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Abstract:
Decarbonisation of the energy sector has brought about a need for intelligent building energy management
strategies that can respond optimally to changing external conditions and user requirements. Data-driven
modelling methods that can reduce the implementation effort of such strategies have recently gained significant
attention, but the inherent variability of building design can mean that a non-trivial parameter selection and
tuning process remains. These parameters include continuous and granular variables. This paper proposes a
method for automating the control design process for building energy management, enabling predictive control
implementation without bespoke system identification or extensive controller tuning effort. This is achieved by
combining Data-enabled Predictive Control (DeePC) methods with a parameter selection and tuning procedure
using the Mesh Adaptive Direct Search (MADS) algorithm. This selection and tuning procedure is carried out
prior to the implementation of the DeePC using data measurements from the building under standard control.
The impact of parameter selection on the control performance is shown through a set of case studies using
both real data and a simulation environment in which predictive control is used to maintain thermal comfort in
a building. Using the autotuned DeePC approach, a reduction of 74% in thermal comfort violation is achieved
compared to a classical PI approach, while a reduction of 28% is achieved relative to a DeePC control without
autotuning.
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1. Introduction
The need for intelligent building control that can offer flexible operation so as to contribute to a decarbonised
energy landscape is becoming ever more urgent [1]. Model Predictive Control (MPC) for buildings has been
well established as a key technology in this transition [2] due to its ability to incorporate predictions, constraints
and external incentives into an optimisation based framework. A significant bottleneck in the rollout of the
technology is the need for suitable building models. The varying nature of building designs and user behaviour
makes off-the-shelf solutions challenging. For example, it has been noted [3] that creating and calibrating
models accounts for 70% of the implementation effort of MPC in buildings.
Driven by this need to expedite the implementation process, data-driven predictive control methods have be-
come increasingly popular in the academic literature on building control [4,5]. Rather than leaning on building
modelling expertise, data-driven methods can exploit the increasing ubiquity of data and data-handling plat-
forms in the built environment to learn the relevant dynamics from historical data [6].
Aside from the built environment, the wider control community has seen significant developments in data-driven
methods in recent times. Of particular note has been the upsurge of methods founded on Willems’ fundamental
lemma [7]. These methods rely on the outcome of the fundamental lemma that, under certain straightforward
excitation conditions, historical data structures can be used to project all permissible trajectories of a Linear
Time-Invariant (LTI) system. Data-driven control methods analogous to various model-based control methods
have been developed based on this [8], notably including a data-driven counterpart to MPC, referred to as
Data-enabled Predictive Control (DeePC) [9]. Many extensions have been proposed in recent times, often
centred around robustness requirements [10], nonlinearity in the system under control [11] and noisy data [12].
Due to the desire for data-driven predictive control in the built environment, building energy management can
be commonly found as an application of DeePC and its alternatives in literature [13,14]. The key advantage of
these methods is the ease with which implementation can be carried out. A gap that remains, however, is that
although model parameterisation is not required, controller design is still needed. Regularisation and relaxation



weights, as well as data trajectory lengths, can greatly impact the behaviour of the controller. Different systems
require different control parameters and, once again, given the varying nature of buildings, a one-size-fits-all
approach is unlikely to be sufficient. Since replacing a model design problem with a control design problem
is not a desirable outcome, methods for automating the process of control parameter selection are highly
desirable in this context. Given the data-driven nature of the controller, using data for controller parameter
selection would be of interest.
In this paper, a method is proposed for tuning and configuring a DeePC strategy in an automated manner using
a Derivative-Free Optimisation (DFO) approach, namely the Mesh Adaptive Direct Search (MADS) algorithm
as proposed in [15]. Using a similar structure to the data-driven controller, a data-driven simulation method is
used and a blackbox system is formed in which controller parameters are the inputs and a simulation inaccuracy
metric is the output. This blackbox system is optimised using MADS - i.e., parameters are found to minimise
simulation inaccuracy - and the optimal parameters are then used to define a DeePC strategy which is used
for building control. The data-driven simulation behaviour is illustrated using data from a real dwelling. The
behaviour of controllers in which autotuning has been carried out is then analysed using a detailed building
modelling framework in which two buildings with six zones in each are simulated. The performance of the
autotuned DeePC controllers is compared to that of DeePC controllers without bespoke tuning in terms of
their ability to maintain comfort in the simulated buildings. A comparison is also made with a non-predictive PI
strategy.
In Section 2., the DeePC and blackbox optimisation methodology is outlined. This is followed by the set of case
studies in Section 3., in which real data and a simulation environment are used to analyse the performance of
the approach.

2. Automating the deployment of data-driven building energy manage-
ment

2.1. DeePC for building energy management
In this section, a DeePC formulation is outlined. It should be noted that variations to this formulation are
possible. However, this section provides a background for subsequent sections which rely on similar concepts
and notation.
An LTI system of unknown parameters can be given as

x [k + 1] = Ax [k ] + Bu[k ]
y [k ] = Cx [k ] + Du[k ],

(1)

where u[k ] ∈ Rm and y [k ] ∈ Rp are the input and output vectors, respectively, x [k ] ∈ Rn is the system state-
vector, and A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n and D ∈ Rp×m are parameter matrices.
Matrices formed of T0 ∈ Z>0 persistently exciting historical data sequences measured from this system are
constructed, most commonly in a Hankel structure. A trajectory w , for example, is defined as persistently
exciting of order L0 ∈ Z>0, if the Hankel matrix HL0 (w) is of full row-rank with

HL0 (w) :=

w1 · · · wT0−L0+1
...

. . .
...

wL0 · · · wT0

 . (2)

Input and output sequences collected from a system can respectively be defined as utr =
[
uT

1 , ... , uT
T0

]T
∈ RmT0

and ytr =
[
yT

1 , ... , yT
T0

]T
∈ RpT0 . The Hankel matrix structures, composed of these trajectories can then be

formed and partitioned as follows:[
Up
Uf

]
:= HTini +N (utr ),[

Yp
Yf

]
:= HTini +N (ytr ),

(3)

where N is the prediction horizon, Tini is user-defined, Up and Yp have Tini rows while Uf and Yf have N rows.
These data structures can be used to define permissible trajectories from the system defined in (7) by finding
solutions that satisfy the following:




Up
Uf
Yp
Yf

 g =


uini
uf
yini
yf

 , (4)

where g ∈ RT0−Tini−N+1, uini and yini denote the most recent Tini input and output measurements from the
system, respectively, and uf and yf define future input and output trajectories. By using this condition as a
constraint in an optimisation formulation, a predictive control strategy can be formed. This is the central concept
behind the DeePC strategy proposed by [9]. Successful application of the strategy requires the objective
function of the optimisation formulation to include certain constraint relaxations as well as regularisation of the
optimisation variable g to account for real-world imperfections in the data and nonlinearity in the system under
control.
The DeePC approach has been applied to the problem of building thermal management [13,14,16] whereby in-
puts are heat flows and outputs are room temperatures. As noted in the introduction, building modelling can be
time-consuming and, given the diverse nature of the global building stock and the need to quickly deliver meth-
ods for improved energy management, expediting the control implementation process is an attractive prospect.
Nonetheless, in removing the need for model parameterisation, a controller parameterisation problem remains.
Regularisation weights, relaxation weights and trajectory lengths must be chosen. Suitable choices of these
parameters can vary from system to system. As the key advantage of the approach in this application is to
reduce the implementation effort, methods are required to automate the parameter selection process.
2.2. Optimal selection of control parameters
A method for optimising the DeePC parameters using historical data is proposed here. Following this concept,
the building is operated in a standard rule-based or classical manner for a period of time prior to implementation
of the DeePC to generate data for parameter optimisation. This data is used to construct Hankel matrices in the
manner described in Section 2.1.. Equation 4 is then used to form a data-driven simulation formulation as will
be described in this section. The accuracy of the data-driven simulation is dependent on the same parameters
as the DeePC controller. By comparing the data-driven simulation output to the historical measurements, the
simulation performance can be quantified. A blackbox system can then be formed whereby the inputs are the
controller parameters and the output is the simulation inaccuracy. A suitable blackbox optimisation method is
then required to optimise the inputs to minimise the output.
Parameters affecting the behaviour of the DeePC algorithm include the trajectory initialisation length Tini and
the regularisation and relaxation weights. The former is an integer variable, while the latter two are continuous.
The optimisation approach chosen must then be able to handle both continuous and integer variables. The
Derivative-Free Optimisation (DFO) approach proposed in [15] is one such method. This method employs
a Mesh Adaptive Direct Search (MADS) algorithm to determine a local optimum to a blackbox optimisation
problem by sampling from a grid that gets successively refined. The blackbox system is next defined.
Assume at time k , where k > T0 + Tini + N, measured input data umeas =

[
uT

1 , ... , uT
k

]
∈ Rmk and output data

ymeas =
[
yT

1 , ... , yT
k

]
∈ Rpk have been collected. Picking a starting point k0 and defining T0-length sequences

usim
tr =

[
umeas

k0
... umeas

k0+T0−1

]
and ysim

tr =
[
ymeas

k0
... ymeas

k0+T0−1

]
, the Hankel matrices of (3) are formed. An N-length

simulated output ysim
f can be found from time (k1) to (k1 + N − 1) for any k1 > k0+T0+Tini by solving ysim

f = Yf g∗
sim

where g∗
sim is the solution to:

g∗
sim = arg min

gsim

Tini−1∑
i=0

(
εini

i

)
+ a0gT

simgsim + a1

N−1∑
i=0

(
εf

i

)
(5)

s.t.

Upg = usim
ini

Uf g − usim
f ≤ εf

usim
f − Uf g ≤ εf

Ypg − ysim
ini ≤ εini

ysim
ini − Ypg ≤ εini .

(6)

In this formulation, usim
ini = [umeas

k1−Tini
... umeas

k1−1 ], usim
f = [umeas

k1
... umeas

k1+N−1], ysim
ini = [ymeas

k1−Tini
... ymeas

k1−1 ] and a0 and a1 are
the regularisation and relaxation weights. The non-negative decision variables εf and εini are used to relax the



equality conditions. The simulation inaccuracy is then defined as the Root-Mean-Squared (RMS) difference
between the simulated trajectory ysim

f and the measured data [ymeas
k1

... ymeas
k1+N−1]. This can be repeated for

multiple selections of k0 and k1 with the average RMS outcome taken as the performance measure denoted
bberr (the blackbox output) for a given set of control parameters θ = [Tini , a1, a2] (the blackbox input). The
MADS algorithm is used here to sample different values of θ to determine the parameters that produce the
minimal bberr . These parameters are then used to define the DeePC control problem. The blackbox system
is summarised in Algorithm 1, where the sets defining the test points for k0 and k1 are defined as K0 and K1
respectively.

Algorithm 1 Black box for parameter tuning

1: for k0 ∈ K0 do
2: usim

tr =
[
umeas

k0
... umeas

k0+T0−1

]
3: ysim

tr =
[
ymeas

k0
... ymeas

k0+T0−1

]
4: Update Up, Uf , Yp, Yf
5: for k1 ∈ K1 do
6: Update ysim

ini , usim
ini , usim

f
7: Solve (5) to find g∗

sim
8: ysim

f = Yf gsim
9: yerr (k0, k1) = RMS(ysim

f − [ymeas
k1

... ymeas
k1+N−1])

10: end for
11: end for
12: bberr (θ) =

∑
k0∈K0,k1∈K1

yerr (k0, k1)

3. Case studies
3.1. Parameter optimisation using MADS
To illustrate the use of MADS and the simulation strategy of (5), real heat supply and internal air temperature
data were taken from a dwelling and a data-driven simulation was carried out with parameters tuned using the
proposed blackbox optimisation approach. The performance of the data-driven simulation was then compared
to the measured data. Two choices of k0 and ten choices of k1 were used in the blackbox optimisation. At each
15 minute timestep over a 25-day period (a different period to that used for parameter tuning), a data-driven
10-hour prediction trajectory of the air temperature was generated using (5) and knowledge of the measured
heat supply trajectory for the period, shown in Fig. 1.
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Figure 1: Measured heat supply

The resulting data-driven simulation performance is shown here for a 26-day period. The 1-step-ahead (15
minutes), 10-step-ahead (2.5 hours) and 20-step-ahead (5 hours) predictions are plotted against the measured
data in Fig. 2.
It can be seen that the simulation accuracy attained is quite high. The 15-minute-ahead prediction is indis-
tinguishable from the measured values, while a small over-estimation of the temperature can be seen in the
5-hour-ahead and 10-hour-ahead predictions. This level of accuracy was achieved despite the fact that no
external disturbances such as weather or occupancy were used in the data-driven prediction. This is a promis-
ing outcome as it indicates that useful prediction can be made without the need for bespoke modelling and
without the need for weather forecasting tools. Of course, if forecasts of external conditions (or any other
influencing factors) were available, an improved predictive performance could be achieved. Nonetheless, the
results suggest that improved performance over a non-predictive control baseline could be achieved with very
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Figure 2: Data-driven simulated performance against measured data

low deployment effort.
While real, measured data can be used to show the ability of MADS to tune the data-driven simulation ap-
proach, the control performance can only be assessed by using a detailed simulation environment to analyse
the closed-loop behaviour. The development of such an environment is described in the next section.
3.2. Simulation framework
To demonstrate the concept and the impact of this tuning approach, an analysis of the control performance
is required. In particular, a comparison is needed between the DeePC approach with and without the use
of the proposed tuning strategy. A simulation environment is needed to enable a consistent comparison be-
tween scenarios. Here, a detailed physics-based building simulation framework is employed. The simulation
framework is designed to incorporate external weather conditions as well as internal gains to ensure realistic
behaviour. The framework generates data which are fed to the data-driven controller at 15-minute intervals.
At each interval, the controller uses these data to determine an optimal heat supply trajectory which is then
passed back to the simulator.
Models of two buildings were generated using Energyplus [17] and translated to Matlab using the BRCM
toolbox [18]. The building dimensions are identical with 5 rooms in each, but the first has low levels of insulation
while the second is well-insulated. In the modelled heating systems, heat pumps generate heat which is
delivered to the buildings via radiators which are sized to account for the different insulation levels present.
DeePC controllers are applied in each room to manage the radiator temperature setpoints to ensure that the
air temperature in each room remains as low as possible without violating pre-defined comfort bounds where
possible. Two buildings are used to emphasise the point that different building properties will impact the choice
of DeePC tuning parameters necessitating bespoke tuning. A diagram of the building design is shown in Fig. 3,
while the building properties are summarised in Table 1 and Table 2.

Table 1: 1-bedroom flat construction details: low insulation

Thermal Heat capacitance Solar Area
transmittance (per m2 surface area) Factor

W/m2K kJ/m2K (G-value) m2

Roof 0.285 53.3 - -
Floor 0.388 301.6 - -

Ext. walls 0.987 460.9 - -
Internal walls 2.581 33.1 - -

Glazing 1 - 0.5 6.2

The resulting building models can be represented as linear state-space models of 102 states, 6 controlled
inputs (the heat supply to each room), 6 outputs (room air temperatures) and 13 disturbances (internal gains
for each room from occupants and appliances, ground temperature, air temperature and solar gains for each
sun-facing surface). An additional random perturbation is applied to the states as an additional source of
uncertainty. The simulation models can then be represented in the form:



Figure 3: 5-room dwelling modelled using Energyplus and the BRCM toolbox

Table 2: 1-bedroom flat construction details: high insulation

Thermal Heat capacitance Solar Area
transmittance (per m2 surface area) Factor

W/m2K kJ/m2K (G-value) m2

Roof 0.165 80.9 - -
Floor 0.153 305.1 - -

Ext. walls 0.187 446.1 - -
Internal walls 2.581 33.1 - -

Glazing 1 - 0.5 6.2

x [k + 1] = Abx [k ] + Bbu[k ] + Ebd [k ] + ω[k ] (7)
y [k ] = Cbx [k ] + ν[k ], (8)

where Ab ∈ R106×106, Bb ∈ R106×6, Eb ∈ R106×13 and Cb ∈ R6×106 are parameter matrices, x ∈ R106, u ∈ R6,
y ∈ R6 and d ∈ R13 are states, inputs, outputs and disturbances respectively and ω ∈ R106 and ν ∈ R6 are
Gaussian process and measurement noise terms with zero mean and a variance of 0.04, chosen to account
for other sources of heat flow in the system as well as sensor noise.
3.3. Scenario description
Using the simulation environment outlined in Section 3.2., three separate 30-day scenarios were simulated
using the same weather data. During weekdays, the occupancy periods are from 07:15-08:15, and 18:30-
23:15 while at weekends, the building is occupied from 05:15-19:30 and 21:45-00:00. These schedules are
taken from the outcomes of the approach of Buttitta et al. [19]. In the first scenario, a standard Proportional-
Integral (PI) controller is used in each room to control the heat flowing from the radiators. The minimum
temperature comfort bound is used as the setpoint for the PI controllers. This comfort bound is set at 20◦C
during occupied periods and 16◦C during unoccupied periods. This is the baseline scenario, representing the
standard performance that could be expected without a predictive strategy.
In the second and third scenarios, a DeePC controller is used in each room to send setpoints to the lower
level PI controllers at 15-minute intervals. The DeePC controllers in the second scenario are parameterised
using the method proposed in Section 2., while in the third scenario, the optimised parameters from room 5 in
building 2 were applied to all rooms in both buildings. The purpose of this is to represent a scenario in which



bespoke tuning is not carried out, but a generic pre-defined set of parameters is used in all rooms instead.
The DeePC controllers are configured to find the lowest temperature setpoint trajectory that remains within the
comfort bounds over a prediction horizon of 5-hours. As well as the lower comfort bound described for the PI
scenario, an upper comfort bound of 22◦C for occupied periods and 24◦C for unoccupied times is also applied.
Typically, energy consumption would also be minimised in such a strategy, however, the resulting trade-off
between comfort and energy would complicate the comparison between scenarios and so there is no penalty
on energy use or energy cost applied here. A segmented DeePC formulation as described in [14] is used to
provide more consistent behaviour. A prediction horizon of 20 steps, corresponding to 5 hours was chosen.
In the DeePC scenarios, PI control is used for the first 5 days of simulation so as to gather data for the
autotuning procedure. The DeePC controller is then used for 30 days. The trajectories used to build the
Hankel matrices are taken from the most recent data measurements, with a check carried out to ensure the
persistent excitation condition is met. Three trajectories are averaged together to better handle noise. The
length of the trajectories is dictated by T0, which is chosen here to ensure the full Hankel structure is square,
following the observations of performance in power system [20] and quadcopter [21] applications. For the
DeePC strategy with autotuning, two choices of k0 and ten choices of k1 are used in the blackbox optimisation.
These choices were arbitrary, limited in this case study by the quantity of data available and the time taken
to run the optimisation. MADS was implemented in Matlab using NOMAD v3.9.1. The average time taken for
the tuning optimisation in each room was 21 mins, with a maximum of 26 mins and a minimum of 9 mins on a
desktop with a 2.9GHz processor.
3.4. Performance analysis
The comfort violations measured in each room from the 30-day simulation were collected for the three sce-
narios. In Fig. 4a and 4b these violations are shown in units of ◦C.h whereby a temperature deviation of 1◦C
outside the comfort bounds for 1 hour would contribute 1◦C.h to the total. It can be seen that the controllers
tuned using the MADS-based strategy outperform the alternatives in every room, apart from room 5 of building
2, for which the violations of both DeePC scenarios are identical. This is expected since the parameters for
this room were the same for both DeePC scenarios. The PI controlled rooms had the largest violations in all
rooms.
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To better understand the behaviour of the different scenarios, Fig. 5 zooms in on the simulated room tempera-



tures for a period of approximately 30 hours, averaged across all zones and both buildings. The dashed black
line represents the lower setpoint bound. With no predictive capability, the PI controller commences heating
only after the setpoint changes. The lack of pre-heating leads to comfort violations at the beginning of the
occupied period. The DeePC strategies can predict the need for pre-heating, however, the pre-heating period
of the DeePC controller without bespoke tuning is too short in some instances to heat the room sufficiently.

10:00 16:00 22:00 04:00 10:00 16:00

Time

14

16

18

20

22

A
v
e
ra

g
e
 r

o
o
m

 t
e
m

p
e
ra

tu
re

 (
°
C

) Setpoint

DeePC with bespoke tuning

DeePC with common tuning

PI

Figure 5: Snapshot of simulated air temperature averaged across all zones and buildings under different control
scenarios

The total comfort violations across the two buildings are shown in Table 3. Summed over both buildings, the
autotuned DeePC strategy reduced violations by 74% compared to the PI strategy and by 28% compared to
the DeePC strategy with common tuning across all rooms.

Table 3: Total comfort violations for 30 simulated days

DeePC with autotuning DeePC no autotuning PI
(◦C.h) (◦C.h) (◦C.h)

Building 1 94.7 131.0 386.2
Building 2 155.6 214.9 571.6

The results emphasise the need for appropriate parameterisation to be carried out. Designing a controller for
one system and applying it to another without adapting the parameters may not ensure good performance.
3.5. Further discussion
Some additional points are worth noting here. Firstly, the exact implementation details used in this study are
not crucial to the overall concept. Different blackbox optimisation methods may be used as well as different
performance criteria, rather than the averaged RMS error. Indeed, minimising the worst-case error may offer
more robust control and is a topic for future investigation. Alternative controller formulations may also be
applied. Many versions of the DeePC approach now exist with new options regularly proposed in recent times.
Furthermore, the performance of the approach is dependent on the training data gathered. In this study,
persistent excitation was checked in the training data by ensuring the satisfaction of the Hankel matrix rank
condition, but a more thorough examination of the data quality may be fruitful. It may also be prudent to update
the parameters online as new data is collected. Additional work is needed to better analyse the relationship
between the simulation performance and control performance. Although it was shown in this study that choos-
ing parameters to achieve good simulation performance tends to lead to good control performance, it may not
necessarily be the best parameter set for control in all cases.
Finally, an interesting point to note is that the DeePC results show significant improvement over the baseline,
despite the fact that external conditions are not considered in the predictions made by the controller. Certainly,
it could be expected that by incorporating forecasts of weather, internal gains etc., the performance could be
improved further, however, the results indicate that even without such knowledge, improved control perfor-
mance can be achieved. This is of particular significance if the goal is to develop controllers that are quick and
easy to implement.



4. Conclusions
Data-driven predictive control methods such as DeePC can expedite the roll-out of intelligent control in the
built environment by removing the need for building-specific modelling to be done as part of the control design
process. This has been noted as a significant barrier. Nonetheless, while the modelling component of the im-
plementation process is removed, a control design component remains. Specifically, parameters and weights
must be selected to provide good performance in any given system and the behaviour of DeePC can be quite
sensitive to poor choices of these parameters. This paper proposes a method for automating this parameter
selection process. By formulating a data-driven simulation problem with the same structure as the data-driven
controller, a blackbox optimisation problem is formed in which the inputs to the blackbox are the control param-
eters and the output is the simulation inaccuracy. A blackbox optimisation method, namely MADS, is used to
find the optimal parameter set in an automated fashion. Based on these parameters, DeePC controllers are
designed to control the air temperature in a building.
By testing the data-driven optimisation approach on real data, it was found that short term predictions were
achievable, though as external influencing factors such as weather were omitted, certain inaccuracies appear.
The complete parameter optimisation and control strategy was tested using a simulation environment in which
two buildings, each with 6 rooms were modelled. DeePC controllers in each room were used to maintain
thermal comfort. The controllers were compared with and without autotuning, with an additional comparison
to a non-predictive PI-based approach also carried out. By autotuning the controllers to suit their relevant
rooms, a reduction in comfort violation of 28% was achieved in total across the two buildings compared to
the controllers that had not been autotuned. A 74% reduction in comfort violation was achieved compared
to the PI-based approach. The results emphasised the significant influence of the control parameter choice
on the overall performance, indicating that bespoke tuning may be needed and off-the-shelf controllers with
pre-defined parameters may not perform well across different systems.
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