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Abstract

Autism spectrum disorder (ASD) is a collection of neuro-developmental disorders associated with social, commu-
nication, and behavioral difficulties. It is necessary for early detection to mitigate the adverse effects of this disorder
by starting special education in a school and rehabilitation center to enhance children’s daily lives. There are two
types of methods available to diagnose and rehabilitate ASD. One of them is the manual method (i.e., observation
or interview-based approach), which is diagnosed through observation or interview of parent or caregiver. It is time-
consuming, subjective, and mostly depended on examining behavioral symptoms. Another method is the automatic
diagnosis using traditional machine learning (ML) and modern deep learning (DL)-based approaches using images.
This systematic review aims to examine the application of the DL-based approach using images or videos in autism
research. It includes the publications indexed on PubMed, IEEE Xplore, ACM Digital Library, and Google Scholar,
conducted from 2017 to 2022. The result is reported on the PRISMA statement. A total of 130 studies are included in
this analysis. Eligible papers are categorized based on the different features extracted to feed the DL-based approach.
Existing well-known public and private datasets, including images or videos for autism research, are extensively re-
viewed and discussed in this systematic review. Moreover, different rehabilitation strategies that are highly helpful for
ASD individuals are included in this review. Finally, various current challenges for the automated detection, classifi-
cation, and rehabilitation of ASD are presented. The review concludes that the application of deep learning for precise
and affordable diagnosis of autism is rising substantially.
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1. Introduction direct pathological or radiological examination to diag-
nose the disorder. However, individuals with ASD can
exhibit different signs and symptoms, which are con-
spicuous in an early stage of life (Lord et al., 2006),

including but not limited to joint attention (Wilkinson,

Autism spectrum disorders (ASD) are a diverse group
of neuropsychiatric conditions. They are characterized
by some degree of difficulty with impairments in social

communication, personal interaction, academic func-
tioning, and restricted and repetitive behaviors. No-
tably, people with ASD may behave, communicate, and
learn in ways different from most others. The Autism
and Developmental Disabilities Monitoring Network
(ADDM) of the Centers for Disease Control and Pre-
vention (CDC), USA estimated that about one in 44
children had been identified with ASD (Maenner et al.,
2021). Diagnosing ASD can be difficult as there is no
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1998), trying to avoid eye contact, the obsessiveness
of activities (Tanguay et al., 1998), stereotypical mo-
tor movements (GroBekathofer et al., 2017), atypical
sensory responsivity (Kanner et al., 1943). In particu-
lar, ASD children have less visual attention in contrast
than the typically developed (TD) children (Tanaka and
Sung, 2016). The level of these symptoms varies within
individuals. Therefore, it is sometimes considered a
spectrum condition (Lord et al., 2018).

Early detection and diagnosis are essential to ensure
that reasonable treatment and/or therapy for children
with ASD symptoms can be managed. ASD subjects
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require to receive the services to achieve their full po-
tential for bringing a more significant outcome for soci-
ety (Pickles et al., 2016). Therefore, it is important to
employ proper diagnostic and rehabilitation techniques.
There are two ways to diagnose and monitor children
with ASD: the manual system, and the automatic diag-
nosis system. The automatic systems explore various
computer vision- or image-based strategies with tradi-
tional machine learning (ML) as well as deep learning
(DL).

Observation- and interview-based methods are two
widespread manual ASD detection and diagnosis sys-
tems. The Childhood Autism Rating Scale (CARS)
(Schopler et al., 1980) consists of 15 items to assess
ASD. CARS has a range of scores to indicate the ASD
levels, e.g., a score between 30-37 is considered as
mild ASD, while 38-60 is used as severe ASD. On
the other hand, interview-based detection and diagno-
sis systems depend on the interview with parents or
caregivers. The Developmental, Dimensional, and Di-
agnostic Interview (3DI) consists of 183 items regard-
ing the children’s developmental delay history and fam-
ily background (Skuse et al., 2004). It can be used
to identify children and adults with ASD. Similarly,
the Autism Diagnostic Interview-Revised (ADI-R) is an
investigator-based interview where parents and possible
ASD cases need to be present in-person (Lord et al.,
1994). Moreover, the Asperger Syndrome Diagnostic
Interview (ASDI) is also an investigator-based interview
where physicians present and investigate for 15-20 min
whether or not persons meet the criteria of ASD (Gill-
berg et al., 2001). Furthermore, Gilliam Autism Rating
Scale (GARS) (Lecavalier, 2005) contains 56 items with
four categories: stereotyped behaviors, communication,
social interaction, and developmental disturbance. They
rated the severity of ASD by scoring a range of items.
However, the manual systems depend on behavioral
symptoms and parents’ or caregivers’ observations and
require an expert physician to make judgments. There-
fore, it cannot capture data on real situations of typi-
cal daily-life activities. Moreover, these processes are
costly and time-consuming (Galliver et al., 2017), e.g.,
the ADI-R experiment takes around 2-3 hours to diag-
nose (Rutter et al., 2003).

To mitigate the problem of manual detection and di-
agnosis, researchers tend to develop automatic tools to
analyze ASD, which provide more accuracy and re-
duce diagnosis time (Noorbakhsh-Sabet et al., 2019).
Additionally, it offers an early ASD diagnosis at the
age of two years (Chen et al.,, 2022; Chang et al.,
2021). Initially, the computer vision with traditional
machine learning (ML) approaches (Thabtah, 2019;

Hossain et al., 2021; Sapiro et al., 2019) were employed
to develop automated ASD screening tools that can be
more time-efficient and inexpensive than regular manual
diagnosis. Meanwhile, the deep learning (DL)-based
approaches have been exploited effectively in disease
detection and diagnosis (e.g., brain tumors, breast can-
cer, and cardiac diseases, etc.). The significant advan-
tages of DL-based methods are that they can extract
features automatically, reduce error, and mostly out-
performs traditional machine learning (ML)-based ap-
proaches (Niu et al., 2020). Recently, researchers em-
ployed DL-based methods with the image(s) and videos
in autism research to detect, classify, diagnose and/or
monitor ASD children.

A large number of studies on autism research have
been published in the last five years (i.e., 2017 to 2022)
using the deep learning-based method with the image(s)
and videos. However, to the best of our knowledge, no
systematic review studies have yet been published using
those papers. Therefore, this paper aims to provide a
systematic and comprehensive review of the published
deep learning studies with images or videos to analyze
ASD.

2. Related Work and Our Contribution

In the following section, relevant reviews related to
ASD are discussed, and finally, the contributions of this
systematic review are summarized.

Some reviewed works regarding ASD are available in
the literature considering supervised and unsupervised
traditional ML and modern DL-based approaches. For
example, Hyde et al. (2019) provided a review of su-
pervised machine learning on ASD, including 45 pa-
pers. They also examined text mining to uncover prob-
able ASD genes and look into unclear connections be-
tween ASD and other domains. They, however, consid-
ered only five studies about deep learning. Regarding
unsupervised approaches, Parlett-Pelleriti et al. (2022)
provided a review of ASD with only three studies about
deep learning.

In contrast, computer vision techniques were em-
ployed to analyze ASD, and these approaches were re-
viewed in (Rahman et al., 2021; De Belen et al., 2020;
Minissi et al., 2021). For example, Rahman et al. (2021)
provided a review to detect ASD using different human
activity analyses. They summarized the work related
to capturing and analyzing sensor data from a person’s
movement, gesture, or motion, while De Belen et al.
(2020) provided a review based on different computer
vision-based features and datasets for ASD detection
and classification of the published work from 2009 to



2019. However, These reviews considered only 14 and
20 DL-based approaches. Furthermore, Minissi et al.
(2021) reviewed only 11 papers and focused on clas-
sifying ASD based on ML and social visual attention
towards social stimuli. They also discussed various
ML-based models and eye movement as biomarkers.
However, considering only eye movement biomarkers,
they reviewed four DL-based studies. Moreover, Song
et al. (2021) reviewed the study on traditional ML to
distinguish ASD from TD, while DL-based approaches
were employed for rehabilitation in (Khodatars et al.,
2021). However, they limit themselves to consider-
ing only structural and functional neuroimaging data.
In contrast to the above, our comprehensive system-
atic review considered only DL-based approaches, with
130 articles published from 2017 to 2022 regarding the
broad aspects of image and video modalities, includ-
ing RGB images, neuroimages, images generated from
other domains (e.g., spectrogram from EEG signal). To
the best of our knowledge, this study is the first work
with an extensive and systematic review of DL-based
approaches with image modalities to analyze ASD and
the corresponding public and private datasets along with
the different rehabilitation procedures to enhance the
daily-live of the individual with ASD. The significant
contribution of our studies are below:

e Presenting an extensive and systematic review con-
ducted on deep learning with image-based research
studies covering 130 articles from 2017 to 2022 for
ASD detection, classification and diagnosis, reha-
bilitation therapy, and ASD research.

e Presenting a depth analysis of the publicly avail-
able, along with private datasets that were em-
ployed with deep learning-based approaches to an-
alyze the ASD research. Furthermore, the perfor-
mance evaluation metrics are presented.

¢ Finally, opinions on current challenges and future
directions in ASD research are provided. In ad-
dition, by providing a thorough summary of ex-
isting deep learning with image-based approaches,
including the focus, network structure, loss func-
tion, activation function, result, etc., as well as
dataset and performance metrics in ASD, this sys-
tematic review can serve as a convincing resource
that helps develop a DL-based approach to analyze
ASD.

3. Materials and Methods

We follow a systematic way to explore and analyze
the papers to select. All procedures were conducted as
the Preferred Reporting Items for Systematic Reviews
and Meta-Analyses (PRISMA) (Moher et al., 2009).

3.1. Eligibility Criteria

All titles and abstracts were filtered to include stud-
ies that fulfill the following criteria: (i) Deep learning-
based approaches were employed to extract features, de-
tection, classification, or rehabilitation. (ii) The study
must use images or videos to extract features or off-the-
self features extracted from images or videos to study
related to autism. (iii) The articles were written in En-
glish. (iv) The article should focus on autism, or part of
the study was related to autism research. (v) The stud-
ies related to human beings only. (vi) Paper published
between 2017 to 2022.

3.2. Search Process

In this review, PubMed, Scopus, Springer Link,
ACM, IEEE Xplore, Google Scholars, as well as other
conferences or journals, were used to acquire the ar-
ticles on ASD detection, classification, and rehabilita-
tion using a DL-based approach with image or video.
Furthermore, the search query employed includes the
combination of the following terms “Autism Spec-
trum Disorder,” “Autism,” “ASD,” “Detection,” ”Clas-
sification,” “with Video,” “with Image,” “Rehabilita-
tion,” “Therapy,” “Deep learning,” “Convolutional Neu-
ral Network,” and “CNN.”

3.3. Quality Assessment

The three authors screened and examined individual
article abstracts and titles to determine whether the cor-
responding article fulfilled the selection criteria. If an
article fulfills the inclusion criteria, the corresponding
value of the paper is 72" (value ”2” means selected for
the next step) in the excel sheet, while ”0” is for the ex-
cluded article. On the other hand, if there is a confusion
that an article might fulfill the criteria, then the article’s
value is ”’1” (one waiting for recheck).

3.4. Study Selection and Result

A total of 525 articles were collected after removing
duplication, examined through abstract and title, and put
the values either 0, 1, or 2. If an article has value one, we
re-examined it by the other authors and discussed with
all authors whether it would be included. In this screen-
ing phase, 220 articles were excluded due to failed cri-
teria. Next, we tried to find the full text of 305 articles



and determine whether they were focusing on other top-
ics and excluded 60 articles. Finally, 130 articles were
included to review from 2017 to 2022; Fig. 1 depicts
the number of considered articles using deep learning
with the image(s) or video-based features. Moreover,
the above discussion is represented as a flow diagram
according to PRISMA (Moher et al., 2009) in Fig. 2.
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Fig. 1: The number of publications per year for ASD detection, clas-
sification, and diagnosis, along with rehabilitation using deep learning
with images or videos.

4. Dataset and Performance Metrics

Many different datasets were developed in the liter-
ature to demonstrate autism research considering dif-
ferent modalities, including face, eye gaze, and MRI.
An example including different modalities datasets is
shown in Fig. 4.

4.1. Public Datasets

The publicly available datasets to analyze autism re-
search considering different image modalities are sum-
marized in Table 1.

4.1.1. Eye Gaze Datasets

Analysis of eye-tracking data is one of the ba-
sic fundamental approaches for detecting ASD. The
Saliency4ASD (Duan et al., 2019b) is a public dataset
of children with ASD’s eye movements. Tobii T120 eye
tracker was employed to collect the data with equally
distributed ASD and TD (i.e., 14 subjects for each
group). At the same time, they viewed 300 visual stim-
uli images of objects, natural scenes, animals, and per-
sons. However, fixation maps and scan paths were col-
lected from the participants. In addition, eye-tracking
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Fig. 2: PRISMA flow diagram for the article selection process.

technology was used in (Carette et al., 2018) to translate
dynamic eye movement into gradient color images and
make a public dataset. The dataset includes 547 visual
images of the eye scan path from 29 ASD and 30 TD
participants, where 328 and 219 images are respective
for ASD and TD. In another study, Chong et al. (2017)
collected a video dataset for detecting gaze, which in-
cluded 100 children in 156 distinct play sessions where
children with ASD and TD are equally distributed. They
collected data based on the interaction between an adult
and a child. Finally, they annotated the image sequence
(i.e., around 2 million frames) using video annotation
software ELAN ! and INTERACT Mangold 2. Ground
truth annotation considered flagging the image-level on-
set and offset of each instance of the participant making
eye contact with the examiner. Its mentioned that a por-
tion of their training data was already publicly available
as part of the MMDB (Rehg et al., 2013) dataset.

4.1.2. Magnetic Resonance Imaging Datasets
Magnetic Resonance Imaging (MRI) is a non-
invasive imaging tool that generates three-dimensional
comprehensive anatomical images that differ signifi-
cantly between ASD and TD. To expedite knowledge

1 http://tla.mpi.nl/tools/tla-tools/elan/
2https ://www.mangold-international.com/en/products/software/
behavior-research-with-mangold-interact
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Fig. 3: Different modalities for the image(s)-based dataset for autism research: (a) A face image for an ASD child (Piosenka, 2021); (b) An image
of scan path for an ASD subject (Carette et al., 2018); (c) An example of a skeleton image; (d) The spectrogram image of EEG signal (Tawhid
et al., 2021); and (e) A single 2D MRI image of an ASD subject (Di Martino et al., 2017).

Symptoms
noticed by
caregivers
or parents.

Fig. 4

of the neurological roots of autism, Autism Brain Imag-
ing Data Exchange (ABIDE) (Di Martino et al., 2014,
2017) gathered functional and structural brain imaging
data from laboratories throughout the world. ABIDE
I and ABIDE II are two large-scale collections in the
ABIDE effort. Each collection was built by aggregating
datasets gathered individually across more than 24 inter-
national brain imaging laboratories and is now available
to researchers.

ABIDE I (Di Martino et al., 2014) represents the pri-
mary version and involved 17 international sites, shar-
ing earlier collected resting-state functional magnetic
resonance imaging (rs-fMRI) data. Altogether, it in-
cluded 1,112 records, where ASD and TD participants
were 539 and 573, respectively, along with ages rang-
ing from 7 to 64 years. Later, a more diverse large-
scale dataset ABIDE II (Di Martino et al., 2017), was
released, including 1,044 records, where ASD and TD
participants were 487 and 593, respectively.
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4.1.3. Face Datasets

The Autism Facial Image Dataset (AFID) is the only
publicly available dataset for face images for autism re-
search presented in (Piosenka, 2021). Images were col-
lected from various websites and Facebook pages with
equal distribution of ASD and TD. They proposed a
benchmark protocol: 2,540 images for training and 300
and 100 for testing and validation, respectively.

4.1.4. Multi-modal Datasets

When systems use a single trait or modality for the
detection, classification, or analysis of ASD is called
uni-modal systems (Uddin et al.,, 2017) and are re-
garded as a conventional system because of their sim-
plicity. These systems are, however, commonly affected
by some problems, such as noisy sensor data and low
accuracy. One solution to these problems is using data
from multiple modalities, called multi-modal data. The
De-Enigma (Shen et al., 2018) is a publicly available
multi-modal (e.g., audio, depth, and video) dataset of
autistic children that can be used for behavioral analy-



Table 1: Publicly available datasets for ASD detection, classification, diagnosis, and rehabilitation research.

. Age
Authors Focus Modality | Dataset (Years) Instance
. Extracted head-related features from . Sub:
Cai et al. (2022) video data Multi-modall N/A  |1.6-13.0 57 ASD, 25 - TD
. Collect ASD and TD images from Image:
Plosenka (2021) various websites Face AFID - 2.0-14.04 470 _ ASD, 1470 - TD
Captured joint 3D skeleton, Head Sub:
Billing et al. (2020) orientation and Eye gaze data Multi-modal DREAM |3.0-6.0 )
. 61 - ASD
during robot-enhanced therapy
Record of eye movement while Saliency4 | 8.0 Sub:
Duan et al. (2019b) watching image EyeGaze | uon’ | (Ave) | 14- ASD, 14-TD
Captured eye movement to visualizations Sub:
Carette et al. (2018) of eye-tracking scan paths Eye Gaze N/A  [3.0-13.0 30-ASD. 29-TD
. Collect gesture data when . 9.6 Sub:
Zunino et al. (2018) grasping bottle from video Multi-modal — N/A (Avg.) | 20-ASD,20-TD
Multi-modal (audio,video and depth) data . . Sub:
Shen et al. (2018) collected during robot-assisted activities Multi-modalDe-Enigma3.0 - 12.0 128 Children
Captured eye-gaze data Sub:
Chong etal. (2017) during child-adult interaction Eye Gaze | N/A 30137 50 Agp 50-TD
. . Increase sample size, greater phenotypic Sub:
DiMartino etal. @OT7)| ™ 4 aterization from of ABIDE I MRL | ABIDEIIS.0-640 551 _asp, 539 -TD
. . Collect and combine functional and stru- Sub:
Di Martino et al. (2014) ctural brain MRI from various laboratories MRI ABIDET [7.0 - 64.0 539 - ASD, 573 -TD
Multi-modal (Audio, video, and physiolo- . Video:
Rehg et al. (2013) gical) data recorded from toddlers Multi-modal MMDB 1.0 -2.0 160 Sessions; 3-5 mins
. Collecting videos of childrens naturalistic . Video:
Rajagopalan et al. (2013) behaviours from public domain websites. Multi-modal ~ SSBD N/A 75; Avg. 90 sec.

sis. It included 62 British and 66 Serbian children aged
5 to 12 years who participated in De-Enigma studies on
emotion recognition. Each child was randomly assigned
to robot-assisted or adult-assisted activities with 4-5 ses-
sions. In addition, it captured 152 hours of interaction
resulting in 13 TB of multi-modal data.

Another publicly available multi-modal ASD dataset
is the Development of Robot-Enhanced Therapy for
Children with Autism Spectrum Disorders (DREAM)
(Billing et al., 2020), which is also a behavioral dataset
gathered from 61 children with ASD. Participating chil-
dren undergoing robot-enhanced therapy, which con-
sists of 3,000 therapy sessions. As a result, it cap-
tured around 300 hours of therapy. Three RGB cam-
eras and two RGBD (i.e., the Kinect sensor) cameras
were employed to capture the children’s behavior. The
main features extracted are ten joint 3D skeletons cov-
ering the upper body (head, shoulders, elbows, wrists,
and hands), head orientation, and eye gaze. In addi-
tion, metadata: age, gender, and autism diagnosis are in-
cluded in the dataset. Again, Cai et al. (2022) collected

videos during social interactions. This study included
57 and 25 children with ASD and TD, with ages rang-
ing from 1.7 to 13.0 years. Later, they extracted head-
related features such as head position, head rotation, di-
rection, eye position, eye gaze direction, facial position,
facial action units, rigid face shape features, and non-
rigid face shape features from videos using Openface
(Baltrusaitis et al., 2018).

Similarly, Zunino et al. (2018) presented a video
dataset containing gesture data from ASD and TD chil-
dren. They collected 1,837 video sequences from 20
children for each group of ASD with an average age of
9.8 years TD with an average age of nine and a half
a year. The participants were instructed to hold a bot-
tle in hand and perform various tasks such as placing,
pouring, passing to pour, and passing to place. In ad-
dition, Rajagopalan et al. (2013) collected videos from
publicly domain platforms (e.g., Youtube, Vimeo, Dai-
lymotion) of children employed in an uncontrolled nat-
ural setting. The dataset, i.e., the Stimulatory Behaviour
Dataset (SSBD), consists of 75 videos, each 90 seconds



long on average. All videos are divided into three cate-
gories, i.e., arms flapping, head banging, and spinning,
and this public dataset is used for ASD diagnosis.

4.2. Private Datasets

Private datasets are not publicly available; in our sys-
tematic review, a good number of studies employed pri-
vate datasets, which are discussed below.

4.2.1. Eye Gaze Datasets

Studies in (De Belen et al., 2021) considered 34 par-
ticipants to collect data for the dynamic eye track, where
half of them are ASD according to the criteria of the
fifth edition of the Diagnostic and Statistical Manual
of Mental Disorders (DSM-5) of the American Psychi-
atric Association. Using a Tobii X2-60 eye tracker, they
collected fixations and saccades of eyes when partici-
pants stimulus by a different scene. Another scan path
visualization data were generated using SMI RED250
eye-tracking technology in (Cilia et al., 2021) while par-
ticipants watched videos or photos of different stimuli.
Fifty-nine children participated in the study, where 29
children are ASD according to ADI-R, while 30 to TD.

Chrysouli et al. (2018) generated a dataset of eye
movement from videos of children interacting with
adults. A total of 43 subjects participated in construct-
ing the dataset. After being possessed, 3,37,815 im-
ages were extracted from videos with only the sub-
ject’s eyes. Individual gaze patterns were also extracted
from the captured video. In (Li et al., 2020) employed
the tracking-learning-detection approach to monitor eye
movement in the video, where a total of 83 videos of
ASD children were added, with 189 recordings of 53
and 136 children, respectively, for ASD and TD.

4.2.2. Face Datasets

Some of the studies developed their own face dataset.
For example, Leo et al. (2018b) collected a face dataset
for facial expression recognition with 17 children with
ASD. Each child was asked to produce four facial ex-
pressions (i.e., happiness, sadness, fear, and anger) se-
quentially and capture the events using a video cam-
era. Altogether, 17 videos were manually annotated
based on whether the children produced correct facial
expressions. Again, Rani (2019) collected 25 images
of ASD from different internet sources with four emo-
tions (i.e., angry, neutral, sad, and happy) for study.
Another facial expression dataset was collected in (Han
et al., 2018), where 25 participants produced seven dif-
ferent emotions. Finally, they managed 150 expressions
images. Moreover, from online sources, Patnam et al.

(2017) also collected an image dataset, including 4,000
images of gestures covering ears and faces. Further-
more, Shukla et al. (2017) constructed a developmen-
tal disorders dataset including ASD with 1,126 face im-
ages from various sources to recognize different devel-
opmental disorders. The dataset is annotated by age,
gender, and type of developmental disorder. Similarly,
Lu and Perkowski (2021) collected 1,122 face images to
analyze the ethnic-racial factors. The images were col-
lected from the same race with equally distributed ASD
and TD.

Furthermore, Banire et al. (2021) collected a face
dataset including 20 and 26 children, respectively, for
ASD and TD. They captured 95 videos and labeled
them using iMotions software as attention and inatten-
tion. Similarly, Tang et al. (2018) constructed a video
dataset while the mother and infant interacted. A total
of 34 participants were included, among them 11 ASD
and 23 TD. They labeled 77,000 frames manually into
a smile, non-smile, and occluded faces. In addition,
Ganesh et al. (2021) constructed a dataset of thermal
face images to detect ASD, including 50 children with
ASD and TD.

4.2.3. Skeleton Datasets

Skeleton data consists of the 2D/3D coordinates of
the human joints. Kojovic et al. (2021) made a video
dataset of social interaction, including 136 subjects with
equally distributed ASD and TD. Later, they extract
skeletal key points from videos using OpenPose (Cao
etal., 2017).

4.3. Performance Metrics

Evaluating the performance of a deep learning
method is one of the crucial steps while designing a
model. Many different metrics are used to assess the
model’s performance, and these metrics are known as
performance metrics. For the classification models to
classify ASD and TD, the accuracy, sensitivity or recall,
specificity, Precision, and F1-score are employed and
its acquired from the confusion matrix. An example of
the confusion matrix is shown in Fig. 5. The accuracy
gives the ratio of the correctly predicted observations
out of the total number of tested observations. More-
over, sensitivity represents the ratio of correctly clas-
sified positive cases, while specificity defines the pro-
portion of true negative data correctly classified. The
precision gives the ratio of correctly predicted positive
cases and true positives and false positives. The F1-
score is a critical assessment statistic that is defined as
the harmonic mean of the model’s precision and recall.
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Fig. 5: An example of a confusion matrix for the classification of
ASD and TD.TP: true positive; TN: true negative; FP: false positive;
FN: false negative.

Mainly, its value ranges from 0 to 1, where O indicates
a bad prediction performance while 1 for excellent.

Furthermore, the area under the receiver operating
characteristic (ROC) curve (AUC) is another metric
used to evaluate the performance, which is a graph
showing the evaluation performance of a method at all
classification thresholds, where the curve plots the true
positive rate versus the false positive rate while AUC
measures the entire two-dimensional area underneath
the entire ROC curve from 0 to 1. Moreover, the val-
ues of AUC range from 0.0 to 1.0. For example, if
a method’s predictions are 100% wrong has an AUC
of 0.0, whereas 1.0 for 100% correct. Furthermore,
some variants of AUC, such as AUC_Judd (Judd et al.,
2009), and AUC _borji (Borji et al., 2012), are employed
to evaluate the performance. The Mean Square Error
(MSE) is also used to measure performance. These met-
rics calculations are summarized in Table 2.

5. Results of Features Found in Study

Feature extraction is finding key points or character-
istics that can be used for further analysis, such as de-
tection, classification, rehabilitation, etc.; it can be done
manually or automatically. In manual feature extrac-
tion, a specialist recognizes the features and devises a
strategy to extract them, while automatic feature extrac-
tion is carried out automatically (e.g., using a DL-based
approach). A general framework for the feature extrac-
tion and classification using a DL-based approach and
the handcraft-based feature is shown in Fig. 6. It can
be noted that a large number of samples with known la-
bels are first feed during training to learn a model. In

Table 2: Metrics are used to evaluate the performance of a method for
detection, classification, and regression problems in autism research.

Metric Equation Puporse
TP+TN|
Accuracy | | Classification
TP+ TN+ FP+ FN|
TP
Sensitivity/Recall _1TA Classification
TP + FN|
TN
Specificity ﬁ Classification
TP
Precision ﬁ Classification
2(Precision)(S ensitivit
F1-score ( re?z.szon)( ensf zvz Y) Classification
Precision + S ensitivity
N (= 2
i=1 \Xi—Xi .
MSE M Regression

N
X;: Observed sample; x;: actual sample; N: number of
samples.

the first step, various preprocessing techniques are em-
ployed, such as data augmentations and noise removal,
and the features are extracted. Finally, the weight values
of the DL-based method are updated to make a robust
method to test an unknown sample during the test stage.

Convolutional Neural Networks (CNN) can be em-
ployed to extract features, which is a special feed-
forward neural network (FFNN) including convolution,
Rectified Linear Units (ReLU), and pooling layers along
with a fully connected (FC) layer. The convolutional
layers are good for feature extraction from the im-
age and video as they deal with spatial redundancy by
weight sharing. It includes at least one kernel to slide
across the input and perform a convolutional operation
between each input region and the kernel. The results
are stored in the activation maps containing features ex-
tracted by different kernels, which can be considered the
convolutional layer’s output. Pooling, also known as
downsampling, is a dimensionality reduction procedure.
Usually, a pooling layer is inserted between a convolu-
tional layer and the following layer. The FC layers are a
basic hidden layer of FFNN where all the neurons from
the previous layer are connected to every neuron in the
final activation unit of the next layer. The softmax and
sigmoid are the two most often utilized activation func-
tions for ASD and TD classification. A simple CNN
architecture is illustrated in Fig. 7.

Long Short-Term Memory (LSTM) is a variant of
a recurrent neural network (RNN) (see section 6.5 for
more details) that can recognize order dependency in se-
quence prediction problems and address the shortcom-
ings of RNNs (e.g., handling long-term dependencies).
Furthermore, LSTM addresses the vanishing gradient in



sequence prediction problems. LSTM, combined with
the extracted feature from CNN, can be used as a feature
extractor and a classifier. Examples of a simple LSTM
architecture and CNN-LSTM architecture are illustrated
in Figs. 8 and 9 respectively.

5.1. Facial Expression or Emotion Features

Emotion recognition refers to recognizing a person’s
emotions, which include joy, sadness, anger, fear, dis-
gust, and surprise. Facial landmarks can help to identify
an individual’s expressions or emotions; therefore, they
were employed to classify ASD and TD. To find the fa-
cial landmarks, Banire et al. (2021) present a face-based
attention recognition network because of its ubiquitous-
ness compared to other methods. They employed the
iMotions software to extract 34 facial landmarks from a
video and then transformed them into geometric-based
features using the Euclidian Distance. Similarly, in (Leo
etal., 2018a,b; Del Coco et al., 2017) proposed methods
to automatically analyze facial expressions produced
by ASD children using conditional local neural field
(CLNF) (Baltrusaitis et al., 2013) to recognize and track
facial landmarks. The CLNF consists of point distribu-
tion models for capturing landmarks shape variations,
while patch experts for appearance variations. More-
over, Wu et al. (2021) used facial key points such as face
and eye landmarks, facial action units (AUs), head pose,
eye gaze direction, etc., to predict the behavior of ASD
children. They extracted those features using OpenFace
(Baltrusaitis et al., 2018); finally, they detected a smile,
a look face, and vocalization, while Cai et al. (2022)
extracted head-related features. Moreover, they intro-
duced a head-related characteristic attention mechanism
to select the most discriminative features.

In addition, some studies used existing off-the-self
CNN-based approaches for feature extraction. For ex-
ample, Shukla et al. (2017) used pre-trained AlexNet
(Krizhevsky et al., 2017) for feature extraction. Dur-
ing training, four parts of the segmented face and the
original face image are fed into the networks. Similarly,
Cao et al. (2023) separates the image into a number of
patches. Each image patch was given positional encod-
ing before using Vision Transformer (VIT) (Dosovitskiy
et al., 2020) to automatically categorize ASD and TD.
Again, (Mujeeb Rahman and Subashini, 2022; Alam
et al., 2022) extract facial landmarks from images and
identify children with ASD and TD using MobileNet
(Howard et al., 2017), Xception (Chollet, 2017), and
different versions of Efficient-Net (Tan and Le, 2019).
Again, Hosseini et al. (2021), Alkahtani et al. (2023)
and Akter et al. (2021) employed the MobileNet, while

Alsaade and Alzahrani (2022) used Xception and VGG-
19.

Moreover, Rabbi et al. (2023) also used VGG-19
along with Inception-V3 and DenseNet-201 for facial
feature extraction and classification.

Besides RGB images, thermal imaging can also be
employed to extract facial landmarks to analyze ASD
and TD. For example, Ganesh et al. (2021) used ther-
mal images focused on the forehead, eyes, cheek, and
nose thermal variations, varying between ASD and TD.
Similarly, in (Tamilarasi and Shanmugam, 2020) also
used thermal images in the ResNet-50 networks for fa-
cial feature extraction and classification.

Some soft attributable features can be used together
with the extracted feature from the image to influence
the classification performance for individuals with ASD
and TD. For example, Lu and Perkowski (2021) observe
racial factors play a vital role in classifying ASD and
TD from facial images. They demonstrated their ex-
periment on their own dataset called East Asian ASD
facial image datasets and publicly available datasets in
the Kaggle repository, the AFID (Piosenka, 2021), and
a mixture of these two datasets. The East Asian datasets
included people of the same race, while the AFID dif-
fered. They found that classification accuracy is better
in East Asian datasets due to symmetry in ethnic char-
acteristics.

Furthermore, gesture characteristics can also be used
for emotion recognition. For example, Patnam et al.
(2017) develop a system that can recognize the melt-
down action of kids with ASD. They collected all the
meltdown gesture data (i.e., covering ears, covering the
face, biting hands, and flapping hands) from various
sources. Two instances of the recognized behavior cov-
ering the face and the ears were used to identify melt-
downs.

5.2. Eye Gaze Feature

Children with ASD may exhibit atypical patterns of
gaze perception due to disruptions in their early visual
processing. Therefore, its probable to evaluate an ob-
server who has ASD based on their eye-gaze feature.
Tao and Shyu (2019) established a framework for iden-
tifying ASD and TD based on the observer’s scan paths
at a given image. First, the saliency prediction model
for a certain image from ordinary people generates a
reference saliency map based on SalGAN (Pan et al.,
2017), a pre-train saliency prediction CNN network.
The image patches of the predicted saliency map are
then constructed based on the given scan path. Finally,
patch features are employed in the proposed approach to
classify ASD and TD children. Review 3, Question:1,
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Fig. 7: The basic structure of a CNN-based approach. A stack of convolutional and pooling layers is used for learning features from images. FC

layers classify these features gathered from the convolutional layer.

part:1 (atayabi2023stratification) Atyabi et al. (2023)
combines spatial information (eye-gaze scan-paths) and
temporal information (velocity of eye movement) to
classify ASD and TD. Similarly, Wei et al. (2021) ex-
tracts the spatiotemporal feature combined with the scan
path for classification, which outperformed the above
approach mentioned in (Tao and Shyu, 2019).

Eye movement data can also be used to identify ASD.
Liaqat et al. (2021) employed a synthetic saccade pat-
tern model (Wloka et al., 2017) to represent the base-
line combined with the original scan pattern along with
many auxiliary data for classification. They forwarded
the image and processed fixation sequences as data
points for classification. On the other hand, Cilia et al.
(2021) transformed the eye-track data into a visual rep-
resentation that binds into a set of images. Later, this set
of images and their corresponding feature is further used
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to analyze ASD. The scan path features may use as a
biomarker for classifying individuals with ASD and TD
(Kanhirakadavath and Chandran, 2022; Xia et al., 2020)
and can also be fused with several other attributes like
temporal information and pupil velocity data (Atyabi
et al., 2022).

Some studies analyze an individual’s dynamic gaze
patterns while viewing a natural image (i.e., visual at-
tention) and may demonstrate the salient region of a
particular image to analyze ASD and TD. For example,
Fang et al. (2019) make a saliency map and demonstrate
that there is a difference between ASD and TD eye fix-
ation maps. They diagnose ASD by comparing the fix-
ations map and utilizing an objective loss function with
the PN-MSE (i.e., the positive and negative equilibrium
mean square error), which helps identify the salient re-
gions. Similarly, Jiang and Zhao (2017) present an ap-



proach for analyzing eye movement patterns in ASD
and TD individuals while free viewing natural images.
They generated a Fisher score (PEH, 2001) of the im-
ages, indicating that the most crucial feature is at the top
because Fisher’s score placed the data of the same type
closely, while data of different types were set far apart to
generate discriminative features. Finally, these discrim-
inative features are further employed to diagnose ASD.
Similarly, Wei et al. (2019) also proposed a model for
saliency prediction using multi-level features extracted
using a CNN-based approach and fused them for fur-
ther prediction of ASD and TD. Moreover, De Belen
etal. (2021) employed ACLNet (Wang et al., 2018) net-
works, a combination of CNN and LSTM used for fea-
ture extraction from eye movement.

Gaze patterns can also be found in daily-live social
activities like interacting with others, hearing sounds,
making eye contact while talking, and playing games.
By employing these daily-live social activities, Chong
et al. (2017) analyzed eye contact and implicitly esti-
mated head pose from a child’s naturalistic dynamic so-
cial interaction video to detect the individual with ASD.
Meanwhile, the VGG-face model (Parkhi et al., 2015)
was employed to extract facial features. Finally, the ex-
tracted features are forwarded to further classification.

In addition, Eye gaze data can also be used to analyze
an individual’s affective state. For example, Chrysouli
et al. (2018) explore individuals’ affective states (e.g.,
bored, frustrated, engaged, etc.) while interacting with a
computer by using the flow of eye movement. They ex-
tract individual faces using IntraFace (De la Torre Frade
et al., 2015) from the videos. Furthermore, it provides
49 facial landmarks points, where six key points are
neighbors of the eye. They crop the image, which con-
tains only the subject’s eye, with the help of these six
key points. Finally, these eye images are further used to
find an affective state, which helps to analyze ASD.

5.3. Skeleton Feature

The behavior feature extraction from eye gaze and
face has some limitations. For example, data must be
collected in a controlled environment. Therefore, its
troublesome to collect data, particularly to capture data
from children. To overcome this problem, Kojovic et al.
(2021) extract features from video while adults and chil-
dren socially interact at a distance. They extract the
skeleton using DL-based multi-person pose estimator
OpenPose (Cao et al., 2017) network from social inter-
actions video. Similarly, in (Marinoiu et al., 2018), the
video was captured during robot-assisted treatment ses-
sions with autistic children in an uncooperative environ-
ment; further, it was employed to develop action catego-
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rization and emotion prediction. They used high-level
3D pose and shape features to comprehend the children
better. In their framework, they employed the modified
Deep Multi-task DMHS (Popa et al., 2017) network for
fully automatic 2D and 3D human sensing with feedfor-
ward and feedback components to get a 3D skeleton.

Action can be recognized from the skeleton key point
to identify individuals with ASD. For example, Pandian
et al. (2022) employed the skeleton points for action
recognition, combining raw videos and key points of
the skeleton for detecting action. They used the high-
resolution network (Wang et al., 2020a) for the pose es-
timation to generate the key point and limb in the form
of a heatmap. Finally, the heatmap and raw videos are
passed to their network to recognize the actions.

5.4. Electroencephalography Feature

Electroencephalography (EEG) is an examination
system to identify abnormalities in a person’s brain
waves that can be used to analyze ASD. For example,
Tawhid et al. (2021) developed a model that can clas-
sify an individual with ASD and TD based on time-
frequency spectrogram images of EEG signals. They
preprocessed raw EEG signals using common average
referencing, infinite impulse response filter, and nor-
malization. After preprocessing, they segmented each
signal and employed a Short-time Fourier Transform
(STFT) on each segment to get the images. Finally,
its employed for the classification of ASD and TD.
Again, Baygin et al. (2021) used a deep lightweight
feature extractor for ASD detection from EEG signals.
They employed a one-dimensional Local Binary Pattern
(LBP) to generate features from a one-dimensional sig-
nal. Then, these features fed an input to the STFT to
generate an image of an EEG signal. Later, Mobil-
NetV2 (Sandler et al., 2018), SqueezeNet (Iandola et al.,
2016), and ShuffleNet (Hluchyj and Karol, 1991) were
employed to extract discriminative feature from these
images. Furthermore, in (Mayor-Torres et al., 2021;
Torres et al., 2022) used EEG images to classify facial
expressions of ASD and TD children.

5.5. Magnetic Resonance Imaging (MRI) Features

A medical imaging technology, Magnetic Resonance
Imaging (MRI), is a non-invasive imaging technology
that generates three-dimensional anatomical images and
can differentiate between normal and abnormal tissue.
Eventually, its employed to detect, classify, diagnose
and analyze ASD. A three-dimensional MRI image is
mixed with many layers and is a complete package of
structure and function. It, therefore, is challenging to
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state from the previous cell 4,1, and current input x;.

Fig. 9: An example of CNN-LSTM architecture. Here, CNN is gen-
erally used for feature extraction, and LSTM is used for classification.

consider a whole brain at a time. Hence, its employed
as an atlas that can define the shape and location of brain
regions in a common coordinate space. Further, an at-
las can parcellate the brain image into several Regions
of Interest (ROIs). Finally, the feature extracted from
the time series of each ROI to analyze ASD. Anatom-
ical, functional, and data-driven atlases are commonly
used to generate ROIs. Some popular atlas used in
the literature: Bootstrap Analysis of Stable Clusters
(BASC) (Bellec et al., 2010), Craddock 200 (CC200)
(Craddock et al., 2012), Craddock 400 (CC400) (Kunda
et al., 2020), Dosenbach (DOH) (Dosenbach et al.,
2010), Power (Power et al., 2011), Automated Anatom-
ical Labeling (AAL) (Tzourio-Mazoyer et al., 2002),
Harvard-Oxford (HO) (Desikan et al., 2006), Talaraich
and Tournoux (TT) (Talairach, 1988), Eickhoff-Zilles
(EZ) (Eickhoff et al., 2005), Multi-Subject Dictionary
Learning (MSDL) (Varoquaux et al., 2011).

The AAL atlas has divided the brain’s cerebrum into
parcels by anatomical landmarks in which various label-
ing nodes are generated manually in different versions.
Lietal. (2018a) employed an AAL atlas to resting state-
functional MRI (rs-fMRI) data to classify ASD and TD.
They calculate the brain Functional Connectivity Matrix
(FCM) as a 90 x 90 adjacency matrix representing the
connection between each pair of ROI. The Pearson Cor-
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relation Coeflicients (PCC) of the ROI pair determine
the cell weight of the FCM. Finally, they extracted 4,005
dimensional features from the FCM. They forwarded it
to classify while Wang et al. (2019a) employed AAL
to generate 6,670-dimensional feature vectors by PCC
and Fisher’s z transformation to classify the individual
with ASD and TD. Similarly, Lu et al. (2022) used the
AAL atlas to analyze rs-MRUI’s instability, leading to
FCM ambiguity; eventually, its impairs ASD diagno-
sis. Therefore, they employed the Takagi-Sugeno-Kang
Fuzzy inference systems to decrease the uncertainty and
instability of rs-fMRI. In addition to FCM, in (Al-Hiyali
etal., 2021b,a), they used the scalogram image from the
AAL atlas. A continuous Wavelet transform generates
the scalogram images and extracts dynamic temporal
features to detect ASD. Furthermore, Tang et al. (2020)
took the AAL atlas and the full-brain connection matrix
into consideration. The full-brain connectivity of func-
tional magnetic resonance imaging (fMRI) voxels and
the ROIs correlation matrix was employed to extract the
feature to analyze ASD. The community structures are
more efficient in diagnosing ASD than PCC. For exam-
ple, Liao and Lu (2018) implements a normalized mu-
tual information statistic matrix considering the AAL
atlas and achieves better accuracy than PCC.

The Craddock atlas is a data-driven parcellate ap-
proach that takes whole-brain rs-fMRI. In (Heinsfeld
et al., 2018; Almughim and Saeed, 2021) generated the
FCM using the CC200 atlas with 200 ROIs while PCC
determined the value of each cell in the matrix to in-
dicate brain regions strongly linked to anti-correlated
ones. Afterward, they generated 19,900-dimensional
functional connectivity features. Similarly, Zhang et al.
(2022b) also used the CC200 atlas to generate FCM and
employed the Fisher score selection method to select
the top features to detect ASD. Some studies (Sherkat-
ghanad et al., 2020; Zhang et al., 2022a; Yang et al.,
2020; Othmani et al., 2023; Wadhera et al., 2023) ex-
tracted feature from CC400 atlas, where Sherkatghanad
et al. (2020); Wadhera et al. (2023) generated 400 ROIs
and make a 392 x 392 FCM where PCC or ROI av-
erage time series are employed to describes the weight
of FCM. Finally, this FCM was forwarded to the clas-
sifier to classify ASD and TD. In addition, Zhang
et al. (2022a) extracted 76,636-dimensional features
from 392 ROIs by PCC. Later, they employed the step
distribution curves to select 3,170-dimensional features
for classification, while Yang et al. (2020) extracted
77,028-dimensional features using PCC for classifica-
tion. Furthermore, Kiruthigha and Jaganathan (2021)
extracted features from the CC400 atlas and explored
3D CNN to reduce the dimensions of 3D volume data.



The Power atlas comprises the cerebral cortex, sub-
cortical tissues, and cerebellum for generating ROI. Yin
et al. (2021) followed the Power atlas to parcellate the
brain region, which consists of 264 ROIs for time series
extraction. The weight of the brain network is defined
by PCC, which shows the relation of two ROIs’ time
series data. Finally, these features were employed to
further analysis.

The BASC altas is another data-driven fMRI atlas
that employs unsupervised clustering to parcellate the
whole brain. For example, Bayram et al. (2021) em-
ployed a BASC atlas of 122 ROIs to generate a connec-
tion matrix. These connectivity matrices were used to
further the classification of ASD and TD.

The HO altas encompasses structural regions in the
cortical and subcortical brains obtained from structural
data and segmentations. Cao et al. (2021) utilized the
HO atlas and generated features by PCC and Fisher z
transformation. They reduced the dimensions of the fea-
ture vector by the recursive feature elimination process;
finally, low dimensional features are further used for the
analysis of ASD.

Multiple atlases are also considered in the litera-
ture to analyze ASD. For example, Subah et al. (2021)
built an FCM feature using tangent-embedded atlases
and compared it with different structural and functional
atlases (e.g., BASC, CC200, AAL, and Power atlases)
where AAL is a structural atlas, and the remaining are
functional. Similarly, Wang et al. (2022) explored six
(e.g., AAL, EZ, HO, TT, CC200, and DOH) atlases and
generated features using PCC. Later they employed the
support vector machine (SVM)-recursive feature elimi-
nation method to reduce the dimensions of the features.
On the other hand, Yang et al. (2022) consider one struc-
tural atlas, such as AAL, and five other functional at-
lases, such as CC200, CC400, Power 264, BASC 197,
BASC 444. They employed canonical ICA and dictio-
nary learning to generate an FCM, which was used later
for classification. Additionally, to generate an effec-
tive FCM for each individual, Pavithra et al. (Pavithra
et al., 2023) brings time series from 48 regions of inter-
est identified by the HO atlas and 122 regions of interest
established by BASC. These features are supplied to the
identification model.

Personal attributes can also be explored along with
atlases to analyze ASD. For example, Niu et al. (2020)
employed the AAL atlas, HO atlas, and CC200 to gen-
erate 90 x 90, 110 x 110, and 200 x 200 connec-
tivity matrices, respectively, using PCC. Along with
the extracted feature, they combine personal attributes
such as sex, handedness, full-scale, verbal, and perfor-
mance IQs to classify the individual with ASD and TD.
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Similarly, in (Rathore et al., 2019) combined CC200
and CC400 atlas features with topological features, in-
cluding persistence pictures, landscapes, and diagrams.
Again, Mellema et al. (2019) also used seven atlases
(HO, Power, MSDL, CC, and variation of BASC) to
represent an FCM by projecting into tangent space
along with structural data for classification.

Deep learning can also be explored to extract
the highly discriminative features from MRI to ana-
lyze ASD. For example, Elakkiya and Dejey (2022)
employed Bernoulli Restricted Boltzmann Machine
(RBM) to extract features from fMRI, while Kashef
(2022) used CNN to diagnose ASD. On the other hand,
Li et al. (2022) employed the 3D ResNet (Tran et al.,
2018) to extract features to diagnose ASD. Furthermore,
the LSTM can also be used to extract features to ana-
lyze ASD. For example, Liu et al. (2021) extracted ab-
stract features, which are then fed to an autoencoder (see
Sec. 6.4 for further details) to extract final features to
diagnose ASD, while Kang et al. (2022) extracted dy-
namic spatiotemporal features using LSTM along with
CNN. Similarly, in (Jiang et al., 2022b) attempt to keep
both the spatial and temporal features. They extracted
spatial information from fMRI using CNN and a series
of spatial characteristics input into a Gated Recurrent
Unit (GRU) to extract temporal data. In addition, some
works employed two-stage networks to extract features.
For example, Li et al. (2018c) explored a 2-stage net-
work to distinguish between ASD and TD and clarify
the brain biomarkers. They employed a frequency sam-
pling method that corrupts the original image. The cor-
rupted image is forwarded to CNN, which helps to find
brain biomarkers with the discriminative feature, where
they used the AAL atlas with 116 ROIs. Nogay and
Adeli (2023) devised a two-stage strategy for categoriz-
ing ASD and TD based on sMRI images that includes
preprocessing and a grid search optimization algorithm
which was applied to deep CNN.

Morphological technique can also be employed to
extract features to classify the ASD, and TD (Gao et al.,
2021; Sharif and Khan, 2022). Sharif and Khan (2022),
for example, utilized morphological data from the cor-
pus callosum and intracranial brain volume to differen-
tiate ASD from TD, while in (Pugazhenthi et al., 2019)
segmented brain images into the white matter, gray mat-
ter, and cerebrospinal fluid by their threshold values; fi-
nally these segmented images along with original im-
ages were fed into the classifier. In addition, the shape
features from rs-MRI also contribute to the diagnosis of
ASD. For example, Ismail et al. (2017) merged eight
lobes from the cerebral cortex and cerebral white mat-
ter to obtain 64 attributes of shape variants per sample



where each element is represented by its cumulative dis-
tribution function, which generates 64 x 4000 points
that are subsequently classified as ASD and TD.

5.6. Multi-modal Feature

Multi-modal features extracted from the multiple
modalities as already discussed in Sec. 4.1.4 for the de-
tection and classification as well analyze autism. For
example, Chen and Zhao (2019) proposed a privileged
modality framework for classifying individuals with
ASD and TD that combines two distinct modalities of
visual attention. The first is a photo-taking task where
participants are instructed to take photos in various sce-
narios. The second is an image-viewing task where
participants’ eye fixations were extracted. These two
modalities are then fed into CNN-LSTM architecture to
extract features and classify ASD and TD. Moreover,
Javed and Park (2020) used human movement and fa-
cial key points features to identify the risk of ASD. They
extracted facial key points, and body tracking data us-
ing OpenPose (Cao et al., 2017) and then used laban
movement analysis (Groff, 1995) to derive movement
features; eventually, they extracted three movement fea-
tures and 68 facial key points. In addition, Duan et al.
(2019a) explored atypical and typical features to com-
pare the visual attention of ASD and TD children from
the facial images. Similarly, Saranya and Anandan
(2021) developed a framework that combined facial ex-
pression and gait, which can be defined as the manner
of walking for a person (Uddin et al., 2019) to predict
ASD. The gait features are extracted from video data:
heel strike, foot flat, mid-stance, heel-of, pre-swing, ter-
minal swing, and mid-swing.

In addition, Wang et al. (2019b) explored the gesture
and eye gaze as the primary criterion for judging the per-
formance of the expressing needs with the index finger
pointing task, which helps in early diagnosis of ASD.
Where gaze is estimated by a combination of eye cen-
ter localization (Daugman, 1993) and head pose estima-
tion (Baltrusaitis et al., 2016). On the other hand, the
gesture is recognized by the single-shot detector algo-
rithm. Similarly, Ali et al. (2022) try to understand be-
haviors (e.g., clapping, arm-flapping, to-taste, jump-up,
headbanging, and spinning) of children to help the di-
agnosis of ASD. They extract several features from raw
human-human or human-object interaction video. They
employed YOLO-V5 for person detection, followed by
DeepSORT (Wojke et al., 2017) for tracking and recur-
rent all pairs of field transformers for optical flow. Fi-
nally, the optical flow features, along with RGB image
further employed to classify ASD and TD.
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Some studies combine EEG along with other modal-
ities such as eye tracking, facial images, etc. For ex-
ample, Han et al. (2022) explored the EEG signal and
eye-tracking features to identify ASD. They extracted
the relative power energy, multiscale entropy, and brain
network for the EEG signal; on the other hand, a TX300
eye tracker was used to record eye gaze data and ex-
tract 96-dimensional eye-tracking features. Similarly,
in (Haputhanthri et al., 2020) explored the EEG fea-
ture together with the feature of facial thermography
to classify ASD and TD, where the standard deviation
and Shannons entropy are calculated from EEG fea-
tures, while the mean temperature of nine ROISs in facial
thermographic images was selected for facial features.
Finally, these extracted features were fused in a feature-
level fusion for the classification of ASD and TD.

6. Deep Learning-based Methods

Deep learning can be employed to extract features
and classifiers along with feature extraction and classi-
fication in an end-to-end manner. The feature extraction
procedure was explored in Sec. 5. Here we will ex-
plore the deep learning-based method for classification
and summarized in Table 3.

6.1. Artificial Neural Networks

Artificial Neural Networks (ANN), also referred to as
Feed-Forward Neural Networks (FFNN), are modeled
after biological neurons to mimic how they communi-
cate with one another in the human brain. It has three
layers: an input layer, one or more hidden layers, and
an output layer. There are no FC layers and only one
direction of travel for input data. On the other hand,
the Multilayer Perceptron (MLP) is a type of FFNN in
which every layer is FC and can backpropagate. MLP
serves as the fundamental building block for more ad-
vanced deep-learning architectures.

Some of the studies (Rani, 2019; Ahmed et al.,
2022a) explored ANN for the classification of ASD
and TD. Among them, Ahmed et al. (2022a) explored
ANN of 126 input layers followed by ten interconnected
hidden layers, and finally, two classes were produced.
They achieve the classification accuracy of 99.8% over
figshare repository®. On the other hand, MLP network
explored in (Niu et al., 2020; Haputhanthri et al., 2020)
where Niu et al. (2020) construct MLP with five layers.

3https://ﬁgshare.com/articles/dataset/Visualization,otLEye- Track
ing_Scanpaths_in_Autism_Spectrum_Disorder_Image_Dataset/70730
87/1


https://figshare.com/articles/dataset/Visualization_of_Eye-Tracking_Scanpaths_in_Autism_Spectrum_Disorder_Image_Dataset/7073087/1
https://figshare.com/articles/dataset/Visualization_of_Eye-Tracking_Scanpaths_in_Autism_Spectrum_Disorder_Image_Dataset/7073087/1
https://figshare.com/articles/dataset/Visualization_of_Eye-Tracking_Scanpaths_in_Autism_Spectrum_Disorder_Image_Dataset/7073087/1

Among these, one dropout layer with an input size of
4,005 and four dense layers of size 1,024, 512, 128, and
32, respectively, were employed.

6.2. Deep Neural Network

Deep Neural Network (DNN) is an ANN with more
than one hidden layer between the input and output lay-
ers. In DNN, each node is connected with every node
of the previous and forward layers. It takes an input
and has some FC layers to process inputs to get the final
output. In each layer, artificial neurons learn to extract
increasingly abstract features from input data which in-
creases their strength. Subah et al. (2021) employed a
DNN classifier using the preprocessed rs-fMRI data, in-
cluding two hidden layers, each with 32 neurons with a
dropout value of 0.8 between each layer. Finally, a sig-
moid activation function was used in the output layer to
predict ASD. They achieved an accuracy of 88.0% on
ABIDE I dataset. In another study, Yang et al. (2022)
implemented DNN with eight hidden layers sizes 2,600,
2,048, 1,024, 512, 256, 128, 64, and 32, respectively, to
reduced dimension. Finally, an output layer with a soft-
max activation was employed for classification. They
achieved an accuracy of 68.4% using the same ABIDE
I dataset.

Deep Belief Network (DBN) (Hinton, 2009) is a
probabilistic generative model composite of the N num-
ber of Restricted Boltzmann Machine (RBM). The DBN
was trained in two phases; firstly, it reconstructed in-
put in an unsupervised manner and, finally, fine-tuned
using a supervised way. Lu et al. (2022) construct a
DBN using three hidden layers with dimension sizes
of 512, 256, and 128. Finally, the output sizes of
two with softmax activation. They achieve an accuracy
of 68.6%, a sensitivity of 67.1%, and a specificity of
70.0% on ABIDE I dataset. Similarly, in (Huang et al.,
2020) stacked three hidden RBM to implement DBN
and achieved an accuracy of 76.4% on ABIDE I dataset.
In addition, Bhandage et al. (Bhandage et al., 2023)
employed an Adam war strategy optimization (AWSO)
based DBN. The AWSO is designed by the Adam opti-
mizer integrated with War Strategy Optimization. They
used ABIDE I and ABIDE II datasets by varying train-
ing sets and got accuracy, sensitivity, and specificity of
92.4%, 93.0%, and 93.5%, respectively using ABIDE I
dataset.

6.3. Convolutional Neural Network

A Convolutional Neural Network (CNN) is a form of
ANN primarily intended to analyze pixel input and used
mainly in image and computer vision (Yoo, 2015; Roy
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and Bhaduri, 2023), biometrics (Uddin et al., 2018),
Natural Language Processing (NLP) (Wang and Gang,
2018), and medical imaging (Anwar et al., 2018). We
already analyzed how CNN can extract features for
autism research in Sec. 5 along with a basic feature
extraction and classification structure by using CNN in
Fig. 7. Here we will explore how CNN can be explored
in autism research as a classifier and an end-to-end net-
work together with feature extraction and classification.

A simple CNN network consisting of convolution,
pooling, and FC layers can be used to feature extractors
and classifiers. Sherkatghanad et al. (2020) constructed
Functional Connectivity Matrix (FCM) between pairs of
ROIs into a simple CNN with one convolutional layer,
max-pooling, and densely connected layers along with
sigmoid activation. They demonstrated their model on
ABIDE I dataset and achieved a classification accuracy
of 70.2%. Similarly, Bayram et al. (2021) developed a
CNN model with nine layers, including convolutional,
dropout, and max-pooling, and the FC layers along with
the sigmoid activation. They demonstrated on ABIDE I
dataset and achieved a classification accuracy of 70.2%.
Furthermore, Marinoiu et al. (2018) construct a CNN
model which takes temporal series of 3D skeletons as
the input obtained from a Kinect sensor. Their CNN
model consists of convolutional, pooling layers that are
repeated twice, and lastly, an FC layer is added for ac-
tion recognition; and explored their proposed model on
the DE-ENIGMA dataset and achieved an accuracy of
53.1%. On the other hand, Mishra et al. (Mishra and
Pati, 2023) proposed an ensemble model of CNN with
different optimizers. The ensemble model of CNN with
Adam and Nadam optimizer has achieved an accuracy
of 81.3%, 77.6%, and 77.5% on the train-test ratio of
90:10, 80:20, and 70:30, respectively a total of 975 sam-
ples from ABIDE I dataset.

Existing pre-train CNN model can be explored to
extract features and perform classification with learned
weight using a large-scale dataset. Usually, It takes less
training time and effort to develop the model’s archi-
tecture. Mujeeb Rahman and Subashini (2022) stud-
ies five pre-trained CNN models, i.e., the XceptionNet,
MobileNet, and different versions of EfficientNet, to ex-
tract the facial landmark feature. Then the feature is
forwarded to the DNN, consisting of a hidden layer and
a sigmoid activation used as a classifier. They demon-
strated that the XceptionNet achieved the best AUC at
96.6% on the AFID (Piosenka, 2021).

In addition, some studies explored different versions
of the VGG network (Simonyan and Zisserman, 2014b),
one of the simplest and most popular pre-trained mod-
els. Lu and Perkowski (2021) employed a modified ar-



chitecture of the pre-trained VGG-16 model followed
by two hidden dense layers and a dropout layer to avoid
possible over-fitting along with ReLU as an activation
during training. They achieved a classification accu-
racy of 95.0% on their privately collected dataset, the
East Asian Dataset (Lu and Perkowski, 2021). In (Jiang
and Zhao, 2017) introduced a network architecture for
analyzing eye-tracking data and learning discriminative
features from images that follow the network of SAL-
ICON (Huang et al., 2015). It uses two parallel VGG-
16 networks to process the input image. The first net-
work uses the original image, while the second uses im-
ages that reduce the size by half of the original one.
Finally, the concatenated features of 1,024 dimensions
followed by the SVM classifier (Cortes and Vapnik,
1995) to classify the individuals with ASD and TD.
They demonstrated their framework on the eye tracking
dataset (Wang et al., 2015) where images were collected
from OSIE dataset (Xu et al., 2014) and achieved an ac-
curacy of 92.0%.

Multi-stream CNN architecture can be employed
to extract more than one feature to analyze ASD.
Chrysouli et al. (2018) used two-stream CNN archi-
tecture consisting of spatial and temporal blocks based
on the model described in (Simonyan and Zisserman,
2014a) for recognizing affective state. The spatial one
handles eye images, and the temporal one takes the
eye’s motion and merges them later. It achieved an
accuracy of 95.3% for the privately collected dataset
for the two classes (engagement vs. non-engagement)
while 92.7% for the three classes (engagement, bore-
dom, and frustration) classification.

In addition, Chong et al. (2017) proposed the Pose-
implicit CNN (Pi-CNN) model, which jointly ex-
tracts the head pose and eye contact feature for an-
alyzing ASD. They employed the modified AlexNet
(Krizhevsky et al., 2017) architecture with a smaller ker-
nel (i.e., 7x7 instead of 11x11) with stride 2 to find out
more details about the face. The model generates two
branches from the fully connected (FC) layer, one for
the head pose and another for eye contact classification.
They achieved the best F1-score, precision, and recall at
78.0%, 75.0%, and 80.0%, respectively, compared with
the state-of-the-art in the literature (Krizhevsky et al.,
2017; Smith et al., 2013; Ye et al., 2015; Rehg et al.,
2013) using a publicly available MMDB (Rehg et al.,
2013) dataset (see Table 4.1 for more details about the
datasets). Similarly, Li et al. (2018c) explored a two-
stage CNN to classify ASD and analyze brain biomark-
ers in ASD. The first stage is the framework of DNN (Li
et al., 2018b) consisting of six convolutional, four max-
pooling, and two FC layers, and lastly, a sigmoid output
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layer for the classification of ASD and TD. The second
stage uses the anatomical structure of the brain fMRI to
analyze the brain’s bio marks. Here, they corrupt the
ROI of the image and put it into a well-trained DNN to
find a prediction to help to develop the importance of
ROL. It achieved an accuracy of 87.1% over the ABIDE
I dataset for the classification of ASD and TD.

The Region-based Convolutional Neural Network
(R-CNN) (Girshick et al., 2015) was also employed in
the research of autism. The key concept behind the R-
CNN is a series of regional proposals. Region propos-
als are used to localize objects within an image. Patnam
et al. (2017) reconstruct R-CNN for recognizing melt-
down action. They added a classifier layer and achieved
an accuracy of 92.0% in their custom dataset, which
is 30.0% better than the benchmark R-CNN. Again,
Prakash et al. (2023) used hand/finger-pointing anno-
tated images from various hand gestures for training the
R-CNN model for joint attention tasks. They achieved
93.4% accuracy for the detection of whether a child
points to someone or something.
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Fig. 10: An architecture of Graph Convolutional Network (GCN).
First, input images are converted into a graph structure, i.e., nodes and
edges. After some convolutional operations, the FC layer is added for
the classification of ASD and TD.

Graph Convolutional Network (GCN) is a class of
CNN for semi-supervised learning on graph-structured
data, and it may operate directly on graphs and utilize
structural data (Jiang et al., 2022a). A simple GCN ar-
chitecture is illustrated in Fig. 10. Some variants of
GCN were also explored for the analysis of autism re-
search. For example, Wang et al. (2022) construct six
graphs from six different atlases of the brain and then
perform graph convolution operation on each graph. Fi-
nally, they achieved a classification accuracy of 75.8%
on ABIDE dataset, while Wen et al. (2022) employed
multi-view GCN that combines graph structure and
multi-task graph embedding learning to improve clas-
sification performance. They achieved an average accu-
racy of 69.3% over ABIDE dataset.

Park and Cho (2023) developed a model that uses
functional brain connectivity between STS and the vi-



sual cortex to diagnose ASD. First, it extracts both
the spatial and temporal features from 4D fMRI brain
images using residual CNN and Bi-LSTM with self-
attention. These features are then converted into FCM
to use by the GCN. They achieved an accuracy of 97.6%
over the ABIDE-I dataset.

6.4. Autoencoder

Autoencoder (AE) (Rumelhart et al., 1985) is a sim-
ple FENN consisting of input, output, and hidden lay-
ers divided into two phases, i.e., encoder and decoder.
It firstly downsamples the whole input into a lower di-
mension by using input relation into the encoding phase,
called latent space, while in the decoding phase, this
down-sampled latent feature is upsampled to recon-
struct the input as output. During the upsampling, it
can produce novel samples with similar characteristics
to the original data. However, the latent space features
are used in the analysis of ASD research. A simple AE
architecture is illustrated in Fig. 11.

Yin et al. (2021) developed an AE-based diagnos-
tic approach. The first three layers of the AE are in-
put and hidden layers (latent space representation), fol-
lowed by a DNN classifier with a softmax activation.
They demonstrated that the accuracy of the pre-trained
AE along with a pre-trained DNN classifier is 3% more
than without a pre-trained DNN classifier using ABIDE
I dataset. Similarly, Sewani and Kashef (2020) em-
ployed AE for feature extraction and CNN as a classi-
fier. They achieved an accuracy of 84.0% over ABIDE I
dataset, while Mostafa et al. (2019b) achieved accuracy
at 79.2% by employing AE followed by a pre-trained
DNN classifier.

Sparse Autoencoder (SAE) (Ng et al.,, 2011) is a
variant of the AE which uses sparsity to create an infor-
mation bottleneck. Almughim and Saeed (2021) imple-
mented an SAE which takes 9,500-dimensional features
as input and reduces them to 4,975-dimensional features
in bottleneck layers, followed by a DNN of three layers
with the size of 2,487, 500, and 2, respectively, along
with a softmax layer for classification.

Stacked Autoencoder is stacked by N number of
AE where the output of i AE acts as input of (i+1)®
AE. Studied in (Kong et al., 2019) explored a DNN-
based model consisting of input, two SAE, and out-
put, where SAEs reduce the feature dimension and ex-
tract hidden features, followed by a softmax in the out-
put layer. They demonstrated their model on ABIDE
I dataset and achieved an accuracy of 90.3%. Simi-
larly, Li et al. (2018a) employed stacked three SAEs
in the encoding part to generate a stacked SAE proto-
type to be learned in an unsupervised manner and then

17

Bottleneck
|,|III|

I

Latent (Code)

.

Reconstructed

Image L - I | Image
Encode :Compressed Decode
data
O Reshapt-‘:ﬂ~ _-
Classifier

Fig. 11: A simple autoencoder architecture. First, in the encoding
phase, the input image is compressed into a lower dimension (i.e., la-
tent code generation) while upsampling the latent code into the output
image. The generated latent code help to classify ASD and TD.

combined with softmax, subsequently fed into a deep
transfer learning NN. They achieved an average accu-
racy of 67.1% on ABIDE I dataset. Again, Wang et al.
(2019a) employed a stacked SAE with two hidden lay-
ers followed by a softmax, achieving 93.5% accuracy
on ABIDE I dataset.

Variational Autoencoder (VAE) (Kingma and
Welling, 2013; Milano et al., 2023) are probabilistic
generative models in the latent space. The encoder can
produce multiple samples from the same distribution
while the decoder maps from the latent space to the in-
put. The authors in (Zhang et al., 2022a) employed a
VAE that first trained the model in an unsupervised way.
Then the pre-trained encoder portion of the VAE is con-
catenated with additional layers for fine-tuning in a su-
pervised manner. The model takes 3,170-dimensional
features and reduces dimensions to 250 and then 150.
Finally, these 150-dimensional features are fed into the
softmax layer for the classification of ASD and TD.
They achieve an accuracy of 78.1% over the ABIDE I
dataset.
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Table 3: Summary of articles published using DL-based methods for detecting, classifying, and rehabilitating ASD with the image(s) or video. CE: Cross Entropy, LOO: Leave One Out, N/A:

Not Available or Applicable; Acc.: Accuracy; Sen.: Sensitivity; Spe.: Specificity; AUC: Area Under Curve; F1: F1 Score; Pre.: Precision.

lAuthor (Year) Focus Modality Method Datasets 23::;2:“ {;:::sc tion [Result [%] ?(;l d
Park and Cho (2023) (Classification of ASD using functional brain connectivity between STS and visual cortex MRI GCN ABIDE I Softmax N/A  |Acc: 97.6; Sen: 98.0; F1: 98.0 10
Pavithra et al. (2023) Identification of ASD and TD by RCNN based model and MRI data MRI CNN ABIDE N/A N/A  |Acc: 85.0; Sen: N/A; Spe: N/A 5
IBhandage et al. (2023) Classify ASD and TD by using DBN and MRI data MRI DBN ABIDE I N/A N/A  |Acc: 92.4; Sen: 93.0; Spe: 93.5 N/A
. T ecmcc ) . IAcc: 72.3; Sen: N/A; Spe: N/A (activity comprehension)
Prakash ct al. (2023) El',“"fl‘;"?a(lj‘i‘“d skill assessment test of ASD children from Multi-modal E"CNN’ Primary Softmax | NJ/A  |Acc: 97.0; Sen: 95.5; Spe: 98.0 (joint attention of eye gaze) | N/A
play-based intervention sessions esnet Acc: 95.1; Sen: N/A; Spe: N/A (facial expression recognition)|
Mishra and Pati (2023) Detect ASD and TD by CNN and MRI data MRI CNN ABIDE I N/A N/A  |Acc: 81.3; Sen: N/A; Spe: N/A N/A
Milano et al. (2023) Diagnosed ASD and TD analyzing their motor abnormalities IMulti-modal| VAE Primary Softmax |Proposed |Acc: 91.2; Sen: N/A; Spe: N/A 10
'Wadhera et al. (2023) Diagnosed ASD and TD using MRI image and hybrid DL model MRI VGG + ResNet ABIDE I Softmax N/A  |Acc: 88.1; Sen: 91.3; Spe: 86.3 N/A
Cao et al. (2023) Classify ASD and TD by using patch based VIT and facial images Face VIT AFID N/A MSE |Acc: 94.5; Sen: N/A; Spe: N/A; AUC: 97.9 N/A
Sabegh et al. (2023) Classify ASD and TD by using resting-state fMRI data MRI CNN ABIDE I N/A N/A  |Acc: 73.5; Sen: N/A; Spe: N/A N/A
VGG-19, lAcc: 85.0; Sen: N/A; Spe: N/A; AUC: 92.3
Rabbi et al. (2023) Detection of ASD and TD by using facial images Face Inception-V3, AFID N/A N/A  |Acc: 78.0; Sen: N/A; Spe: N/A; AUC: 85.9 N/A
DenseNet-201 |Acc: 83.0; Sen: N/A; Spe: N/A; AUC: 91.0
Atyabi et al. (2023) Analyzing ASD and TD using spatio-temporal features of their scan-paths Eye Gaze CNN Primary N/A N/A  |Acc: 80.2; Sen: N/A; Spe: N/A; AUC: 83.8 N/A
Othmani et al. (2023) Diagnose ASD and TD from MRI images MRI LeNet-5 ABIDE I Sigmoid CE |Acc: 95.0; Sen: 95.0; Spe: N/A; F1: 95.0 5
Alkahtani et al. (2023) Identify ASD and TD based on facial landmark Face xggﬁlze[’ AFID Softmax CE :zg gg?: 2:: g;g: :gz II:ZQZ E} 2;8 N/A
Nogay and Adeli (2023) Diagnosed ASD and TD using structural brain MRI MRI CNN ABIDE Softmax | CE  |Acc: 100; Sen: 100; Spe: N/A 5
images and grid search optimization
Han et al. (2022) Identify ASD and TD using Multi-modal (EEG, Eye track) framework IMulti-modal DAE Primary N/A N/A  |Acc: 95.5; Sen: 92.5; Spe: 98.0 10
Atyabi et al. (2022) g::;?iz:if;g de[r) O?nslgfesgjglea:?tde;pauo-lemporal Eye Gaze CNN Primary N/A N/A  |Acc: 80.2; Sen: N/A; Spe: N/A N/A
Identify ASD by transfer-learning-based Xception, Acc: 95.0; AUC: 98.0; Pre: 95.0
Alam et al. (2022) melhody using l'zilcial images ¢ Face Reslglel—SO AFID N/A CE Acc: 94.0; AUC: 96.0; Pre: 94.0 N/A
Kanhirakadavath and Chandran (2022)| Diagnose ASD and TD based on scan path Eye Gaze CNN Figshare Sigmoid | BCE |Acc: N/A; Sen: 93.2; Spe: 91.3;: AUC: 97.0 5
Sharif and Khan (2022) Classify of ASD and TD using corpus callosum MRI CNN ABIDE I Softmax | N/A |Acc: 66.0; Sen: N/A; Spe: N/A 5
and intracranial brain volume
Wang et al. (2022) Diagnose ASD based on multi-atlas GCN MRI GCN ABIDE Softmax CE  |Acc: 75.8; Sen: 79.2; Spe: 71.53 10
Torres et al. (2022) Classify facial emotions using EEG signals. EEG CNN Primary Softmax | N/A |Acc: 86.0, Sen: N/A, Spe: N/A LOO
Zhang et al. (2022a) Identify ASD based based on MLP MRI VAE-MLP ABIDE [ Softmax CE  |Acc: 78.1: Sen: 77.8; Spe: 78.3 10
Jiang et al. (2022b) Classify ASD and TD using Spatio-temporal feature MRI 3D CNN-GRU ABIDE I Sigmoid CE |Acc: 72.4; Sen:74.3; Spe: 79.2 N/A
Hao (2022) Diagnose ASD by exploring higher order correlation and AE MRI AE ABIDE I NN MSE |Acc: 71.8 Sen: 70.8; Spe: 65.9 10
Kang et al. (2022) Identify ASD and TD based on multi-view ensemble learning MRI LSTM+DAE ABIDE Sigmoid N/A  |Acc: 72.0; Sen: N/A; Spe: N/A LOO
Guo et al. (2022) Diagnose ASD using 3D ResNet-18 MRI 3D ResNet-18 Primary N/A N/A  |Acc: 84.4; Sen: 85.0; Spe: 84.0 N/A
Zhang et al. (2022b) Diagnose ASD based on F-score selection method using fMRI MRI AE ABIDE N/A N/A  |Acc: 70.9; Sen: N/A; Spe: N/A N/A
'Wen et al. (2022) classify ASD and TD using multi-view GCN MRI GCN ABIDE N/A  |Proposed |Acc: 69.3; Sen: N/A; AUC: 69.0 10
Devika et al. (2022) Classify ASD and TD using GAN MRI GAN ABIDE II, ADHD-200 N/A  |Proposed |Acc: 97.8; Sen: N/A; Spe: N/A N/A
. Diagnose ASD using deep learning framework 3D ResNet- ABIDE, lJAcc: N/A; Sen: 86.0; Spe: 62.0; AUC: 85.6
Li etal. (2022) frongl MRI data — ¢ MRI Inception Primary N/A NA - ace: N;A; Sen: 88.0; sge: 75.0; AUC: 78.7 N/A
Cai et al. (2022) Diagnose ASD using DL framework Face ResNet-50 Public N/A N/A  |Acc: 95.0; Sen: 92.5; Spe: 96.4 3
Yang et al. (2022) Classify ASD and TD using various classifiers with Altas MRI DNN ABIDE I Softmax CE  |Acc: 68.4; Sen: 62.7; Spe: 73.6 5
[Kashef (2022) Identify ASD using enhanced CNN MRI CNN ABIDE I Softmax N/A  |Acc: 80.0; Sen: N/A; Spe: N/A 10
[Elakkiya and Dejey (2022) Classify ASD and TD using RBM e-Gaussian Process MRI Bernoulli RBM ABIDE I N/A N/A  MSE: 20.0 2
. Detects stimming behavior of children to hel, SSBD, IAcc: 98.0; Sen: N/A; Spe: N/A
Pandian et al. (2022) ASD diagnosis bgy developing RGBPOSE SLOWEAST Skeleton ResNet-34 Primary NA | NA ) e 86.0; Sen: N;A; sie: N;A N/A
Lu et al. (2022) Classify ASD and TD using fuzzy inference system and DBN MRI DBN ABIDE I Softmax CE  |Acc: 68.6; Sen: 67.1; Spe: 70.0 5
Lakkapragada et al. (2022) Detect hand-flapping to analyze ASD Multi-modalMobileNetV2-LSTM| SSBD Sigmoid CE |Acc: 85.0; Sen: 80.4; F1: 84.0 5
Classify ASD and TD by analyzing the FENN, . lAcc: 99.8; Sen: 99.5; Spe: 100
Abmed et al. (20222) scan pa){h of individualsyeye e Eye Gaze ANN Figshare Softmax N/A |Acc: 99.8; Sen: 100; Sppe: 99.7 N/A
. .. L . . Xception, . . IAcc: 90.0; Sen: 88.4; Spe: 91.6; AUC: 96.6
Mujeeb Rahman and Subashini (2022) Distinguish ASD and TD from static features of face images Face Eﬂ"lcpientNetBl AFID Sigmoid CE lAcc: 89.6: Sen: 86.0: Sge: 94.0: AUC: 95.0 N/A

Continued on next page
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Table 3 — Continued from previous pa,

[

. |Activation|Loss K-
|Author (Year) Focus Modality Method Datasets Function |Function IResult [%] Fold
. e . . Xception, |Acc: 91.0; Sen: 88.0; Spe: 94.0
Alsaade and Alzahrani (2022) Classify ASD and TD based DL methods using facial features Face VGG-19, AFID Softmax N/A lAcc: 80.0; Sen: 78.0; Spe: 83.0 N/A
S e SRS . FRIP . . Primary, |Acc: 86.0; Sen: N/A; Spe: N/A; F1: 83.8
Al et al. (2022) Recognize autistic behaviors using a multi-modal fusion framework [Multi-modal| 3D CNN SSBD N/A N/A [Acc: 75.6; Sen: N/A: Spe: N/A: F1: 90.5 5
. . . MobileNet+Shuff- .
Baygin et al. (2021) Detect ASD using EEG signals EEG leNet+SqueezeNet Primary N/A N/A  |Acc: 96.4; Sen: 97.7; Spe: 93.1 10
. . Classify self-stimulatory behaviors of ASD . ’ . i . Qs
Liang et al. (2021a) using Temporal Coherency Deep Network [Multi-modal AlexNet SSBD N/A  |Proposed|Acc: 98.3; Sen: N/A; Spe: N/A 5
Wei et al. (2021) Identify ASD based on spatiotemporal features of eye movement Eye Gaze CNN- LSTM Saliency4ASD Sigmoid CE  |Acc: 61.4; Sen: 68.5; Spe: 54.6 N/A
Hosseini et al. (2021) Classify ASD and TD based on facial images, and DL methods Face MobileNet AFID Softmax N/A  |Acc: 94.6; Sen: N/A; Spe: N/A N/A
i . L - - S MobileNet, |Acc: 92.1; Sen: N/A; Spe: N/A
/Akter et al. (2021) Identify ASD by transfer-learning-based method from face images Face DenseNet-121 AFID N/A N/A [Acc: 83.6; Sen: 83.6; Spe: 83.6 10
/Almuqghim and Saeed (2021) Classify ASD and TD by developing ASD-SAENet MRI SAE ABIDE I Softmax CE  |Acc: 70.8; Sen: 62.2; Spe: 79.1 10
Cao et al. (2021) Identify ASD using deep GCN MRI GCN ABIDE I Softmax N/A  |Acc: 73.7; Sen: N/A; AUC: 75.0; F1: 69.6 10
Gao et al. (2021) Identify ASD based on morphological covariance brain networks MRI ResNet ABIDE I N/A CE |Acc: 71.8; Sen: 81.2; Spe: 68.7 10
S . ) . ) I . DenseNet-201, |Acc: 85.9; Sen: 79.3, Spe: 92.6
/Al-Hiyali et al. (2021b) Diagnose ASD using temporal dynamic features of fMRI MRI ResNet-101 ABIDE I N/A N/A [Acc: 84.4; Sen: 73.4: Spe: 82.4 N/A
Liang et al. (2021b) Classify ASD and TD by combining CNN MRI CNN ABIDET N/A  [Proposed |Acc: 77.3, Sen: 78.0; Spe: 77.8 10
and prototype learning framework
iuali of 4 . . . . . . |Acc: 89.8; Sen: 90.1 Spe: N/A (Binary class)
Al-Hiyali et al. (2021a) Identify ASD subtypes using CNN and dynamic FC features MRI CNN ABIDE Softmax N/A Acc: 82.1; Sen: N/A; Spe: N/A (Multi class) 20
Kiruthigha and Jaganathan (2021) Identify ASD using GCN MRI CNN+GCN+VAE ABIDE N/A N/A  |Acc: 62.6; Sen: N/A; Spe: N/A N/A
Liu et al. (2021) Identify ASD using multi-regional rs-fMRI data MRI LSTM-AE ABIDE Softmax CE |Acc: 71.3; Sen: N/A; Spe: N/A; Pre: 70.5 10
Kojovic et al. (2021) Detect ASD by extracting skeletal key points Skeleton | CNN-LSTM Primary Softmax | CE  |Acc: 80.9; Sen: 85.4; Spe: N/A; Pre: 78.4 N/A
during social interaction
Banire et al. (2021) Recognize attention of ASD children based on facial expression Face CNN Primary N/A N/A  |Acc: 89.4; Sen: N/A; Spe: N/A; AUC: 85.6; N/A
. . RNN, . . |Acc: 74.7; Sen: 72.9; Spe: 76.2;
Bayram et al. (2021) Detect ASD using various DL-methods through rs-fMRI data MRI BiLSTM ABIDE I Sigmoid N/A Acc: 74.5: Sen: 72.2; Spe: 76.5; 10
Lu and Perkowski (2021) Diagnose ASD using transfer learning-based methods Face CNN East Asian* N/A N/A  |Acc: 95.0; Sen: N/A; Spe: N/A; F1: 95.0 10
Subah et al. (2021) Detect ASD from functional connectivity features of rs-fMRI MRI DNN ABIDE I Sigmoid CE |Acc: 88.0; Sen: 90.0; F1: 87.0; AUC: 96.0 5
Detect ASD from human gaits using . FER2013, CASIA - : . e,
Saranya and Anandan (2021) multi-modal features with DL Multi-modal CNN KDEF Lundgvist et al. (1998) Softmax | RMSE |Acc: 96.5; Sen: 94.5; Spe: 95.0 10
o . . ResNet-18, . lAcc: 61.4; Sen: 73.0; Spe: 50.0; AUC: 66.0
Liagat et al. (2021) Classify ASD and TD using ResNets from gaze data Eye Gaze ResNet-50 Saliency4ASD N/A CE Acc: 62.1; Sen: 71.0; Spe: 54.0; AUC: 67.0 N/A
De Belen et al. (2021) Diagnose ASD by de\{elopmg DNN-based Eye Gaze CNN-LSTM Primary N/A  |Proposed [Acc: 68.0-100; Sen: 57.0-100; Spe: 65.0-100 LOO
model from eye-tracking data
Tawhid et al. (2021) Classify ASD and TD based on spectrogram image of EEG EEG CNN KAU * Softmax N/A  |Acc: 99.1; Spe: 99.0; Sen: 99.1 N/A
. . . . . ResNet-50, . i lAcc: 90.0; Sen: 87.0; Spe: 92.0;
Ganesh et al. (2021) Classify ASD and TD based on facial thermal imaging Face CNN Primary Softmax N/A lAcc: 96.0; Sen: 100; Spe: 93.0; N/A
Cilia et al. (2021) Sereening ASD using the eye scan path and Eye Gaze CNN Primary N/A N/A  |Acc: 90.0; Sen: 83.0; Pre: 80.0; AUC: 90.0 3
correlating between autism severity
. . . N . |Acc: (Smile): 70.0; (Look face): 68.0;
'