabilities of 0.3, 0.4, and 0.4. Both the soft-
max loss and the triplet loss, a margin of 0.2 for the latter, are
utilized for training. The model undergoes initial pre-training on
the GREW dataset [21] and subsequent fine-tuning on the HID2022
dataset [16].

A re-ranking strategy is implemented to improve performance.
To leverage HID2022 data effectively, pseudo-labels for HID2022
test samples are generated through a voting mechanism involv-
ing several models, as depicted in Figure 4. If predictions for a
HID2022 probe sample are consistent across multiple models, the
sample will be used as a pseudo-label for further training; other-
wise, it will be excluded. Various models with different backbones,
specifically ResNet22, ResNet34, and ResNet38, are employed to
construct the voting framework.

To enhance the reliability and stability of predictions, a voting
mechanism is applied across different model iterations. After the
final predictions for each model are obtained, this mechanism is
engaged again to fuse the predictions from three different backbone
models. It aims to integrate the strengths of each model and further
improve the accuracy and robustness of the results through their
complementary attributes.

3.6. Team: dashengge
Members: Runsheng Wang (Huazhong University of Science
and Technology, wrsh@hust.edu.cn), Runyu Wang (Uni-
versity of Southern California, runyuwan@usc.edu), Shi-
juan Huang (Huazhong University of Science and Technol-
ogy, hshijuan@qq.com), Jianbo Li (Huazhong University
of Science and Technology, m202273875@hust.edu.cn),
Zongyi Li (Huazhong University of Science and Technology,
D202081087@hust.edu.cn)
Method: In the solution, three models, SwinGait [3], Deep-
GaitV2 [3], and BNBaseline, are involved. The implementation
details are available in OpneGait [4]. The framework of the solution
is shown in Figure 5. Three models were trained, and they are BN-
Baseline, DeepGaitV2, and SwinGait. BNBaseline is the Baseline
model offered in the earlier version of the OpenGait project without



Figure 4. The framework of Team BRAVO-FJ’s method.
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Figure 5. The framework of Team dashengge. Three models, in-
cluding SwinGait, DeepGaitV2 [3], and BNBaseline, are involved.
The green box and red boxes denote the operations used in the
training and testing phase, respectively.

the residual learning. Moreover, each of the last two convolution
layers is followed by one batch normalization layer. The three mod-
els were trained on the HID2022 dataset. During the training stage,
three augmentation strategies are used, including the horizontal
flip, random rotation and perspective. During the test stage, the
three models were ensembled, and all probe data was involve both
in phase 1 and phase 2. This strategy can boost the results after
re-ranking [20]. The features of and distance matrices of probe
and gallery samples are generated with the three models, which
are summed as the final distance matrix for ensembling the three
models.

Ablation studies are conducted to demonstrate the effectiveness
of various models and strategies. The results of these ablation stud-
ies are presented in Table 3. After ensembling all three models and
involving all probe samples for reranking, the framework achieved
the best result.

3.7. Team: HUST-MCLAB
Members: Yunfei Ni, Haijun Xiong, and Bin Feng
Huazhong University of Science and Technology
{U202211792, xionghj, fengbin}@hust.edu.cn
Method: The method is shown in Figure 6, and it comprises three
core components: data pretreatment, training, and test.

(1) Data Pretreatment: The data pretreatment utilizes a Max-

Table 3. Ablation study of different models and strategies. “RR”
means re-ranking. “RR all” means re-ranking with the probe sam-
ples of phase 1 and phase 2.

DeepGait SwinGait Baseline RR RR all Acc
✓ ✓ 61.8%
✓ ✓ ✓ 64.7%
✓ ✓ ✓ 65.2%
✓ ✓ ✓ ✓ 66.8%
✓ ✓ ✓ ✓ 68.2%

Test

DeepGait on 
SUSTech1K

SwinGait on Gait3D

Baseline on CASIA-
E

VM

Re-rankModel

Result

DeepGait Baseline

CASIA-ESUSTech1K Gait3D

Training

MC Resize

Data Pretreatment

Gait 

sequences

SwinGait

SUSTech1K Gait3D

Figure 6. The framework of Team HUST-MCLAB’s method.

imum Connectivity graph (MC) to remove noise and redundant
data from the probe images, as illustrated in Figure 7. This step
enhances the model’s ability to accurately perceive the probe data.
Additionally, data is resized to 64× 64 pixels to match the input
requirements of the models.

Retain the maximum 
connectivity map

Gallery 004
Before MC

Gallery 004
After MC

MC

1

2

Figure 7. The overview of the MC block.

(2) Training: The training is conducted with OpenGait [4],
where various models are trialed across different datasets to iden-
tify the most effective. Particularly, the models DeepGait [3] and
SwinGait [3], trained on the SUSTech1K [12] and Gait3D [19]
datasets, show superior cross-domain capabilities. The reason may
be that the two datasets were collected from real-world scenarios.
Notably, the DeepGait model trained on Gait3D is adjusted to an
input size of 128× 128 pixels, contrasting with the 64× 64 size



used by other models.
(3) Test: During the test phase, a Re-ranking (RK) and Vote

Mechanism (VM) are employed to enhance the robustness of the
results. RK is utilized during the feature extraction stage of each
model to bolster feature recognition. Concurrently, VM integrates
the capabilities of multiple models, improving the overall accuracy
and robustness of the outputs.
Performance: Results from ablation studies indicate that RK sig-
nificantly enhances model accuracy. As demonstrated in Table 4,
models such as DeepGait and SwinGait trained on SUSTech1K and
Gait3D, along with Baseline [4] trained on CASIA-E [13], achieve
high accuracies. The integration of VM notably enhances the per-
formance across multiple models, corroborating the effectiveness
of this combined approach.

Table 4. The rank-1 accuracies by different models
Model & Dataset Accuracy (%)

DeepGait on SUSTech1K 60.50
DeepGait on Gait3D 60.86

SwinGait on SUSTech1K 62.08
SwinGait on Gait3D 55.53

Baseline on CASIA-E 55.79
VM 66.45

4. Analysis
The technologies used by the top teams are summarized in

Table 1. Similar with HID 2023 [18], the technologies of data
cleaning, data alignment, data augmentation, re-ranking and ensem-
ble played important roles in HID 2024.

Even we had a more strict role this year that the test data in
HID 2023 and HID 2024 cannot be used in training, a much higher
best accuracy 84.9% was achieve in HID 2024 (80.8% in HID
2023). The improvements this year should be brought by the strong
backbone models. Most top teams (7 of 8) chose DeepGaitV2 as
the backbone model. It means a strong backbone model for gait
recognition is essential.

Surely DeepGaitV2 is not the best in the future. To have a better
backbone for gait recognition, we may need a much larger dataset
to train it. But it is very difficult to collect gait data and label the
data. Some large vision models trained using images or videos (not
gait data) can be applied for gait recognition as in [8, 15].

5. Conclusions and Future Paths
The 5th International Competition on Human Identification at a

Distance (HID 2024) marks a significant milestone in the evolution
of gait recognition. Building upon the foundations laid by previous
iterations, this year’s competition introduced more complex chal-
lenges, including the cross-domain SUSTech-Competition dataset
featuring 859 subjects with various clothing, carrying conditions,
occlusions, and view angles. The results demonstrate remarkable
progress, with the top-performing team achieving an impressive
84.9% accuracy on this challenging dataset.

The methods employed by leading teams reveal a convergence
towards sophisticated deep learning architectures, particularly vari-
ants of DeepGaitV2 and SwinGait models [3]. These approaches,

combined with innovative data augmentation techniques, ensemble
methods, and cross-domain adaptation strategies, highlight the in-
creasing maturity of gait recognition systems. The diverse range
of techniques employed, from advanced preprocessing methods to
novel network architectures, underscores the multifaceted nature of
the challenge and the creativity of the research community.

With 90 registered teams, HID 2024 attracted great interest in
this field. The competition’s outcomes suggest that gait recogni-
tion is approaching a level of robustness and reliability suitable
for real-world applications, marking a significant step forward in
biometrics. This progress not only advances the state-of-the-art in
gait recognition but also paves the way for broader applications in
security, healthcare, and smart environments.

In the future, we need to explore multi-modal and context-
aware gait recognition along with corresponding datasets. Can we
integrate multiple modalities beyond silhouettes, such as 3D point
clouds, skeletal data, and contextual information, in challenging
real-world scenarios? Investigating the fusion of these diverse
data types and developing context-aware models that can adapt to
varying environmental conditions will be crucial for advancing the
field. However, challenges remain in developing a robust dataset in
this arena.

Thus far, we have not incorporated privacy-preserving and eth-
ical gait analysis. We feel that researchers should concentrate
on developing privacy-preserving techniques that can operate ef-
fectively while ensuring the protection of individuals’ identities.
Moreover, establishing ethical guidelines and standards for the
deployment of gait recognition systems in public spaces will be
essential for responsible advancement of the technology.

Future competitions and research efforts should focus on eval-
uating and improving the robustness of gait recognition systems
against adversarial attacks and long-term gait variations. We should
also explore the limitations observed in current methods, particu-
larly in enhancing cross-domain capabilities. It requires sincere
collaborations between academia and industry to translate these
advancements into practical applications, thereby broadening the
impact of this research on security, surveillance, and beyond.

Finally, the HID competitions have consistently driven forward
the state-of-the-art in gait recognition, fostering both competitive
and innovative solutions. As we move forward, the insights and
developments from HID 2024 will undoubtedly play a fundamen-
tal role in shaping the future of this field. This progress ensures
that gait recognition continues to advance in ways that are not
only technically impressive but also ethically sound and practically
applicable in diverse real-world scenarios.
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