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Abstract—COVID-19 has caused significant global 
mortality, with early risk stratification being critical for 
effective clinical management. Using a dataset of 8,032 COVID-
19 hospitalized patients from a multicenter UK study, we 
developed and evaluated seven AI models, including deep and 
machine learning techniques, to predict in-hospital mortality. 
Key predictors were identified through a rigorous feature 
selection process combining statistical analysis, clinical 
expertise, and literature review. The Support Vector Classifier 
(SVC) achieved the best performance with 84% accuracy, 86% 
precision, and an AUC of 0.858, outperforming other methods 
in robustness and predictive accuracy. This study presents a 
novel application of AI on a large and diverse dataset, offering 
valuable insights for managing future pandemics/other clinical 
setting and improving clinical decision-making to reduce 
mortality. 
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I. INTRODUCTION 
In early 2020, COVID-19 was officially recognised as a 

worldwide health emergency [1,2]. By December 2024, the 
World Health Organization reported 7.1 million deaths 
globally and 232,000 deaths in the UK alone due to COVID-
19. The disease was associated with severe complications, 
including thrombosis, multi-organ failure (MOF), and major 
bleeding, all of which significantly increased the risk of 
mortality. COVID-19 patients experienced a three- to six-fold 
higher risk of thrombosis compared to individuals 
hospitalized for other reasons [3]. This unprecedented 
pandemic placed immense strain on healthcare systems, 
particularly in resource-limited settings, emphasizing the need 
for tools to streamline diagnoses, predict clinical outcomes, 
and optimize treatment strategies [4-7]. 

During the pandemic, artificial intelligence (AI) proved to 
be an essential asset, supporting areas such as disease 
diagnosis, public health planning, clinical guidance, and 
treatment development [8]. 

Several studies utilized machine learning (ML) and deep 
learning (DL) techniques to predict mortality and 
complications in COVID-19 patients [9-20].  However, these 
models often use small datasets or lack robust validation, 
leaving a gap in reliable mortality prediction methods for 
COVID-19 patients, which this study aims to address. 

For instance, Li et al. [10] demonstrated the utility of 
autoencoders and traditional ML models, while Shahid et al. 
[11] highlighted the predictive power of Bi-LSTM models for 
recovery and mortality. Fang et al. [12] evaluated deep neural 
networks alongside traditional ML models to predict ICU 
admissions and mortality across datasets from Iran and the 
USA. Similarly, Zhang et al. [13] developed a novel FKNN-
based model for deep venous thrombosis prediction, 
achieving 91.02% accuracy but limited by a small dataset. 

In other studies, Liang et al. [14] used a Cox proportional 
hazards model to predict critical illness, achieving a 
concordance index (C-index) of 0.894 and an AUC of 0.911. 
Wu et al. [15] leveraged logistic regression models 
incorporating clinical, laboratory, and CT imaging features to 
predict COVID-19 severity, with the best model attaining an 
AUC of 0.90 on validation data. Furthermore, Mushtaq et al. 
[16] used convolutional neural networks (CNNs) to analyse 
chest X-rays (CXRs) for clinical outcomes, achieving AUC 
scores between 0.89 and 0.98. Jin et al. [17] employed deep 
learning to analyse CT data across diverse respiratory 
conditions, achieving an AUC of 0.9745 for COVID-19 
diagnoses. Zandehshahvar et al. [18] and Sayed et al. [19] 
applied transfer learning and feature selection techniques like 
PCA and RFE, while Ucar et al. [20] optimized SqueezeNet 
CNNs, achieving 98.3% accuracy in COVID-19 diagnosis. 

Although COVID-19 has diminished as a significant 
public health concern thanks to mass vaccinations and 
effective antiviral therapies, the insights gained during the 
pandemic continue to be crucial for managing future health 
crises and forecasting disease outcomes. 

This study aims to compare the various AI models for 
mortality prediction in COVID-19 hospitalized patients using 
a large dataset from the multicentre "Coagulopathy in 
COVID-19" study conducted across 26 UK NHS Trusts 
(NCT04405232). This dataset, which includes demographic, 
clinical, and laboratory features, has previously been utilized 
to evaluate outcomes like thrombosis, MOF, and mortality 
using standard statistical methods [21-26]. By applying 
advanced ML and DL techniques, this research seeks to 
enhance predictive accuracy and provide valuable insights for 
developing models to assess the disease outcomes in future 
pandemics or other large scale diseases.  



II. METHODOLOGY 

A. Data Source 
Ethical clearance for this research was granted by multiple 

regulatory bodies, including the Health and Care Research 
Wales (HCRW), Health Research Authority (HRA), and 
Scotland’s Caldicott Guardian (approval number: 
20/HRA/1785). The data utilised in this investigation 
consisted of information from 8,027 COVID-19 hospitalized 
patients, all aged 18 years or older, admitted over the period 
from April to July 2020. 

Outliers and invalid data points were detected during the 
preprocessing phase and through scatter plot analysis, data 
sorting techniques, and interquartile range (IQR) 
assessments. Specific thresholds were set for variables like 
body weight, height, and laboratory test outcomes to 
eliminate implausible entries. To handle missing values—
particularly for laboratory markers such as Ferritin, D-dimer, 
Troponin I, and lactate levels (with missingness under 
10%)—we employed the k-Nearest Neighbours (k-NN) 
imputation method. This approach was not applied to clinical 
outcomes or comorbidities. After completing the imputation, 
each affected variable was carefully examined to confirm that 
the substituted values were realistic and within expected 
clinical ranges. 

Age and Body mass index (BMI) were categorized into 
clinically relevant groups: BMI (‘<18.5’, ‘18.6-24.9’, ‘25-
29.9’, ‘30-39.9’, ‘>40’) and age (‘18-29 years’, ‘30-49 years’, 
‘50-69 years’, ‘70-89 years’, ‘>90 years’). Table 1 presents a 
comprehensive list of features. 

TABLE I.  LABORATORY FEATURES, CLINICAL CHARACTERISTICS 
AND DEMOGRAPHICS OF THE PATIENTS 

Feature Subcategory Number 
(Total n = 
8027) 

Percentage 

Gender Male 4403 55% 
Female 3624 45% 

Age (Years) 18-29 207 3% 
30-49 991 12% 
50-69 2237 28% 
70-89 3864 48% 
>90 728 9% 

Ethnicity White 5811 72% 
Black 313 4% 
Asian 428 5% 
Other 1475 19% 

Body Mass Index 
(kg/m2) 

< 18.5 
(Underweight) 

215 3% 

18.6 – 24.9 
(Healthy 
weight) 

979 12% 

25.0 – 29.9 
(Overweight) 

5596 69% 

30.0 – 39.9 
(Obese) 

1007 13% 

> 40.0 (Severe 
obesity) 

230 3% 

History of Liver 
Disease 

Present 295 4% 
Absent 7732 96% 

History of Lung 
Disease 

Present 1964 24% 
Absent 6063 76% 

History of Diabetes Present 2256 28% 
Absent 5771 72% 

History of Heart 
Disease 

Present 1837 23% 
Absent 6190 77% 

History of 
Hypercholesterolemia 

Present 1265 16% 
Absent 6762 84% 

History of 
Hypertension 

Present 3740 47% 
Absent 4287 53% 

History of Malignancy Present 873 11% 
Absent 7154 89% 

History of 
Autoimmune disease 

Present 604 8% 
Absent 7423 92% 

History of Bleeding 
Disorders 

Present 59 1% 
Absent 7968 99% 

Laboratory features 
Laboratory Results Median Inter 

Quartile 
Reference 

Range 
Hemoglobin (g/L) 130 

110* 
114 -143 
98 - 134* 

130 – 160  
(*115 –150) 

* 
Platelets (109/L) 220 168 - 289 150 - 400 
D-dimer (ng/mL) 1077 585- 

2851.5 
0 - 500 

White Cell Count (109 
/L) 

7.68 5.5 - 7.8 4.1 – 11.1 

Neutrophils (109/L) 5.89 3.9 - 8.8 2.1 – 6.7 
Lymphocytes (109/L) 0.9 0.6 - 1.3 1.3 – 3.7 

Fibrinogen (g/L) 5.6 4.3 - 6.8 1.5 – 4.5 
Alanine transferase 

(IU/L) 
26 17 - 43 8 - 40 

Bilirubin (µmol/L) 10 7 - 14 0 - 20 
*Female hemoglobin  

 
To prepare the clinical and demographic categorical 

variables for modelling, one-hot encoding was applied, 
transforming each category into separate binary indicators. 
Concurrently, numerical attributes—such as laboratory 
biomarkers—were standardised using conventional scaling 
techniques to ensure all feature values conformed to a uniform 
range. This standardisation was crucial in maintaining the 
integrity of the modelling process, as unbalanced feature 
scales could otherwise skew predictions, leading to elevated 
misclassification rates and diminished accuracy. A 
comprehensive summary of the selected variables and their 
relevance to mortality prediction is presented in Table 2. 

TABLE II.  FEATURES USED TO IDENTIFY THEIR SIGNIFICANCE 
FOR MORTALITY 

Demographics 
Features 

Comorbidities and 
Clinical Conditions 

Laboratory 
Markers 

Gender (Male/Female) Multi-Organ Failure Hemoglobin 
Ethnicity 

(White/Asian/Black) 
Thrombosis  Platelets 

Age (Years) Major Bleeding D-dimer 
Age groups (18–29, 30–
49, 50–69, 70–89, 90+) 

 History of Smoking  White Cell 
Count 

BMI categories (kg/m²): 
<18.5, 18.6–24.9, 25–

29.9, 30–39.9, >40 

History of liver disease Neutrophils 

 History of lung disease Lymphocytes 
 History of diabetes Fibrinogen 
 History of heart 

disease 
Alanine 

transferase 
(ALT) 

 History of 
hypercholesterolemia 

Bilirubin 

 History of 
hypertension 

Creatinine 

 History of malignancy C-reactive 
protein 

 History of autoimmune 
disease 

Lactate 
dehydrogenase  

 History of bleeding 
disorder 

Troponin I 

  Ferritin 
  Prothrombin 

time 



  Activated partial 
thromboplastin 

time  
  Lactate 

 

B. Feature Selection Approach 
Following an initial variable assessment guided by clinical 

expertise, a range of advanced analytical techniques was 
employed to identify the predictors most closely linked to 
COVID-19 mortality. These included: (i) statistical 
significance testing methods such as Chi-square test, Mann–
Whitney U test, and T-test; (ii) Pearson’s correlation to 
examine linear associations between variables and outcomes; 
(iii) feature prioritisation through recursive feature 
elimination (RFE) leveraging logistic regression as the base 
model; and (iv) importance ranking using random forest 
algorithms. The features analysed encompassed patient 
demographics, pre-existing medical conditions, and 
laboratory parameters, which are detailed comprehensively in 
Table 1. 

The choice between the T-test and Mann–Whitney U test 
was determined by the underlying distribution of the data, 
with each method used to assess group-level differences 
accordingly. To examine linear associations between 
variables, Pearson correlation analysis was conducted, with 
the strength of relationships measured by Pearson's correlation 
coefficient in relation to the target outcome. By performing 
pairwise correlation assessments, clusters of highly correlated 
features were identified, allowing for the refinement of the 
feature set to enhance predictive accuracy while reducing 
redundancy. This strategy improved the efficiency of the 
model by focusing on the most impactful variables. 

Recursive Feature Elimination (RFE), functioning as a 
wrapper-based feature selection approach, was applied 
alongside logistic regression and random forest algorithms. 
This technique operates by repeatedly training the model, 
evaluating the importance of each feature, and discarding the 
least influential variables in successive rounds until the target 
number of features is retained. In contrast to filter-based 
approaches that assess features individually, RFE leverages 
the predictive power of a machine learning algorithm to 
progressively refine the feature set. The process started with 
the complete set of training variables and systematically 
eliminated less critical features, continuously re-ranking and 
retraining the model until an optimised subset was identified. 
This strategy ensures that the final selection focuses on the 
most relevant predictors, enhancing model effectiveness and 
efficiency. Table 3 presents the features selected through each 
of the applied feature selection methods. 

TABLE III.  KEY FEATURES IDENTIFIED BY DIFFERENT FEATURE 
SELECTION METHODS 

Feature Selection 
Method 

Identified significant features 

Statistical Tests (T-test, 
Mann–Whitney U test, 
Chi-squared test) 

Multi-organ failure, Age, Thrombosis, 
Elevated levels of Fibrinogen, ALT 
(Alanine Aminotransferase), and Bilirubin. 

Recursive Feature 
Elimination (RFE) with 
Logistic Regression 

Multi-organ failure, Major bleeding, 
Smoking status, Asian ethnicity, Age, and 
history of autoimmune disease. 

Recursive Feature 
Elimination (RFE) with 
Random Forest 
Regressor 

Raised levels of D-Dimer, Ferritin, Lactate 
Dehydrogenase (LDH), and Troponin I. 

 

      Drawing on the overlap of features identified by the 
selection techniques (as outlined in Table 3), combined with 
clinical expertise and established findings from COVID-19 
research, a final set of critical predictors was chosen for model 
development. This refined feature set comprised factors such 
as a history of autoimmune disorders, smoking status, age, 
Asian ethnicity, and elevated biomarkers including D-Dimer, 
Ferritin, Troponin I, Fibrinogen, LDH, ALT, and Bilirubin. 
Additionally, the occurrence of significant bleeding events, 
thrombosis and multi-organ failure were also incorporated as 
important indicators. 

C. Model Development 
In this study, seven distinct machine learning and deep 

learning techniques were utilised for prediction of mortality 
outcomes in COVID-19 patients. The selected models 
included: (i) Multi-Layer Perceptron (MLP) classifier, (ii) 
Artificial Neural Network (ANN) classifier leveraging 
backpropagation for learning, (iii) Extreme Gradient 
Boosting (XGBoost) classifier, (iv) Support Vector Classifier 
(SVC), (v) Stochastic Gradient Descent classifier (SGD), (vi) 
Random Forest (RF), and (vii) Logistic Regression (LR). 
 
(i) Multi-layer Perceptron (MLP) Classifier: 
      The Artificial Neural Network (ANN) implemented in 
this research adopts a feedforward architecture, where 
information progresses sequentially from the input nodes 
through intermediate layers to the final output layer. The use 
of nonlinear activation functions within the hidden layers 
empowers the network to detect and model complex patterns 
within the data. The inclusion of multiple hidden layers 
between the input and output stages enhances the network’s 
ability to represent sophisticated relationships, thereby 
improving its predictive capability and accuracy. 
Specifically, the architecture consists of an input layer 
connected to a single hidden layer with 100 neurons. To 
mitigate the risk of overfitting, dropout regularization is 
applied immediately after the hidden layer. The final output 
layer uses a logistic (sigmoid) activation function to produce 
probabilities across the target classes. 

For optimisation, the Adam algorithm was selected due to 
its ability to adaptively adjust learning rates while 
maintaining computational efficiency. The ANN’s 
effectiveness was assessed on both training and testing 
datasets to validate its learning capability and generalisation 
to unseen data. 
 
(ii) ANN with backpropagation: 
      Backpropagation serves as a pivotal algorithm in neural 
network training, aiming to optimise the network's internal 
parameters — namely weights and biases — by evaluating 
the difference between predicted results and true values. This 
error is propagated in reverse through the layers of the 
network, beginning at the output layer and progressing back 
to the input. Throughout this backward traversal, the 
algorithm systematically updates the parameters of each 
neuron to minimise the cumulative error, ultimately 
improving the model’s predictive accuracy and overall 
performance. 
 
 
 



(iii) XGBoost: 
      This gradient boosting algorithm trains multiple decision 
trees in sequence, with each tree addressing errors from the 
previous one. The results are aggregated to improve 
predictive accuracy and reduce overfitting. XGBoost 
improves upon the traditional gradient boosting framework 
by introducing advanced features such as L1 and L2 
regularization, efficient handling of sparse data, and parallel 
processing. These enhancements make XGBoost highly 
suitable for predictive modelling tasks, especially for high-
dimensional datasets like those in text-based personality 
prediction. The model minimizes the following objective 
function: 

ℒ =∑ℓ(𝑦𝑖 , �̂�𝑖) +∑Ω(𝑓𝑘)

𝐾

𝑘=1

𝑛

𝑖=1

 

      Within this formulation, ℓ(𝑦𝑖 , �̂�𝑖)  represents the error 
function that quantifies the difference between the actual 
outcome 𝑦𝑖  and the predicted value �̂�𝑖 . Commonly applied 
functions include mean squared error (MSE) for regression 
analysis and logarithmic loss for classification tasks. 
Furthermore, Ω(𝑓𝑘) embodies the regularization term, which 
discourages excessive model complexity to prevent 
overfitting. The regularization expression is defined as: 

Ω(𝑓𝑘) = 𝛾𝑇 +
1

2
𝜆∑𝑤𝑗

2

𝑇

𝑗=1

 

     In this formula, 𝑇  refers to the total count of terminal 
nodes (leaves) in the decision tree, 𝑤𝑗  represents the assigned 
weight for the leaf 𝑗, γ acts as the threshold for the minimum 
loss decrease necessary to justify splitting a leaf, and λ 
determines the strength of the L2 regularization applied to the 
leaf weights. 
      XGBoost begins with a constant prediction, often the 
mean of the target variable. At each iteration, it adds a tree to 
reduce residual errors. The gradient (first derivative) and 
Hessian (second derivative) of the loss function guide tree 
construction, ensuring efficient optimization. Predictions are 
refined by combining outputs from previous iterations with 
the current tree. XGBoost’s strength lies in its ability to 
handle non-linear relationships and complex interactions 
within the data. Its use of regularization techniques 
minimizes overfitting, enabling robust generalization across 
diverse samples. Additionally, XGBoost offers insights into 
feature importance, aiding in the identification of key patterns 
linked to the labels. These capabilities, combined with its 
efficiency and scalability, establish XGBoost as a top-
performing model for this task. 
 
(iv) Support Vector Classifier (SVC): 
      This model constructs an optimal hyperplane within a 
multidimensional feature space to distinguish between 
different classes. By leveraging the kernel method, it 
effectively enables the separation of classes even when the 
relationship between variables is non-linear. The primary 
goal of SVC is to maximise the margin between the closest 
data points of each class, ensuring robust generalisation of the 

decision boundary. The separating function of this boundary 
is mathematically defined as: 

𝑓(𝑥) = 𝑤𝑇𝑥 + 𝑏 

      where 𝑤  represents the weight vector, 𝑥  is the input 
vector, and 𝑏  is the bias term. SVC minimizes hinge loss 
using the following objective function: 

𝐿(𝑤, 𝑏) =
1

2
||𝑤||2 + 𝐶∑max(0,1 − 𝑦𝑖(𝑤

𝑇𝑥𝑖 + 𝑏))

𝑛

𝑖=1

 

      Here, 𝐶  is a regularization parameter that balances 
margin maximization and classification error. The algorithm 
projects data points into a higher-dimensional feature space 
by applying kernel functions, enabling it to manage complex 
class boundaries. It then addresses an optimisation task to 
determine the hyperplane that offers the greatest separation 
between classes. Data points are assigned to categories based 
on which side of the hyperplane they fall, with their proximity 
to the boundary influencing the classification decision. 

(v) Stochastic Gradient Descent (SGD) Classifier: 
      This method of linear classification improves its decision 
boundary by continuously adjusting parameters to lower the 
value of the cost function. By leveraging stochastic gradient 
descent, the algorithm ensures rapid and efficient 
convergence, which is especially advantageous when 
working with large-scale and complex data. 
 
(vi) Random Forest (RF): 
      Random Forest builds multiple decision trees, with each 
tree trained on a different randomly sampled subset of both 
the data and the features. Every tree in the ensemble produces 
its own classification output, and the overall model prediction 
is determined by combining these individual results, most 
commonly through majority voting. The algorithm enhances 
its predictive accuracy by aiming to reduce the average error 
rate across all trees within the forest. 

𝐸 =
1

𝑇
∑𝐸𝑡

𝑇

𝑡=1

 

      where 𝑇 is the total number of trees, and 𝐸𝑡 represents the 
error of the 𝑡-th tree. This algorithm is particularly effective 
for complex datasets, as it can model non-linear relationships 
and identify intricate patterns within the data. Moreover, 
Random Forest offers interpretability by assessing feature 
importance, allowing researchers to identify the attributes 
most strongly associated with labels. This combination of 
interpretability, accuracy, and resilience makes Random 
Forest a strong baseline model for comparison with more 
sophisticated algorithms. 

(vii) Logistic Regression (LR): 
      Logistic regression predicts the probability of a class label 
using the logistic function, making it particularly suitable for 
linearly separable data. The logistic function is expressed as: 

𝑃(𝑦 = 1|𝑥) =
1

1 + 𝑒−(𝑤
𝑇𝑥+𝑏)

 



      The model employs binary cross-entropy as its loss 
function, mathematically expressed as follows: 

𝐿(𝑤, 𝑏) = −
1

𝑛
∑[𝑦𝑖 log(𝑝𝑖) + (1 − 𝑦𝑖) log(1 − 𝑝𝑖)]

𝑛

𝑖=1

 

      The model begins by initializing weights and biases. It 
then calculates the probability for each class using the logistic 
function. To minimize the cross-entropy loss, the weights and 
biases are optimized iteratively through gradient descent. 
Logistic regression’s ability to handle non-linear 
relationships through the logistic function is particularly 
beneficial for capturing the complexities of data. Its 
simplicity and interpretability make it an ideal baseline model 
for comparing with more advanced techniques, while also 
providing valuable insights into the relationship between 
selected features and labels. 

D. Hyperparameter Tuning and Cross Validation 
      To assess the models’ effectiveness, we employed a 5-
fold cross-validation strategy (K=5), which ensures that each 
training and testing partition accurately reflects the overall 
dataset. During this procedure, the data was segmented into 
five equally sized parts. In every iteration, the model was 
trained on four of these subsets, while the remaining one was 
reserved for testing. After completing all five rounds, the 
performance metrics were averaged to yield an overall 
evaluation. This method helps to mitigate overfitting and 
delivers a more dependable estimation of the model’s 
generalisation to unseen data. 
      To optimise model performance, we implemented Grid 
Search as our hyperparameter tuning strategy. This technique 
systematically evaluates various combinations of 
hyperparameter values to determine the most effective setup 
for each algorithm, with the goal of maximising predictive 
accuracy. Hyperparameter selection plays a crucial role in 
shaping model outcomes, as these parameters have a 
substantial impact on performance. During this process, we 
used 5,378 samples from the total dataset of 8,027 records, 
applying stratified K-fold cross-validation to maintain 
balanced class distributions within each fold. This approach 
successfully identified the optimal hyperparameter sets for 
each model, as summarised in Table 4. 

TABLE IV.  OPTIMAL HYPERPARAMETERS FOR EACH MODEL 

Model Optimum value for each 
parameter 

Multilayer Perceptron (MLP) 
Classifier 

Activation Function: logistic,  
Hidden layer structure: (100, 1),  

Learning rate schedule: invscaling. 
Artificial Neural Network 

(ANN) with Backpropagation 
Implemented using Keras 

Sequential API,  
Optimizer: RMSprop,  

Batch size: 25,  
Epochs: 10, 

 Loss function: binary cross-
entropy, 

 Activation functions: ReLU and 
sigmoid. 

Extreme Gradient Boosting 
(XGBoost) 

Learning rate: 0.05,  
Maximum tree depth: 3, 

 Minimum child weight: 1, 
Support Vector Classifier 

(SVC) 
Regularization strength (C): 3.406, 
Kernel coefficient (gamma): 0.332; 
Probability estimates enabled: True. 

Stochastic Gradient decent 
(SGD) Classifier 

Elastic Net mixing parameter 
(l1_ratio): 0.14,  

Loss function: log_loss, 
Penalty term: elasticnet. 

Random Forest Classifier Minimum samples per leaf: 5, 
Maximum tree depth: 6,  
Split criterion: entropy. 

Logistic Regression Classifier Inverse regularization strength (C): 
100. 

E. Performance Measurments 
To evaluate the effectiveness and validity of the 

developed models, a range of performance metrics and 
diagnostic tools were employed. These included the 
accuracy, F1 score, recall, precision, log loss, ROC AUC, and 
confusion matrix.  

The confusion matrix provides a clear snapshot of the 
model's classification results by aligning the predicted 
categories with the actual ones, highlighting areas where the 
model made correct decisions as well as where it 
misclassified instances, including errors like false positives 
and false negatives. It forms the foundation for calculating 
crucial evaluation metrics, including accuracy, precision, 
recall, and the F1 score. Additionally, the ROC curve and its 
corresponding AUC provide insight into the model’s capacity 
to differentiate between the positive and negative classes, 
with higher AUC values reflecting better discrimination. 
Precision reflects the percentage of predicted positives that 
were correct, while recall (also known as sensitivity) 
indicates the fraction of actual positive cases accurately 
detected. The F1 score acts as a harmonised metric, balancing 
precision and recall into a single value. Finally, log loss 
measures the reliability of probability estimates, penalising 
the model more heavily for confident but incorrect 
predictions. 

Together, the selected evaluation metrics can provide a 
well-rounded evaluation of each model’s predictive 
performance and generalisation capability. In addition, the 
ROC curve analysis was utilised to fine-tune the 
classification threshold. To ensure practical applicability, this 
threshold selection was guided by expert input, aligning the 
model's output with the real-world demands of the binary 
classification task (mortality versus survival). 

III. RESULTS 
Of the total of 8,027 COVID-19 patients included in this 
study,1,748 patients (21.8%) succumbed to the disease. 5,378 
patient records (out of the 8,027 total),were used for the model 
training whilst the remaining 2,649 records used for testing. A 
stratified shuffle split method was used to split the data for 
training and testing and to ensure balanced class distributions 
across the datasets. As outlined earlier, the development of the 
models involved the application of 5-fold cross-validation 
alongside hyperparameter optimisation to enhance predictive 
performance. The outcomes of these models are summarised 
in Table 5, with visual representations displayed in Figures 1 
and 2. 

Among the various models assessed, the Support Vector 
Classifier (SVC) proved to be the most proficient in 
predicting mortality among patients, achieving a 
commendable accuracy rate of 84%. It particularly excelled 
in accurately identifying cases of survival (true negatives) 
and consistently surpassed its counterparts in correctly 
detecting mortality cases (true positives). In addition to its 



overall accuracy, the SVC demonstrated leading performance 
across key evaluation metrics, with a precision of 86%, a 
recall of 84%, and an F1 score of 80%. Impressively, it 
recorded the lowest log-loss value of 0.476, indicating 
excellent model calibration and effective learning from the 
data. Furthermore, the SVC attained the highest ROC AUC 
value of 0.858, confirming its strong capability to distinguish 
effectively between survivors and non-survivors. 

Following the SVC, models like Logistic Regression, 
XGBoost, Random Forest, and SGDClassifier also 
demonstrated strong overall performance across crucial 
evaluation indicators, such as accuracy, F1 score, recall, 
precision, and the ROC AUC. XGBoost, in particular, 
showed promising outcomes, recording a log-loss of 0.496, 
which suggests good model calibration and low training 
error. The Random Forest algorithm achieved an ROC AUC 
of 0.69, reflecting a fair capacity for class separation, 
although it did not reach the effectiveness displayed by the 

SVC. Similarly, XGBoost maintained credible results with an 
ROC AUC score of 0.66, reinforcing its utility for this 
classification challenge. 

Taking into account the full range of evaluation criteria, 
including (i) accuracy, (ii) precision, (iii) recall, (iv) F1 score, 
(v) log-loss, and (vi) ROC AUC, the SVC model distinctly 
emerged as the top performer for mortality prediction in 
COVID-19 patients. Its excellent convergence throughout 
training, combined with its strong ability to distinguish 
between survival and mortality outcomes, solidifies its 
position as the leading model in this research. 

 

 

 

 

 

TABLE V.  EVALUATION METRICS FOR EACH MODEL 

Model Accuracy Precision Recall F1 Score Log Loss 
(training/test) 

ROC AUC 
(training/test) 

MLP Classifier 0.78 0.39/0.61 0.50/0.78 0.44/0.69 0.52/0.52 0.566/0.55 
ANN 0.77 0.61/0.71 0.54/0.77 0.53/0.72 0.50/0.52 0.63/0.57 

XGBoost 0.78 0.65/0.73 0.53/0.78 0.51/0.72 0.49/0.51 0.66/0.58 
SVC 0.84 0.91/0.86 0.63/0.84 0.66/0.80 0.47/0.47 0.86/0.85 

SGD Classifier 0.78 0.64/0.73 0.53/0.78 0.52/0.72 0.51/0.51 0.60/0.56 
Random Forest 0.78 0.64/0.73 0.53/0.78 0.52/0.72 0.49/0.51 0.69/0.58 

Logistic Regression 0.79 0.62/0.72 0.54/0.78 0.53/0.72 0.50/0.51 0.68/0.57 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1. Confusion matrix for each model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 2. AUC curves for implemented models 



IV. DISCUSSION 
      In this research, we combined artificial intelligence 
techniques, conventional statistical methods, and clinical 
expert insights to pinpoint critical predictors of mortality in 
patients hospitalised with COVID-19. The influential factors 
identified encompassed demographic characteristics (such as 
Asian ethnicity and advancing age), underlying health 
conditions (including smoking history and autoimmune 
diseases), key laboratory indicators (notably elevated D-
Dimer, Ferritin, LDH, Troponin I, Fibrinogen, ALT, and 
Bilirubin levels), as well as severe clinical complications like 
multi-organ failure, bleeding episodes, and thrombosis. 
These selected variables formed the foundation for training 
and evaluating seven distinct AI-based models aimed at 
forecasting mortality risk among COVID-19 patients. 
      Key contributors to mortality among hospitalised 
COVID-19 patients were identified as demographic variables 
(such as Asian ethnicity and advancing age), underlying 
health conditions (including smoking and autoimmune 
disorders), critical laboratory markers (elevated levels of D-
Dimer, Ferritin, LDH, Troponin I, Fibrinogen, ALT, and 
Bilirubin), alongside severe clinical complications like multi-
organ failure, bleeding events, and thrombosis. Taking these 
variables into account, we developed and assessed seven 
separate AI-based models to predict mortality risk in patients 
diagnosed with COVID-19. Of all the models evaluated, the 
Support Vector Classifier (SVC) emerged as the top 
performer, reaching an accuracy rate of 84%. Notably, the 
SVC demonstrated flawless accuracy in correctly predicting 
survival outcomes (true negatives) and surpassed its 
counterparts in effectively identifying fatal cases (true 
positives). 
      Furthermore, the Support Vector Classifier (SVC) 
excelled in multiple key performance measures, securing a 
precision rate of 86%, recall of 84%, an F1 score of 80%, and 
the lowest log-loss value of 0.476 on the test set—indicating 
both accurate predictions and excellent calibration. The 
model also achieved the highest AUC score at 0.858, 
highlighting its robust capacity to distinguish between 
different outcome categories. By capitalising on the 
foundational concepts of Support Vector Machines, the SVC 
effectively identified the most suitable hyperplane to separate 
the classes. While other algorithms delivered satisfactory 
results, the SVC consistently outperformed them across 
nearly all evaluation metrics. 
      Numerous AI-focused investigations have been 
conducted to forecast severe outcomes such as critical illness, 
ICU admission, or mortality among COVID-19 patients [16, 
17, 18, 19]. One such example is the study [10] titled 
"Individual-Level Fatality Prediction of COVID-19 Patients 
Using AI Methods," which reported impressive performance, 
achieving over 90% accuracy and specificity with its leading 
autoencoder model. Nonetheless, that research primarily 
depended on publicly accessible datasets, which lacked 
comprehensive, case-specific details. This limitation notably 
hindered the model’s predictive strength. The authors 
themselves acknowledged that the scarcity of rich, high-
quality data represented a significant constraint on the 
effectiveness of their predictive approach. 
      A major strength of this study lies in the utilisation of a 
large, diverse dataset sourced from 26 NHS Trusts across 

England, Wales, and Scotland, collected during the height of 
the COVID-19 pandemic. The data’s reliability was 
reinforced by its collection by qualified clinical 
professionals, ensuring both accuracy and clinical relevance. 
Moreover, the dataset reflected a broad and representative 
sample of the UK patient population, enhancing the 
generalisability of the findings. In addition to leveraging this 
robust dataset, we conducted a comprehensive evaluation of 
seven distinct AI models to identify the most effective 
approach for mortality risk prediction. 
      One of the main constraints of this research relates to the 
temporal context and its applicability to present-day clinical 
environments. The dataset underpinning model development 
was gathered in the early phases of the pandemic in 2020, a 
time characterised by severe disease presentations and 
elevated mortality rates. Given that COVID-19 has since 
evolved into less severe forms, with significantly lower 
fatality rates, the direct applicability of these models to 
contemporary clinical practice may be limited. However, the 
comprehensive methodological framework established in this 
study—including rigorous data cleansing, AI-based 
imputation techniques, feature selection processes, model 
construction, cross-validation procedures, hyperparameter 
optimisation, and performance evaluation—remains highly 
transferable. With appropriate adaptations, this approach 
could be effectively applied to build binary classification 
models for forecasting outcomes in other clinical conditions. 

V. CONCLUSION 
      In summary, this study successfully designed and 
evaluated seven artificial intelligence models aimed at 
forecasting mortality among hospitalised COVID-19 
patients, utilising patient demographic details, underlying 
health conditions, and laboratory findings collected at 
admission. The top-performing model demonstrated an 
accuracy rate of 84%, highlighting the potential of AI to 
support clinical decision-making. These findings emphasise 
the significant contribution of AI technologies in healthcare, 
particularly in situations with limited resources. Furthermore, 
this research establishes a foundation for the future 
development of adaptable AI-driven solutions capable of 
predicting clinical outcomes across both emerging infectious 
diseases and existing healthcare challenges. 
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