Coherent Clusters in Source Code

Syed Islam, Jens Krinke, David Binkley*, Mark Harman

University College London
Loyola University Maryland*

Abstract

This paper presents the results of a large scale empirical study of coherent
dependence clusters. All statements in a coherent dependence cluster depend
upon the same set of statements and affect the same set of statements; a coherent
cluster’s statements have ‘coherent’ shared backward and forward dependence.
We introduce an approximation to efficiently locate coherent clusters and show
that it has a minimum precision of 97.76%. Our empirical study also finds
that, despite their tight coherence constraints, coherent dependence clusters
are in abundance: 23 of the 30 programs studied have coherent clusters that
contain at least 10% of the whole program. Studying patterns of clustering in
these programs reveals that most programs contain multiple significant coherent
clusters. A series of case studies reveals that these major clusters map to logical
functionality and program structure. For example, we show that for the program
acct, the top five coherent clusters all map to specific, yet otherwise non-obvious,
functionality. Cluster visualization can also reveal subtle deficiencies in program
structure and identify potential candidates for refactoring efforts. Finally a
study of inter-cluster dependence is used to highlight how coherent clusters
built are connected to each other, revealing higher-level structures, which can
be used in reverse engineering.

Keywords: Dependence analysis, program comprehension, program slicing,
clustering, re-engineering, structural defect, dependence pollution, inter-cluster
dependence

1. Introduction

Program dependence analysis is a foundation for many activities in software
engineering such as testing, comprehension, and impact analysis [8]. For exam-
ple, it is essential to understand the relationships between different parts of a
system when making changes and the impacts of these changes [22]. This has
led to both static [44, 16] and blended (static and dynamic) [36, 37] dependence
analyses of the relationships between dependence and impact.

One important property of dependence is the way in which it may cluster.
This occurs when a set of statements all depend upon one another, forming a

Preprint submitted to Journal of Systems and Software November 19, 2012

dependence cluster. Within such a cluster, any change to an element poten-
tially affects every other member of the cluster. If such a dependence cluster is
very large, then this mutual dependence clearly has implications on the cost of
maintaining the code.

In previous work [10], we introduced the study of dependence clusters in
terms of program slicing and demonstrated that large dependence clusters were
(perhaps surprisingly) common, both in production (closed source) code and in
open source code [26]. Our findings over a large corpus of C code was that 89%
of the programs studied contained at least one dependence cluster composed of
10% or more of the program’s statements. The average size of the programs
studied was 20KLoC, so these clusters of more than 10% denoted significant
portions of code. We also found evidence of super-large clusters: 40% of the
programs had a dependence cluster that consumed over half of the program.

More recently, our finding that large clusters are widespread in C systems
has been replicated for other languages and systems, both in open source and in
proprietary code [1, 7, 40]. Large dependence clusters were also found in Java
systems [7, 38, 40] and in legacy Cobol systems [25].

Recently, there has been interesting work on the relationship between faults,
program size, and dependence clusters [15], and between impact analysis and
dependence clusters [1, 26]. Large dependence clusters can be thought of as
dependence ‘anti-patterns’ because the high impact of changes may lead to
problems for on-going software maintenance and evolution [1, 9, 38]. As a
result, refactoring has been proposed as a technique for splitting larger clusters
of dependence into smaller clusters [10, 14].

Dependence cluster analysis is complicated by the fact that inter-procedural
program dependence is non-transitive, which means that the statements in a
traditional dependence cluster, though they all depend on each other, may not
each depend on the same set of statements, nor need they necessarily affect the
same set of statements external to the cluster.

This paper introduces and empirically studies' coherent dependence clusters.
In a coherent dependence cluster all statements share identical intra-cluster and
extra-cluster dependence. A coherent dependence cluster is thus more con-
strained than a general dependence cluster. A coherent dependence cluster
retains the essential property that all statements within the cluster are mutu-
ally dependent, but adds the constraint that all incoming dependence must be
identical and all outgoing dependence must also be identical. That is, all state-
ments within a coherent cluster depend upon the same set of statements outside
the cluster and all statements within a coherent cluster affect the same set of
statements outside the cluster.

This means that, when studying a coherent cluster, we need to understand
only a single external dependence context in order to understand the behavior
of the entire cluster. For a dependence cluster that fails to meet the external
constraint, statements of the cluster may have a different external dependence

! Preliminary results were presented at PASTE [29)].

context. This is possible because inter-procedural dependence is non-transitive.
It might be thought that very few sets of statements would meet these ad-
ditional coherence constraints, or that, where such sets of statements do meet
the constraints, there would be relatively few statements in the coherent cluster
so-formed. Our empirical findings provide evidence that this is not the case:
coherent dependence clusters are common and they can be very large. This
finding provides a new way to investigate the dependence structure of a pro-
gram and the way in which it clusters. This paper presents empirical results
that highlight the existence and applications of coherent dependence clusters.
The primary contributions of the paper are as follows:

1. Empirical analysis of thirty programs assesses the frequency and size of
coherent dependence clusters. The results demonstrate that large coherent
clusters are common validating their further study.

2. Two further empirical validations consider the impact of data-flow analysis
precision and the precision of an approximation used to compute coherent
clusters.

3. A series of four case studies shows how coherent clusters identify logical
program structures.

4. A study of inter-cluster dependence highlights how coherent clusters form
the building blocks of larger dependence structures that can support, as
an example, reverse engineering.

The remainder of this paper is organized as follows: Section 2 provides
background on coherent clusters and their visualization. Section 3 provides
details on the subject programs, the validation of the slice approximation used,
and the experimental setup. This is followed by quantitative and qualitative
studies into the existence and impact of coherent dependence clusters and the
inter-cluster dependence study. Section 4 considers related work and finally,
Section 5 summarizes the work presented.

2. Background

This section provides background on dependence clusters. It first presents a
sequence of definitions that culminate in the definition for a coherent dependence
cluster. Then, it reviews existing dependence cluster visualizations including
the cluster visualization tool decluvi. Previous work [10, 26] has used the term
dependence cluster for a particular kind of cluster, termed a mutually-dependent
cluster herein to emphasize that such clusters consider only mutual dependence
internal to the cluster. This distinction allows the definition to be extended to
incorporate external dependence.

2.1. Dependence Clusters

Informally, mutually-dependent clusters are maximal sets of program state-
ments that mutually depend upon one another [26]. They are formalized in
terms of mutually dependent sets in the following definition.

Definition 1 (Mutually-Dependent Set and Cluster [26])
A mutually-dependent set (MDS) is a set of statements, S, such that
Vr,y € S : x depends on y.
A mutually-dependent cluster is a maximal MDS; thus, it is an MDS not properly
contained within another MDS.

The definition of an MDS is parameterized by an underlying depends-on re-
lation. Ideally, such a relation would precisely capture the impact, influence,
and dependence between statements. Unfortunately, such a relation is not com-
putable. A well known approximation is based on Weiser’s program slice [42]:
a slice is the set of program statements that affect the values computed at a
particular statement of interest (referred to as a slicing criterion). While its
computation is undecidable, a minimal (or precise) slice includes exactly those
program elements that affect the criterion and thus can be used to define an
MDS in which ¢ depends on s iff s is in the minimal slice taken with respect to
slicing criterion t.

The slice-based definition is useful because algorithms to compute approx-
imations to minimal slices can be used to define and compute approximations
to mutually-dependent clusters. One such algorithm computes a slice as the
solution to a reachability problem over a program’s System Dependence Graph
(SDG) [27]. An SDG is comprised of vertices, which essentially represent the
statements of the program and two kinds of edges: data dependence edges and
control dependence edges. A data dependence connects a definition of a variable
with each use of the variable reached by the definition [21]. Control dependence
connects a predicate p to a vertex v when p has at least two control-flow-graph
successors, one of which can lead to the exit vertex without encountering v and
the other always leads eventually to v [21]. Thus p controls the possible future
execution of v. For structured code, control dependence reflects the nesting
structure of the program. When slicing an SDG, a slicing criterion is a vertex
from the SDG.

A naive definition of a dependence cluster would be based on the transitive
closure of the dependence relation and thus would define a cluster to be a
strongly connected component. Unfortunately, for certain language features,
dependence is non-transitive. Examples of such features include procedures [27]
and threads [31]. Thus, in the presence of these features, strongly connected
components overstate the size and number of dependence clusters. Fortunately,
context-sensitive slicing captures the necessary context information [10, 27, 32,
13, 33].

Two kinds of SDG slices are used in this paper: backward slices and for-
ward slices [27, 35]. The backward slice taken with respect to vertex v, denoted
BSlice(v), is the set of vertices reaching v via a path of control and data de-
pendence edges where this path respects context. The forward slice, taken with
respect to vertex v, denoted FSlice(v), is the set of vertices reachable from v via
a path of control and data dependence edges where this path respects context.

The program P shown in Figure 1 illustrates the non-transitivity of slice in-
clusion. The program has six assignment statements (assigning the variables a,

backward slice on
assignment to
alb|c|d|e]f P
1:
L] 2. f1(x) {
RN 3: a =f2(x, 1) + f3(x);
EEEEEN 4: return f2(a, 2) + f4(a);
5}
6:
EEEEEN 17 R0 y) |
L] e bexty
R | | 9: return b;
10: }
11:
EEREEN 12: 3(x) {
L] 13: if (x>0) {
L] 14: c = f2(x, 3) + f1(x);
R 15: return c;
16: }
R 17: return 0;
18: }
19:
ol] e e g
LTl e d=x
RN 22: return d;
23: }
24:
[|| 25: f5(x) {
[|| 26: e = f4(5);
| 27: return f4(e);
28}
29:
| | 30: f6(x){
| | 31: f = f2(42, 4);
32: return f;
33}
34:

Figure 1: Dependence intransitivity and clusters

b, ¢, d, e and f) whose dependencies are shown in columns 1-6 as backward slice
inclusion. Backward slice inclusion contains statements that affect the slicing
criterion through data and control dependence. The dependence relationship
between these statements is also extracted and shown in Figure 2 using a di-
rected graph where the nodes of the graph represent the assignment statements

Slice Criterion | Backward Slice | Forward Slice
‘ ° a {a, b, c, d} {a, b, ¢, d}
b {a, b, ¢, d} {a, b, c, d, f}
Q c {a, b, ¢, d} {a, b, ¢, d}
d {a,b,c,d e} | {a,b,c d e}
@ @ e {d, e} {d, e}
f b, f} {f}

Figure 2: Backward slice inclusion relationship for Figure 1

and the edges represent the backward slice inclusion relationship from Figure 1.
The table on the right of Figure 2 also gives the forward slice inclusions for
the statements. All other statements in P, which do not define a variable, are
ignored. In the diagram, x depends on y (y € BSlice(x)) is represented by y — x.
The diagram shows two instances of dependence intransitivity in P. Although b
depends on nodes a, ¢, and d, node f, which depends on b, does not depend on
a, ¢, or d. Similarly, d depends on e but a, b, and ¢, which depend on d do not
depend on e.

2.2. Slice-based Clusters

A slice-based cluster is a maximal set of vertices included in each others
slice. The following definition essentially instantiates Definition 1 using BSlice.
Because = € BSlice(y) < y € FSlice(z) the dual of this definition using FSlice
is equivalent. Where such a duality does not hold, both definitions are given.
When it is important to differentiate between the two, the terms backward and
forward will be added to the definition’s name as is done in this section.

Definition 2 (Backward-Slice MDS and Cluster [26])
A backward-slice MDS is a set of SDG vertices, V', such that
Ve,y € V :x € BSlice(y).
A backward-slice cluster is a backward-slice MDS contained within no other
backward-slice MDS.

In the example shown in Figure 2, the vertices representing the assignments
to a, b, c and d are all in each others backward slices and hence satisfy the
definition of a backward-slice cluster. These vertices also satisfy the definition
of a forward-slice cluster as they are also in each others forward slices.

As dependence is not transitive, a statement can be in multiple slice-based
clusters. For example, in Figure 2 the statements d and e are mutually depen-
dent upon each other and thus satisfy the definition of a slice-based cluster.
Statement d is also mutually dependent on statements a, b, c, thus the set {a,
b, ¢, d} also satisfies the definition of a slice-based cluster. It can be shown that
the clustering problem reduces to the NP-Hard maximum cliqgue problem [23]
making Definition 2 prohibitively expensive to implement.

2.3. Same-Slice Clusters

An alternative definition uses the same-slice relation in place of slice inclu-
sion [10]. This relation replaces the need to check if two vertices are in each
others slice with checking if two vertices have the same slice. The result is cap-
tured in the following definitions for same-slice cluster. The first uses backward
slices and the second forward slices.

Definition 3 (Same-Slice MDS and Cluster [26])
A same-backward-slice MDS is a set of SDG vertices, V, such that
Vz,y € V : BSlice(x) = BSlice(y).
A same-backward-slice cluster is a same-backward-slice MDS contained within
no other same-backward-slice MDS.

A same-forward-slice MDS is a set of SDG vertices, V', such that

Va,y € V : FSlice(x) = FSlice(y).
A same-forward-slice cluster is a same-forward-slice MDS contained within no
other same-forward-slice MDS.

Because x € BSlice(z) and = € FSlice(z), two vertices that have the same
slice will always be in each other’s slice. If slice inclusion were transitive, a
backward-slice MDS (Definition 2) would be identical to a same-backward-slice
MDS (Definition 3). However, as illustrated by the examples in Figure 1, slice
inclusion is not transitive; thus, the relation is one of containment where every
same-backward-slice MDS is also a backward-slice MDS but not necessarily a
maximal one.

For example, in Figure 2 the set of vertices {a, b, c} form a same-backward-
slice cluster because each vertex of the set yields the same backward slice.
Whereas the set of vertices {a, ¢} form a same-forward-slice cluster as they
have the same forward slice. Although vertex d is mutually dependent with
all vertices of either set, it doesn’t form the same-slice cluster with either set
because it has additional dependence relationship with vertex e.

Although the introduction of same-slice clusters was motivated by the need
for efficiency, the definition inadvertently introduced an ezternal requirement on
the cluster. Comparing the definitions for slice-based clusters (Definition 2) and
same-slice clusters (Definition 3), a slice-based cluster includes only the internal
requirement that the vertices of a cluster depend upon one another. However,
a same-backward-slice cluster (inadvertently) adds to this internal requirement
the external requirement that all vertices in the cluster are affected by the same
vertices external to the cluster. Symmetrically, a same-forward-slice cluster adds
the external requirement that all vertices in the cluster affect the same vertices
external to the cluster.

2.4. Coherent Dependence Clusters

This subsection first formalizes the notion of coherent dependence clusters
and then presents a slice-based instantiation of the definition. Coherent clusters

are dependence clusters that include not only an internal dependence require-
ment (each statement of a cluster depends on all the other statements of the
cluster) but also an external dependence requirement. The external depen-
dence requirement includes both that each statement of a cluster depends on
the same statements external to the cluster and also that it influences the same
set of statements external to the cluster. In other words, a coherent cluster is a
set of statements that are mutually dependent and share identical extra-cluster
dependence. Coherent clusters are defined in terms of the coherent MDS:

Definition 4 (Coherent MDS and Cluster [29])
A coherent MDS is a set of SDG vertices V', such that
Vz,y € V : z depends on a implies y depends on a and a depends on x
implies a depends on y.
A coherent cluster is a coherent MDS contained within no other coherent MDS.

The slice-based instantiation of coherent cluster employs both backward and
forward slices. The combination has the advantage that the entire cluster is
both affected by the same set of vertices (as in the case of same-backward-slice
clusters) and also affects the same set of vertices (as in the case of same-forward-
slice clusters). The slice-based instantiation yields coherent-slice clusters:

Definition 5 (Coherent-Slice MDS and Cluster [29])
A coherent-slice MDS is a set of SDG vertices, V', such that
Vx,y € V : BSlice(x) = BSlice(y) A FSlice(z) = FSlice(y)
A coherent-slice cluster is a coherent-slice MDS contained within no other
coherent-slice MDS.

At first glance the use of both backward and forward slices might seem
redundant because = € BSlice(y) < y € FSlice(z). This is true up to a point:
for the internal requirement of a coherent-slice cluster, the use of either BSlice or
FSlice would suffice. However, the two are not redundant when it comes to the
external requirements of a coherent-slice cluster. With a mutually-dependent
cluster (Definition 1), it is possible for two vertices within the cluster to influence
or be affected by different vertices external to the cluster. Neither is allowed
with a coherent-slice cluster. To ensure both external effects are captured, both
backward and forward slices are required.

In Figure 2 the set of vertices {a, c} form a coherent cluster as both these
vertices have exactly the same backward and forward slices. That is, they
share the identical intra- and extra- cluster dependencies. Coherent clusters
are therefore a stricter from of same-slice clusters, all coherent clusters are also
same-slice MDS but not necessarily maximal. It is worth noting that same-
slice clusters partially share extra-cluster dependency. For example, each of the
vertices in the same-backward-slice cluster {a, b, c} is dependent on the same set
of external statements, but do not influence the same set of external statements.

2.5. Hashed based Coherent Slice Clusters

The computation of coherent-slice clusters (Definition 5) grows prohibitively
expensive even for mid-sized programs where tens of gigabytes of memory are
required to store the set of all possible backward and forward slices. The com-
putation is cubic in time and quadratic in space. An approximation is employed
to reduce the computation time and memory requirement. This approximation
replaces comparison of slices with comparison of hash values, where hash values
are used to summarize slice content. The result is the following approximation
to coherent-slice clusters in which H denotes a hash function.

Definition 6 (Hash-Based Coherent-Slice MDS and Cluster [29])
A hash-based coherent-slice MDS is a set of SDG vertices, V', such that
Vo,y € V : H(BSlice(x)) = H(BSlice(y)) A H(FSlice(z)) = H(FSlice(y))
A hash-based coherent-slice cluster is a hash-based coherent-slice MDS contained
within no other hash-based coherent-slice MDS.

The precision of this approximation is empirically evaluated in Section 3.3.
From here on, the paper considers only hash-based coherent-slice clusters unless
explicitly stated otherwise. Thus, for ease of reading, hash-based coherent-slice
cluster is referred to simply as coherent cluster.

2.6. Graph Based Cluster Visualization

This section describes two graph-based visualizations for dependence clus-
ters. The first visualization, the Monotone Slice-size Graph (MSG) [10], plots
a landscape of monotonically increasing slice sizes where the y-axis shows the
size of each slice, as a percentage of the entire program, and the z-axis shows
each slice, in monotonically increasing order of slice size. In an MSG, a de-
pendence cluster appears as a sheer-drop cliff face followed by a plateau. The
visualization assists with the inherently subjective task of deciding whether a
cluster is large (how long is the plateau at the top of the cliff face relative to the
surrounding landscape?) and whether it denotes a discontinuity in the depen-
dence profile (how steep is the cliff face relative to the surrounding landscape?).
An MSG drawn using backward slice sizes is referred to as a backward-slice
MSG (B-MSG), and an MSG drawn using forward slice sizes is referred to as a
forward-slice MSG (F-MSG).

As an example, the open source calculator bc contains 9,438 lines of code
represented by 7,538 SDG vertices. The B-MSG for bc, shown in Figure 3a,
contains a large plateau that spans almost 70% of the MSG. Under the assump-
tion that same slice size implies the same slice, this indicates a large same-slice
cluster. However, “zooming” in reveals that the cluster is actually composed
of several smaller clusters made from slices of very similar size. The tolerance
implicit in the visual resolution used to plot the MSG obscures this detail.

The second visualization, the Slice/Cluster Size Graph (SCG), alleviates this
issue by combining both slice and cluster sizes. It plots three landscapes, one
of increasing slice sizes, one of the corresponding same-slice cluster sizes, and
the third of the corresponding coherent cluster sizes. In the SCG, vertices are

100 | 70 % | 100 -
80 80
60 60
40 40
20 20
0 0
0 20 40 60 80 100 0 20 40 60 80 100
(a) B-MSG (b) F-MSG

Figure 3: MSGs for the program bc.

ordered along the z-axis first according to their slice size, second according to
their same-slice cluster size, and third according to the coherent cluster size.
Three values are plotted on the y-axis: slice sizes form the first landscape, and
cluster sizes form the second and third. Thus, SCGs not only show the sizes of
the slices and the clusters, they also show the relation between them and thus
bring to light interesting links. Two variants of the SCG are considered: the
backward-slice SCG (B-SCG) is built from the sizes of backward slices, same-
backward-slice clusters, and coherent clusters, while the forward-slice SCG (F-
SCGQG) is built from the sizes of forward slices, same-forward-slice clusters, and
coherent clusters. Note that both backward and forward SCGs use the same
coherent cluster sizes.

The B-SCG and F-SCG for the program bc are shown in Figure 4. In both
graphs the slice size landscape is plotted using a solid black line, the same-slice
cluster size landscape using a gray line, and the coherent cluster size landscape
using a (red) broken line. The B-SCG (Figure 4a) shows that bc contains two
large same-backward-slice clusters consisting of almost 55% and almost 15% of
the program. Surprisingly, the larger same-backward-slice cluster is composed
of smaller slices than the smaller same-backward-slice cluster; thus, the smaller
cluster has a bigger impact (slice size) than the larger cluster. In addition, the
presence of three coherent clusters spanning approximately 15%, 20% and 30%
of the program’s statements can also be seen.

2.7. Cluster Visualization Tool

Cluster visualizations such as the SCG can provide an engineer a quick high-
level overview of how difficult a program will be to work with [9]. High-level
abstraction can cope with a tremendous amount of code (millions of lines) and
reveal the high-level structure of a program. This overview can help an engineer
form a mental model of a program’s structure and consequently aid in tasks such
as comprehension, maintenance, and reverse engineering. However, the high-
level nature of the abstraction implies less detail. Furthermore, programmers
are most comfortable in the spatial structure in which they read and write
(i.e., that of source code). To accommodate the need for multiple levels of

10

100 100 -
80 80
60 60
40 40
20— I 20 — i
J: 1 ; | J: § '
0 o 0 b
0 20 40 60 8 100 0 20 40 60 8 100
(a) B-SCG (b) F-SCG

Figure 4: SCGs for the program bc

3

Q)
&)

1430
2

1907

1b @

2432 |
| Clusker | | BSlice | | Fslice |

o
&)

Figure 5: Heat Map View for bc

abstraction, the cluster visualization tool decluvi [28] provides four views: a
Heat Map view and three different source-code views. The latter three include
the System View, the File View, and the Source View, which allow a program’s
clusters to be viewed at increasing levels of detail. A common coloring scheme
is used in all four views to help tie the different views together.

The Heat Map view aids an engineer in creating a mental model of the overall
system. This overview can be traced to the source code using the other three
views. The Heat Map provides a starting point that displays an overview of all
the clusters using color to distinguish clusters of varying sizes. The view also
displays additional statistics such as the size of the backward and forward slices
for each coherent cluster and the number of clusters of each size. Figure 5 shows
the Heat Map for bc, which is annotated for the purpose of this discussion. The
three labels 1a, 1b, and 1lc highlight statistics for the largest cluster (Cluster
1) of the program, whereas 2a, 2b, and 2c highlight statistics of the 2"¢ largest
cluster (Cluster 2) and the 3’s the 37 largest cluster (Cluster 3). Starting from

11

the left of the Heat Map, using one pixel per cluster, horizontal lines (limited
to 100 pixels) show the number of clusters that exist for each cluster size. This
helps identify cases where there are multiple clusters of the same size. For
example, the single dot next to the labels 1a, 2a and 3a depict that there is one
cluster for each of the three largest sizes. A single occurrence is common for
large clusters, but not for small clusters as illustrated by the long line at the top
left of the Heat Map, which indicates multiple (uninteresting) clusters of size
one.

To the right of the cluster counts is the actual Heat Map (color spectrum)
showing cluster sizes from small to large reading from top to bottom using
colors varying from blue to red. In gray scale this appear as shades of gray,
with lighter shades (corresponding to blue) representing smaller clusters and
darker shades (corresponding to red) representing larger clusters. Red is used
for larger clusters as they are more likely to encompass complex functionality,
making them more important “hot topics”.

A numeric scale on the right of the Heat Map shows the cluster size (mea-
sured in SDG vertices). For program bc, the scale runs from 1-2432, depicting
the sizes of the smallest cluster, displayed using light blue (light gray), and the
largest cluster, displayed in bright red (dark gray).

Finally, on the right of the number scale, two slice size statistics are dis-
played: |BSlice| and |FSlice|, which show the sizes of the backward and forward
slices for the vertices that form a coherent cluster. The sizes are shown as a
percentage of the SDG’s vertex count, with the separation of the vertical bars
representing 10% increments. For example, Cluster 1’s BSlice (1b) and FSlice
(1c) include approximately 80% and 90% of the program’s SDG vertices, re-
spectively.

Turning to decluvi’s three source-code views, the System View is at the high-
est level of abstraction. Each file containing executable source code is abstracted
into a column. For bec this yields the nine columns seen in Figure 6. The name
of the file appears at the top of each column, color coded to reflect the size of the
largest cluster found within the file. The vertical length of a column represents
the length of the corresponding source file. To keep the view compact, each
line of pixels in a column summarizes multiple source lines. For moderate sized
systems, such as the case studies considered herein, each pixel line represents
about eight source code lines. The color of each line reflects the largest cluster
found among the summarized source lines, with light gray denoting source code
that does not include any executable code. Finally, the numbers at the bottom
of each column indicate the presence of the top 10 clusters in the file, where 1
denotes the largest cluster and 10 is the 10*" largest cluster. Although there
may be other smaller clusters in a file, numbers are used to depict only the ten
largest clusters because they are most likely to be of interest. In the case studies
considered in Section 3, only the five largest coherent clusters are ever found to
be interesting.

The File View, illustrated in Figure 7, is at a lower level of abstraction than
the System View. It essentially zooms in on a single column of the System View.
In this view, each pixel line corresponds to one line of source code. The pixel

12

global.c execute.c . flib/number.c
.C

storage.c
9 load.c

3
=%
E
"

Figure 6: System View for the Program bc showing each file using one column
and each line of pixels summarizing eight source lines. Blue color (medium gray
in black & white) represent lines whose vertices are part of smaller size clusters
than those in red color (dark gray), while lines not containing any executable
lines are always shown in light gray.

13

Figure 7: File View for the file util.c of Program bc. Each line of pixels corre-
spond to one source code line. Blue (medium gray in black & white) represents
lines with vertices belonging to the 27? largest cluster and red (dark gray) rep-
resents lines with vertices belonging to the largest cluster. The rectangle marks
function init_gen, part of both clusters.

lines are indented to mimic the indentation of the source lines and the number
of pixels used to draw each line corresponds to the number of characters in the
represented source code line. This makes it easier to relate this view to actual
source code. The color of a pixel line depicts the size of the largest coherent
cluster formed by the SDG vertices from the corresponding source code line.
Figure 7 shows the File View of bc’s file util.c, filtered to show only the two
largest coherent clusters, while smaller clusters and non-executable lines are
shown in light gray.

While the first two views aid in locating parts of the system involved in one
or more clusters, the Source View allows a programmer to see the actual source
code lines that makes up each cluster. This can be useful in addressing questions
such as Why is a cluster formed? What binds a cluster together? and Is there
dependence pollution [10, 26]? The Source View, illustrated in Figure 8, is a

14

244:1)1/1 init_gen ()

251:1|1/1 if (compile only)
254:1|1/1 init_load ();
255:1]1/1 had_error = FALSE;

Figure 8: Source View showing function init_gen in file util.c of Program bc.
The decluvi options are set to filter out all but the two largest clusters thus blue
(medium gray in black & white) represents lines from the 2"? largest cluster and
red (dark gray) lines from the largest cluster. All other lines including those
with no executable code are shown in light gray.

concrete view that maps the clusters onto actual source code lines. The lines
are displayed in the same spatial context in which they were written, line color
depicts the size of the largest cluster to which the SDG vertices representing
the line belong. Figure 8 shows Lines 241-257 of bc’s file util.c, which has again
been filtered to show only the two largest coherent clusters. The lines of code
whose corresponding SDG vertices are part of the largest cluster are shown in
red (dark gray) and those lines whose SDG vertices are part of the second largest
cluster are shown in blue (medium gray). Other lines that do not include any
executable code or whose SDG vertices are not part of the two largest clusters
are shown in light gray. On the left of each line is a line tag with the format
a:blc/d, which represents the line number (a), the cluster number (b), and an
identification ¢/d for the ¢ of d clusters having a given size. For example, in
Figure 8, Lines 250 and 253 are both part of a 20" largest cluster (clusters
with same size have the same rank) as indicated by the value of b; however they
belong to different clusters as indicated by the differing values of ¢ in their line
tags.

Decluvi has features such as filtering and relative coloring. These features
help to isolate and focus on a set of clusters of interest. Filtering allows a
range of cluster sizes of interest to be defined. Only clusters whose size falls
within the filtered range are shown using the Heat Map colors. Those outside
the specified range along with non-executable lines of code are shown in light
gray where in grayscale they appear in the lightest shade of gray. The filtering
system incorporates a feature to hide non-executable lines of code as well as
clusters whose size falls outside the specified range. In addition, relative coloring
allows the Heat Map colors to be automatically adjusted to fit within a defined
cluster size range. Relative coloring along with filtering overcomes the problem
where clusters of similar sizes are represented using similar colors, making them

15

indistinguishable.

3. Empirical Evaluation

This section presents the empirical evaluation into the existence and impact
of coherent dependence clusters. The section first discusses the experimental
setup and the subject programs included in the study. It then presents two
validation studies, the first on the use of CodeSurfer’s pointer analysis, and,
the second on the use of hashing to summarize slices for efficient cluster iden-
tification. The section then quantitatively considers the existence of coherent
dependence clusters and identifies patterns of clustering within the programs.
This is followed by a series of four case studies, where qualitative analysis, aided
by decluvi, is used to highlight how knowledge of clusters can aid a software en-
gineer. Finally, inter-cluster dependence and threats to validity are considered.
More formally, the empirical evaluation addresses the following research ques-
tions:

RQ1 Does increased pointer analysis precision result in smaller coherent clus-
ters?

RQ2 Does hashing provide a sufficient summary of a slice to allow comparing
hash values to replace comparing slices?

RQ3 Do large coherent clusters exist in production source code?
RQ4 Which patterns of clustering can be identified?
RQ@5 Can analysis of coherent clusters reveal structures within a program?

RQ6 Does dependence between coherent clusters induce larger dependence
structures?

The first two research questions (RQI and RQ)2) provide empirical verifica-
tion for the results subsequently presented. RQ@1 establishes the impact of the
data flow analysis quality used by the slicing tool. Whereas RQ2 is the foun-
dation for the remaining empirical study because it establishes that the hash
function for approximating slice content is sufficiently precise. If the static slices
produced by the slicer are overly conservative or if the slice approximation is not
sufficiently precise, then the results presented will not be reliable. Fortunately,
the results provide confidence that the slice precision and hashing accuracy are
sufficient.

Whereas RQ1 and RQ2 focus on the veracity of our approach, RQ3 investi-
gates the validity of the study; if large coherent clusters are not prevalent, then
they would not be worthy of further study. We place very specific and demand-
ing constraints on a set of vertices for it to be deemed a coherent cluster. If
such clusters are not common then their study would be merely an academic
exercise. Our findings reveal that, despite the tight constraints inherent in the
definition of a coherent dependence cluster, they are, indeed, very common.

16

SDG Largest
Program C LoC SLoC ELoC vertex Total Coherent Description
Files count Slices Cluster Size
aZps 79 | 46,620 | 22,117 | 18,799 | 224,413 97,170 3% ASCII to Postscript
acct 7 2,600 1,558 642 7,618 2,834 11% Process monitoring
acm 114 | 32,231 | 21,715 | 15,022 | 159,830 63,014 43% Flight simulator
anubis 35 | 18,049 | 11,994 6,947 | 112,282 34,618 13% SMTP messenger
archimedes 1 787 575 454 20,136 2,176 4% Semiconductor device simulator
barcode 13 3,968 2,685 2,177 16,721 9,602 58% Barcode generator
bc 9 9,438 5,450 4,535 36,981 15,076 32% Calculator
byacc 12 6,373 5,312 4,688 45,338 16,590 7% Parser generator
cflow 25 | 12,542 7,121 5,762 68,782 24,638 8% Control flow analyzer
combine 14 8,202 6,624 5,279 49,288 29,118 15% File combinator
copia 1 1,168 1,111 1,070 42,435 6,654 48% ESA signal processing code
cppi 13 6,261 1,950 2,554 17,771 10,280 13% C preprocessor formatter
ctags 33 | 14,663 | 11,345 7,383 | 152,825 31,860 48% C tagging
diction 5 2,218 1,613 427 5,919 2,444 16% Grammar checker
diffutils 23 8,801 6,035 3,638 30,023 16,122 44% File differencing
ed 8 2,860 2,261 1,788 35,475 11,376 55% Line text editor
enscript 22 | 14,182 | 10,681 9,135 67,405 33,780 19% File converter
findutils 59 | 24,102 | 13,940 9,431 | 102,910 41,462 22% Line text editor
flex 21 | 23,173 | 12,792 | 13,537 89,806 37,748 16% Lexical Analyzer
garpd 1 669 509 300 5,452 1,496 14% Address resolved
gcal 30 | 62,345 | 46,827 | 37,497 | 860,476 | 286,000 62% Calendar program
gnuedma 1 643 463 306 5,223 1,488 44% Development environment
gnushogi 16 | 16,301 | 11,664 7,175 64,482 31,298 40% Japanese chess
indent 8 6,978 5,090 4,285 24,109 7,543 52% Text formatter
less 33 | 22,661 | 15,207 9,759 | 451,870 33,558 35% Text reader
spell 1 741 539 391 6,232 1,740 20% Spell checker
time 6 2,030 1,229 433 4,946 3,352 4% CPU resource measure
userv 2 1,378 1,112 1,022 15,418 5,362 9% Access control
wdiff 4 1,652 1,108 694 10,077 2,722 6% Diff front end
which 6 3,003 1,996 753 8,830 3,804 35% Unix utility
Average 20 | 11,888 7,754 5,863 91,436 28,831 27%

Table 1: Subject programs

These results motivate the remaining research questions. Having demon-
strated that our technique is suitable for finding coherent clusters and that such
clusters are sufficiently widespread to be worthy of study, we investigate spe-
cific coherent clusters in detail. R@Q)4 asks whether there are common patterns of
clustering in the programs studied and RQ5 asks whether these clusters reveal
aspects of the underlying logical structure of programs. Finally, RQ6 looks ex-
plicitly at inter-cluster dependency relationships and considers areas of software
engineering where they may be of interest.

8.1. Ezperimental Subjects and Setup

The study considers the 30 C programs shown in Table 1, which provides
a brief description of each program alongside six measures: number of files
containing executable C code, LoC — lines of code (as counted by the Unix utility
wc), SLoC — the non-comment non-blank lines of code (as counted by the utility
sloccount [43]), ELoC — the number of source code lines that CodeSurfer [4]
considers to contain executable code, the number of SDG vertices, the number
of slices produced, and finally the size (as a percentage of the program’s SDG
vertex count) of the largest coherent cluster. The values under ELoC are smaller

17

than the other source code measures because they reflect SLoC for the particular
preprocessed version of the program considered by CodeSurfer.

The data and visualizations presented in this paper are generated from slices
taken with respect to source-code representing SDG vertices. This excludes
pseudo vertices introduced into the SDG, to represent, for example, global vari-
ables, which are modeled as additional pseudo parameters by CodeSurfer. Thus
in Table 1 total slices is smaller than the SDG vertex count. Cluster sizes are
also measured in terms of source-code representing SDG vertices, which is more
consistent than using lines of code as it is not influenced by blank lines, com-
ments, statements spanning multiple lines, multiple statements on one line, or
compound statements.

The slices along with the mapping between the SDG vertices and the actual
source code is extracted from the mature and widely used slicing tool CodeSurfer
(version 2.1). The cluster visualizations were generated by decluvi using data ex-
tracted from CodeSurfer. The decluvi system along with scheme scripts for data
acquisition and pre-compiled datasets for several open-source programs can be
downloaded from http://www.cs.ucl.ac.uk/staff/s.islam/decluvi.html

3.2. CodeSurfer Pointer Analysis

Recall that the definition of a coherent dependence cluster is based on an
underlying depends-on relation, which is approximated using program slicing.
Pointer analysis plays a key role in the precision of slicing. This section presents
a study on the effect of various levels of pointer-analysis precision on the size
of the coherent clusters. It addresses research question RQ! by considering
whether more sophisticated pointer analysis results in more precise slices and
hence smaller clusters. There is no automatic way to determine whether the
slices are correct and precise, we use slice size as a measure of conciseness and
thus precision.

CodeSurfer provides three levels of points-to analysis precision (Low, Medium,
and High) that provide increasingly precise points-to information at the expense
of additional memory and analysis time [24]. The Low setting uses minimal
pointer analysis that assumes every pointer may point to every object that has
its address taken (variable or function). At the Medium and High settings,
CodeSurfer performs extensive pointer analysis using the algorithm proposed
by Fahndrich et al. [20], which implements a variant of Andersen’s points-to
algorithm [3] (this includes parameter aliasing). At the Medium setting, fields
of a structure are not distinguished while the High level distinguishes structure
fields. The High setting should produce the most precise slices but requires more
memory and time during SDG construction, which puts a functional limit on
the size and complexity of the programs that can be handled by CodeSurfer [24].

The study compares slice and cluster size for CodeSurfer’s three precision
options (Low, Medium, High) to study the impact of points-to precision. The
results of the study are shown in Table 2. Column 1 lists the programs, while
columns 24, 5-7, 8-10, and 11-13 present the average slice size, maximum slice
size, average cluster size, and maximum cluster size, respectively, for each each
of the three precision settings. The results for average slice size deviation and

18

Program Average Slice Size Max Slice Size Average Cluster Size MaxCluster Size

L M H L M H L M H L M H
aZps 25223 23085 20897 45231 44139 43987 2249 1705 711 | 10728 9295 4002
acct 763 700 621 1357 1357 1357 79 66 40 272 236 162
acm 19083 17997 16509 29403 28620 28359 3566 3408 4197 9356 9179 | 10809
anubis 11120 10806 9085 16548 16347 16034 939 917 650 2708 2612 2278
archimedes 113 113 113 962 962 962 3 3 3 39 39 39
barcode 3523 3052 2820 4621 4621 4621 1316 1870 1605 2463 2970 2793
bc 5278 5245 5238 7059 7059 7059 1185 1188 1223 2381 2384 2432
byacc 3087 2936 2886 9036 9036 9036 110 110 103 583 583 567
cflow 7314 5998 5674 11856 11650 11626 865 565 246 3060 2191 1097
combine 3512 3347 3316 13448 13448 13448 578 572 533 2252 2252 2161
copia 1844 1591 1591 3273 3273 3273 1566 1331 1331 1861 1607 1607
cppi 1509 1352 1337 4158 4158 4158 196 139 139 825 663 663
ctags 12681 11663 11158 15483 15475 15475 7917 4199 3955 | 11080 7905 7642
diction 421 392 387 1194 1194 1194 46 37 37 217 196 196
diffutils 5049 4546 4472 7T T i 3048 1795 1755 4963 3596 3518
ed 4203 3909 3908 5591 5591 5591 2099 1952 1952 3281 3146 3146
enscript 7023 6729 6654 16130 16130 16130 543 554 539 3140 3242 3243
findutils 7020 6767 5239 11075 11050 11050 1969 1927 1306 4489 4429 2936
flex 9038 8737 8630 17257 17257 17257 622 657 647 3064 3064 3064
garpd 284 242 224 628 628 628 32 31 29 103 103 103
gcal 132860 | 123438 | 123427 | 142739 | 142289 | 142289 | 40885 | 40614 | 40614 | 93541 | 88532 | 88532
gnuedma 385 369 368 730 730 368 178 176 174 333 331 330
gnushogi 9569 9248 9141 14726 14726 14726 1577 2857 2820 3787 6225 6179
indent 4104 4058 4045 5704 5704 5704 2036 2032 1985 3402 3399 3365
less 13592 13416 13392 16063 16063 16063 4573 3074 3035 7945 5809 5796
spell 359 293 291 845 845 845 58 31 48 199 128 174
time 201 161 158 730 730 730 4 3 3 35 33 33
userv 1324 972 964 2721 2662 2662 69 32 53 268 154 240
wdiff 687 582 561 2687 2687 2687 33 21 19 184 158 158
which 1080 1076 1070 1744 1744 1744 413 413 410 798 798 793

Table 2: CodeSurfer pointer analysis settings

largest cluster size deviation are visualized in Figures 9 and 10. The graphs use
the High setting as the base line and show the percentage deviation when using
the Low and Medium settings.

Figure 9 shows the average slice size deviation when using the lower two set-
tings compared to the highest. On average, the Low setting produces slices that
are 14% larger than the High setting. Program userv has the largest deviation
of 37% when using the Low setting. For example, in userv the minimal pointer
analysis fails to recognize that the function pointer oip can never point to func-
tions sighandler_alrm and sighandler_child and includes them as called functions at
call sites using *oip, increasing slice size significantly. In all 30 programs, the
Low setting yields larger slices compared to the High setting.

The Medium setting always yields smaller slices when compared to the Low
setting. For eight programs, the Medium setting produces the same average
slice size as the High setting. For the remaining programs the Medium setting
produces slices that are on average 4% larger than when using the High set-
ting. The difference in slice size occurs because the Medium setting does not
differentiate between structure fields, which the High setting does. The largest
deviation is seen in findutils at 34%. With the Medium setting, the structure

19

40%
35%
30%
25%
20%
15%

10% 1§ M
sl 1Im LIkl
0% \\\\\\.\ T T T T T T T T T T T T T T T \.\l\ T T T \.\
(%) QO - w) = n - A =
RBEE8ES 8 EaRRSESoEsRCE T RESET
] o S E = o EOR% =
>0 >0 00+E> 5% g WoC wsS<
‘,“U“"“cwg o0¢go O Of S5 u‘% q_,m-g ""5333
©TEw© T= cc 5 3.=
=0 o T o cc
= o &o B0
]
2
©

Figure 9: Percentage deviation of average slice size for Low and Medium
CodeSurfer pointer analysis settings

200%

150%

100%

50% - |
0% ‘l‘lwl‘ 'I'I

LIS

.
=

-
<

-50%

P ELPUOUZUTENCOTEYD x T THE 4= U 2ES
885283283503 RoE 0250 3ESG88EST S
ICCZoC ZTESYCSE 38§ svg vFE33
© 2 € » ogg

©Em IS TT SE S2=
e= = b b
o
2
©

Figure 10: Percentage deviation of largest cluster size for Low and Medium
CodeSurfer pointer analysis settings

fields (options, regex_map, stat_buf and state) of findutils are lumped together as if
each structure were a scalar variable, resulting in larger, less precise, slices.

Figure 10 visualizes the deviation of the largest coherent cluster size when
using the lower two settings compared to the highest. The graph shows that
the size of the largest coherent clusters found when using the lower settings is
larger in most of the programs. On average there is a 22% increase in the size
of the largest coherent cluster when using the Low setting and a 10% increase
when using the Medium setting. In a2ps and cflow the size of the largest cluster
increases over 100% when using the Medium setting and over 150% when using
the Low setting. The increase in slice size is expected to result in larger clusters
due to the loss of precision.

The B-SCGs for a2ps for the three settings is shown in Figure 11a. In the

20

100 100 100
80 80 80
—_—
60 60 60 -
- IJ_'__J—_' ” ’_r_J__—I 40
20 J i 1 20 — 20)JJ
o o ! [o | e o o I PO
0 20 40 60 8 100 0 20 40 60 80 100 20 40 60 80 100
Low Medium High
(a) a2ps
100 100 100
80 80 80
— - —
60 60 [60
40 r,"'l 40 I 40 F_I_’_’
20 J h 1 20 — 20
= B R = T = .
0 0 0
0 20 40 60 80 100 0 20 40 60 80 100 20 40 60 80 100
Low Medium High
(b) cflow
100 100 100
80 | 80 | 80 -
60 60 60
40 40 40
— — o
20 i 20 i 20 o~ 1
E ~ - E‘_‘ ~ —/
1 4 el !
0 0 0
0 20 40 60 80 100 0 20 40 60 80 100 20 40 60 80 100
Low Medium High
(c) acm

Figure 11: SCGs for Low, Medium and High pointer settings of CodeSurfer

21

graphs it is seen that the slice sizes get smaller and have increased steps in the
(black) landscape indicating that they become more precise. The red landscape
shows that there is a large coherent cluster detected when using the Low setting
running from approx. 60% to 85% on the x-axis. This cluster drops in size when
using the Medium setting. At the High setting this coherent clusters breaks up
into multiple smaller clusters. In this case, a drop in the cluster size also leads
to breaking of the cluster in to multiple smaller clusters.

In the SCGs for cflow (Figure 11b) a similar drop in the slice size and cluster
size is observed. However, unlike a2ps the large coherent cluster does not split
into smaller clusters but only drops in size. The largest cluster when using the
Low setting runs from 60% to 85% on the x-axis. This cluster reduces in size
and shifts position running 30% to 45% z-axis when using the Medium setting.
The cluster further drops in size down to 5% running 25% to 30% on the z-axis
when using the High setting. In this case the largest cluster has a significant
drop in size but doesn’t split into multiple smaller clusters.

f6(x) {
= *p(42, 4);
return f;

}

Figure 12: replacement coherent cluster example

Surprisingly, Figure 10 also shows seven programs where the largest coherent
cluster size actually increases when using the highest pointer analysis setting on
CodeSurfer. Figure 11c shows the B-SCGs for acm which falls in this category.
This counter-intuitive result is seen only when the more precise analysis deter-
mines that certain functions cannot be called and thus excludes them from the
slice. Although in all such instances slices get smaller, the clusters may grow if
the smaller slices match other slices already forming a cluster.

For example, consider replacing function f6 in Figure 1 with the code shown
in Figure 12, where f depends on a function call to a function referenced through
the function pointer p. Assume that the highest precision pointer analysis deter-
mines that p does not point to f2 and therefore there is no call to f2 or any other
function from f6. The higher precision analysis would therefore determine that
the forward slices and backward slices of a, b and ¢ are equal, hence grouping
these three vertices in a coherent cluster. Whereas the lower precision is unable
to determine that p cannot point to f2, the backward slice on f will conserva-
tively include b. This will lead the higher precision analysis to determine that
the set of vertices {a, b, c} are one coherent cluster whereas the lower precision
analysis include only set of vertices {a, c} in the same coherent cluster.

As an answer to RQI, we find that in 85% of cases the Medium and Low
settings result in larger coherent clusters when compared to the High setting.
For the remaining cases we have identified valid scenarios where more precise
pointer analysis can result in larger coherent clusters. The results also confirm
that a more precise pointer analysis leads to more precise (smaller) slices. Be-

22

cause it gives the most precise slices and most accurate clusters, the remainder
of the paper uses the highest CodeSurfer pointer analysis setting.

3.8. Validity of the Hash Function

This section addresses research question RQ2: Does hashing provide a suf-
ficient summary of a slice to allow comparing hash values to replace comparing
slices? The section validates the use of comparing slice hash values in lieu of
comparing actual slice content. The use of hash values to represent slices re-
duce both the memory requirement and run-time, as it is no longer necessary
to store or compare entire slices. The hash function, denoted H in Definition 6,
determines a hash value for a slice based on the unique vertex ids assigned by
CodeSurfer. Validation of this approach is needed to confirm that the hash
values provide a sufficiently accurate summary of slices to support the correct
partitioning of SDG vertices into coherent clusters. Ideally, the hash function
would produce a unique hash value for each distinct slice. The validation study
aims to find the number of unique slices for which the hash function successfully
produces an unique hash value.

For the validation study we chose 16 programs from the set of 30 subject
programs. The largest programs were not included in the validation study to
make the study-time manageable. Results are based on both the backward and
forward slices for every vertex of these 16 programs. To present the notion
of precision we introduce the following formalization. Let V be the set of all
source-code representing SDG vertices for a given program P and US denote
the number of unique slices: US = [{BSlice(z) : © € V}| + [{FSlice(z) : z € V'}|.
Note that if all vertices have the same backward slice then {BSlice(z) : x € V'}
is a singleton set. Finally, let UH be the number of unique hash-values, UH =
[{H(BSlice(z)) : € V'}| + [{H(FSlice(x)) : z € V'}|.

The accuracy of hash function H is given as Hashed Slice Precision, HSP =
UH/US. A precision of 1.00 (US = UH) means the hash function is 100%
accurate (i.e., it produces a unique hash value for every distinct slice) whereas a
precision of 1/US means that the hash function produces the same hash value
for every slice leaving UH = 1.

Table 3 summarizes the results. The first column shows each program. The
second and the third columns report the values of US and U H respectively. The
fourth column reports HS P, the precision attained using hash values to compare
slices. Considering all 78,587 unique slices the hash function produced unique
hash values for 74,575 of them, resulting in an average precision of 94.97%.
In other words, the hash function fails to produce unique hash values for just
over 5% of the slices. Considering the precision of individual programs, five of
the programs have a precision greater than 97%, while the lowest precision, for
findutils, is 92.37%. This is, however, a significant improvement over previous
use of slice size as the hash value, which is only 78.3% accurate [10].

Coherent cluster identification uses two hash values for each vertex (one for
the backward slice and other for the forward slice) and the slice sizes. Slice
size matching filters out some instances where the hash values happen to be
the same by coincidence but the slices are different. The likelihood of both

23

Unique Hashed Hash Hash
Unique Hash Slice Cluster | Cluster | Precision
Slices values | Precision | Count Count Clusters
Program (Us) (UH) (HSP) (co) (HCC) | (HCP)
acct 1,558 1,521 97.63% 811 811 | 100.00%
barcode 2,966 2,792 94.13% 1,504 1,504 | 100.00%
bc 3,787 3,671 96.94% 1,955 1,942 99.34%
byacc 10,659 10,111 94.86% 5,377 5,377 | 100.00%
cflow 16,584 | 15,749 94.97% 8,457 8,452 99.94%
copia 3,496 3,398 97.20% 1,785 1,784 99.94%
ctags 8,739 8,573 98.10% 4,471 4,470 99.98%
diffutils 5,811 5,415 93.19% 2,980 2,978 99.93%
ed 2,719 2,581 94.92% 1,392 1,390 99.86%
findutils 9,455 8,734 92.37% 4,816 4,802 99.71%
garpd 808 769 95.17% 413 411 99.52%
indent 3,639 3,491 95.93% 1,871 1,868 99.84%
time 1,453 1,363 93.81% 760 758 99.74%
userv 3,510 3,275 93.30% 1,827 1,786 97.76%
wdiff 2,190 2,148 98.08% 1,131 1,131 | 100.00%
which 1,213 1,184 97.61% 619 619 | 100.00%
Sum 78,587 | 74,575 - 40,169 40,083 -
Average 4,912 4,661 94.97% 2,511 2,505 99.72%

Table 3: Hash function validation

hash values matching those from another vertex with different slices is less
than that of a single collision. Extending US and UH to clusters, Columns
5 and 6 (Table 3) report C'C, the number of coherent clusters in a program
and HCC, the number of coherent clusters found using hashing. The final
column shows the precision attained using hashing to identify clusters, HCP =
HCC/CC. The results show that of the 40,169 coherent clusters, 40,083 are
uniquely identified using hashing, which yields a precision of 99.72%. Five of
the programs show total agreement, furthermore for each program HCP is over
99%, except for userv, which has the lowest precision of 97.76%. This can be
attributed to the large percentage (96%) of single vertex clusters in userv. The
hash values for slices taken with respect to these single-vertex clusters have
a higher potential for collision leading to a reduction in overall precision. In
summary, this study provides an affirmative answer to R@Q2. The hash-based
approximation is sufficiently accurate. Comparing hash values can replace the
need to compare actual slices.

8.4. Do large coherent clusters occur in practice?

Having demonstrated that hash function H can be used to effectively ap-
proximate slice contents, this section considers the validation research question,
RQ3: Do large coherent clusters exist in production source code? The question
is first answered quantitatively using the size of the largest coherent cluster in
each program and then through visual analysis of the SCGs.

24

]
'
Small] Large ; Huge
S
[1 .
i 70 " 1
=A I
‘U_.E 60) ,
€ 8 50 I
O 4= b
52\1 20 1 II
[10 ———— 11 8
S —T
S
5 H 1]
O T T T T T T ™ T T T T T T T
w o [SENY} + n o= U C X+=E22= v 0O wu c = w © YV @, [=
8 EECBECIC 8o E3ETL8CREREBIETET
gu:;>'?‘ut.—-m|m3uanﬁ“_-b%:s —Sco>5cS8om 9w
a S > c g .2 o O 20 ool 2
g I © 6 ° g E g S 3 = B
c
S I © oh &]
2
©

Figure 13: Size of largest coherent cluster

To assess if a program includes a large coherent cluster, requires making a
judgement concerning what threshold constitutes large. Following prior empiri-
cal work [10, 26, 28, 29], a threshold of 10% is used. In other words, a program
is said to contain a large coherent cluster if 10% of the program’s SDG vertices
produce the same backward slice as well as the same forward slice.

Figure 13 shows the size of the largest coherent cluster found in each of the
30 subject programs. The programs are divided into 3 groups based on the size
of the largest cluster present in the program.

Small: Small consists of seven programs none of which have a coherent clus-
ter constituting over 10% of the program vertices. These programs are
archimedes, time, wdiff, byacc, a2ps, cflow and userv. Although it may be in-
teresting to study why large clusters are not present in these programs,
this paper focuses on studying the existence and implications of large co-
herent clusters.

Large: This group consists of programs that have at least one cluster with size
10% or larger. As there are programs containing much larger coherent
clusters, a program is placed in this group if it has a large cluster between
the size 10% and 50%. Over two-thirds of the programs studied fall in
this category.

The program at the bottom of this group (acct) has a coherent cluster
of size 11% and the largest program in this group (copia) has a coherent
cluster of size 48%. We present both these programs as case studies and
discuss their clustering in detail in Sections 3.6.1 and 3.6.4, respectively.
The program bc which has multiple large clusters with the largest of size
32% falls in the middle of this group and is also presented as a case study
in Section 3.6.3.

Huge: The final group consists of programs that have a large coherent cluster

25

whose size is over 50%. Out of the 30 programs 4 fall in this group. These
programs are indent, ed, barcode and gcal. From this group, we present
indent as a case study in Section 3.6.2.

In summary all but 7 of the 30 subject programs contain a large coherent
cluster. Therefore, over 75% of the subject programs contain a coherent cluster
of size 10% or more. Furthermore, half the programs contain a coherent cluster
of at least 20% in size. It is also interesting to note that although this grouping
is based only on the largest cluster, many of the programs contain multiple large
coherent clusters. For example, ed, ctags, nano, less, bc, findutils, flex and garpd all
have multiple large coherent clusters. It is also interesting to note that there
is no correlation between a program’s size (measured in SLoC) and the size
of its largest coherent cluster. For example, in Table 1 two programs of very
different sizes, cflow and userv, have similar largest-cluster sizes of 8% and 9%,
respectively. Whereas programs acct and ed, of similar size, have very different
largest coherent clusters of sizes 11% and 55%.

100
80
60
40

100
80
60

100
80

60 ——’_’,J

40

40
20 J_J_'JJ
o R

0

20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
archimedes time wdiff byacc
100 100 100
80 80 80
60 60 — 60 -
40) 40 r—, 40 //_’—
20 |_J 20 20
0 J_r I P2 0 R S T | 0 "Ld_‘
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
a2ps cflow userv

Figure 14: Programs with small coherent clusters

Therefore as an affirmative answer to RQ3, the study finds that 23 of the
30 programs studied have a large coherent cluster. Some programs also have a
huge cluster covering over 50% of the program vertices. Furthermore, the choice
of 10% as a threshold for classifying a cluster as large is a relatively conservative
choice. Thus, the results presented in this section can be thought of as a lower

bound to the existence question.

3.5. Patterns of clustering

This section presents a visual study of SCGs for the three program groups
and addresses R@4 by identifying patterns of clustering common among the
groups. Figures 14-16 show graphs for the three categories.
the figures are laid out in ascending order based on the largest coherent cluster
present in the program and thus follow the same order as seen in Figure 13.

26

The graphs in

100 100 100 100
80 80 80 80
60 60 J 60 60
40 I 40 I/ 40 40
20 ‘__l 20 20 20
0 ' ¥ i P 0 d P B s N [0 o (=B 0 | I
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
acct anubis cppi garpd
100 100 100 100
80 80 80 80
60 60 JJ_,_J 60 ’_J 60 — T
40 —_— 40 40 40
[[
20] 20 — 20 — 20 #‘_'7
0 ﬁ ; I.‘ adl 0 d :E ool " l 0 e 1 Fo— 0 ot J_' L
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
combine diction flex enscript
100 100 100 100
80 80 80 80 1
r — J
60 I 60 l 60 60 J'
40 40 ~ 40 40
0 1 —_—!]
20 1 —— 20 — 20 h 1 20 T t
0 o — 0 ! < . 0 Ll 0 i .
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
spell findutils bc less
100 100 100 100
80 80 80 80
P —— PE———
60 rr 60 60 60
40 40 40 40 I 1
— : i w— . !
20 1) 20 20 1 20 f]
0 . 0 S 0 i . 0 I
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
which gnushogi acm diffutils
100 100 100
80 ; 80 80
60 60 60 |
1 1
1
40 i 40) 1 40 |
20 1 20 1 t 20 t
']
o —.é' L 0 e ! 0 .
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
gnuedma ctags copia
Figure 15: Programs with large coherent clusters
100 100 100 100
80 80 - 80 r 80
60 60 60 T] 60 1 1
—_— e |
40 ! 1 40 1 1 40 ! ! 40 1 :
20 ! ! 20 T ! ! 20 ! ! 20 ! t
I) | 1 1 T
o ol o — 0 = [o I !
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
indent ed barcode geal

Figure 16: Programs with huge coherent clusters

27

Figure 14 shows SCGs for the seven programs of the small group. In the
SCGs of the first three programs (archimedes, time and wdiff) only a small coherent
cluster is visible in the red landscape. In the remaining four programs, the red
landscape shows the presence of multiple small coherent clusters. It is very likely
that, similar to the results of the case studies presented later, these clusters also
depict logical constructs within each program.

Figure 15 shows SCGs of the 19 programs that have at least one large,
but not huge, coherent cluster. That is, each program has at least one coherent
cluster covering 10% to 50% of the program. Most of the programs have multiple
coherent clusters as is visible on the red landscape. Some of these have only one
large cluster satisfying the definition of large, such as acct. The clustering of acct
is discussed in further detail in Section 3.6.1. Most of the remaining programs
are seen to have multiple large clusters such as bc, which is also discussed in
further detail in Section 3.6.3. The presence of multiple large coherent cluster
hints that the program consists of multiple functional components. In three of
the programs (which, gnuedma and copia) the landscape is completely dominated
by a single large coherent cluster. In which and gnuedma this cluster covers
around 40% of the program vertices whereas in copia the cluster covers 50%. The
presence of a single large dominating cluster points to a centralized functionality
or structure being present in the program. Copia is presented as a case study in
Section 3.6.4 where its clustering is discussed in further detail.

Finally, SCGs for the four programs that contain huge coherent clusters
(covering over 50%) are found in Figure 16. In all four landscapes there is
a very large dominating cluster with other smaller clusters also being visible.
This pattern supports the conjecture that the program has one central structure
or functionality which consists of most of the program elements, but also has
additional logical constructs that work in support of the central idea. Indent
is one program that falls in this category and is discussed in further detail in
Section 3.6.2.

As an answer to R@Q/, the study finds that most programs contain multiple
coherent clusters. Furthermore, the visual study reveals that a third of the
programs have multiple large coherent clusters. Only three programs copia,
gnuedma, and which show the presence of only a single (overwhelming) cluster.

Having shown that coherent clusters are prevalent in programs and that
most programs have multiple significant clusters, it is our conjecture that these
clusters represent high-level functional components of programs and hence rep-
resent the systems logical structure. The following sections present a series of
four case studies where such mappings are discussed in details.

3.6. Coherent Cluster and program decomposition

This section presents four case studies using acct, indent, bc and copia. The
case studies form a major contribution of the paper and collectively address
research question RQ5: Can analysis of coherent clusters reveal structures within
a program? The programs have been chosen to represent the large and huge
groups identified in the previous section. Three programs are taken from the
large group as it consists of the majority of the programs and one from the huge

28

group. Each of the three programs from the large group were chosen because
it exhibits specific patterns. Acct has multiple coherent clusters visible in its
profile and has the smallest large cluster in the group, bc has multiple large
coherent clusters, and copia has only a single large coherent cluster dominating
the entire landscape.

3.6.1. Case Study: acct

The first of the series of case studies is acct, an open-source program used
for monitoring and printing statistics about users and processes. The program
acct is one of the smaller programs with 2,600 LoC and 1,558 SLoC from which
CodeSurfer produced 2,834 slices. The program has seven C files, two of which,
getopt.c and getoptl.c, contain only conditionally included functions. These func-
tions provide support for command-line argument processing and are included
if needed library code is missing.

Table 4 shows the statistics for the five largest clusters of acct. Column 1
gives the cluster number, where 1 is the largest and 5 is the 5" largest cluster
measured using the number of vertices. Columns 2 and 3 show the size of the
cluster as a percentage of the program’s vertices and actual vertex count, as
well as the line count. Columns 4 and 5 show the number of files and functions
where the cluster is found. The cluster sizes range from 11.4% to 2.4%. These
five clusters can be readily identified in the Heat-Map visualization (not shown)
of decluvi. The rest of the clusters are very small (less than 2% or 30 vertices)
in size and are thus of little interest.

Cluster Cluster Size Files Functions
% vertices/lines | spanned | spanned
1 11.4% 162/88 4 6
2 7.2% 102/56 1 2
3 4.9% 69/30 3 4
4 2.8% 40/23 2 3
5 2.4% 34/25 1 1

Table 4: acct’s top five clusters

The B-SCG for acct (row one of Figure 15) shows the existence of these five
coherent clusters along with other same-slice clusters. Splitting of the same-slice
cluster is evident in the SCG. Splitting occurs when the vertices of a same-slice
cluster become part of different coherent clusters. This happens when vertices
have either the same backward slice or the same forward slice but not both. In
acct’s B-SCG the vertices of the largest same-backward-slice cluster spanning
the z-axis from 60% to 75% are not part of the same coherent cluster. This is
because the vertices do not share the same forward slice. This splitting effect is
common among the programs studied.

Decluwi visualization (not shown) of acct reveals that the largest cluster spans
four files (file_rd.c, common.c, ac.c, and utmp_rd.c), the 2"¢ largest cluster spans
only a single file (hashtab.c), the 3"¢ largest cluster spans three files (file_rd.c,

29

ac.c, and hashtab.c), the 4*" largest cluster spans two files (ac.c and hashtab.c),
while the 5" largest cluster includes parts of ac.c only.

The largest cluster of acct is spread over six functions, log_in, log_out, file_open,
file_reader_get_entry, bad_utmp_record and utmp_get_entry. These functions are re-
sponsible for putting accounting records into the hash table used by the program,
accessing user-defined files, and reading entries from the file. Thus, the purpose
of the code in this cluster is to track user login and logout events.

The second largest cluster is spread over two functions hashtab_create and
hashtab_resize. These functions are responsible for creating fresh hash tables and
resizing existing hash tables when the number of entries becomes too large. The
purpose of the code in this cluster is the memory management in support of the
program’s main data structure.

The third largest cluster is spread over four functions: hashtab_set_value,
log_everyone_out, update_user_time, and hashtab_create. These functions are respon-
sible for setting values of an entry, updating all the statistics for users, and
resetting the tables. The purpose of the code from this cluster is the modifica-
tion of the user accounting data.

The fourth cluster is spread over three functions: hashtab_delete, do_statistics,
and hashtab_find. These functions are responsible for removing entries from the
hash table, printing out statistics for users and finding entries in the hash table.
The purpose of the code from this cluster is maintaining user accounting data
and printing results.

The fifth cluster is contained within the function main. This cluster is formed
due to the use of a while loop containing various cases based on input to the
program. Because of the conservative nature of static analysis, all the code
within the loop is part of the same cluster.

Finally, it is interesting to note that functions from the same file or with
similar names do not necessarily belong to the same cluster. Although six of the
functions considered above have the common prefix “hashtab”, these functions
are not part of the same cluster. Instead the functions that work together to
provide a particular functionality are found in the same cluster. This case study
provides an affirmative answer to RQ5. For acct, each of the top five clusters
maps to specific functionality, which interestingly is not revealed simply from
studying the names of the artifacts.

3.6.2. Case Study: indent

The next case study uses indent to further support to the answer found for
RQ@5 in the acct case study. The characteristics of indent are very different from
those of acct as indent has a very large dominant coherent cluster (52%) whereas
acct has multiple smaller clusters with the largest being 11%. We include indent
as a case study to ensure that the answer for RQJ5 is derived from programs
with different cluster profiles and sizes giving confidence as to the generality of
the answer.

Indent is a Unix utility used to format C source code. It consists of 6,978
LoC with 7,543 vertices in the SDG produced by CodeSurfer. Table 5 shows
statistics of the five largest clusters found in the program.

30

Cluster Cluster Size Files Functions
% vertices/lines | spanned | spanned
1 52.1% | 3930/2546 7 54
2 3.0% 223/136 3 7
3 1.9% 144/72 1 6
4 1.3% 101/54 1 5
5 1.1% 83/58 1 1

Table 5: indent’s top five clusters

Indent has one extremely large coherent cluster that spans 52.1% of the pro-
gram’s vertices. The cluster is formed of vertices from 54 functions spread
over 7 source files. This cluster captures most of the logical functionalities of
the program. Out of the 54 functions, 26 begin with the common prefix of
“handle_token”. These 26 functions are individually responsible for handling a
specific token during the formatting process. For example, handle_token_colon,
handle_token_comma, handle_token_comment, and handle_token_lbrace are responsible
for handling the colon, comma, comment, and left brace tokens, respectively.

This cluster also includes multiple handler functions that check the size of
the code and labels being handled, such as check_code_size and check_lab_size. Oth-
ers, such as search_brace, sw_buffer, print_.comment, and reduce, help with tracking
braces and comments in code. The cluster also spans the main loop of indent
(indent_main_loop) that repeatedly calls the parser function parse.

Finally, the cluster consists of code for outputting formatted lines such as the
functions better_break, computer_code_target, dump_line, dump_line_code, dump_line_label,
inhibit_indenting, is_.comment_start, output_line_length and slip_horiz_space, and ones
that perform flag and memory management (clear_buf break_list, fill_buffer and
set_priority).

Cluster 1 therefore consists of the main functionality of this program and
provides support for parsing, handling tokens, associated memory management,
and output. The parsing, handling of individual tokens and associated mem-
ory management are highly inter-twined. For example, the handling of each
individual token is dictated by operations of indent and closely depends on the
parsing. This code cannot easily be decoupled and, for example, reused. Sim-
ilarly the memory management code is specific to the data structures used by
indent resulting in these many logical constructs to become part of the same
cluster.

The second largest coherent cluster consists of 7 functions from 3 source
files. These functions handle the arguments and parameters passed to indent.
For example, set_option and option_prefix along with the helper function eqin to
check and verify that the options or parameters passed to indent are valid. When
options are specified without the required arguments, the function arg_missing
produces an error message by invoking usage followed by a call to DieError to
terminate the program.

Cluster 3, 4 and 5 are less than 3% of the program and are too small to

31

warrant a detailed discussion. Cluster 3 includes 6 functions that generate
numbered /un-numbered backup for subject files. Cluster 4 has functions for
reading and ignoring comments. Cluster 5 consists of a single function that
reinitializes the parser and associated data structures.

The case study of indent further illustrates that coherent clusters can capture
the program’s logical model and finds an affirmative answer to research question
RQ@5. However, in cases such as this where the internal functionality is tightly
knit, a single large coherent clusters maps to the program’s core functionality.

3.6.3. Case Study: be

The third case study in this series is bc, an open-source calculator, which
consists of 9,438 LoC and 5,450 SLoC. The program has nine C files from which
CodeSurfer produced 15,076 slices (backward and forward).

Analyzing bc’s SCG (row 3, Figure 15), two interesting observations can be
made. First, bc contains two large same-backward-slice clusters visible in the
light gray landscapes as opposed to the three large coherent clusters. Second,
looking at the B-SCG, it can be seen that the z-axis range spanned by the
largest same-backward-slice cluster is occupied by the top two coherent clusters
shown in the dashed red (dark gray) landscape. This indicates that the same-
backward-slice cluster splits into the two coherent clusters.

The statistics for bc’s top five clusters are given in Table 6. Sizes of these five
clusters range from 32.3% through to 1.4% of the program. Clusters six onwards
are less than 1% of the program. Decluvi’s Heat Map View for bc (Figure 5)
clearly shows the presence of these five clusters. The Project View (Figure 6)
shows their distribution over the source files.

Cluster Cluster Size Files Functions
% vertices/lines | spanned | spanned
1 32.3% | 2432/1411 7 54
2 22.0% 1655/999 5 23
3 13.3% 1003/447 1 15
4 1.6% 117/49 1 2
5 1.4% 102/44 1 1

Table 6: bc’s top five clusters

In more detail, Cluster 1 spans all of bc’s files except for scan.c and bc.c.
This cluster encompasses the core functionality of the program — loading and
handling of equations, converting to bc’s own number format, performing cal-
culations, and accumulating results. Cluster 2 spans five files, util.c, execute.c,
main.c, scan.c, and bc.c. The majority of the cluster is distributed over the latter
two files. Even more interestingly, the source code of these two files (scan.c and
bc.c) map only to cluster 2 and none of the other top five clusters. This indicates
a clear purpose to the code in these files. These two files are solely used for lexi-
cal analysis and parsing of equations. To aid in this task, some utility functions

32

from util.c are employed. Only five lines of code in execute.c are also part of Clus-
ter 2 and are used for flushing output and clearing interrupt signals. The third
cluster is completely contained within the file number.c. It encompasses func-
tions such as _bc_do_sub, _bc_init_num, _bc_do_compare, _bc_do_add, _bc_simp_mul,
_bc_shift_addsub, and _bc_rm_leading_zeros, which are responsible for initializing
bc’s number formatter, performing comparisons, modulo and other arithmetic
operations. Clusters 4 and 5 are also completely contained within number.c.
These clusters encompass functions to perform bcd operations for base ten num-
bers and arithmetic division, respectively.

The results of the cluster visualizations for bc reveal its high-level structure.
This aids an engineer in understanding how the artifacts (e.g., functions and
files) of the program interact. The visualization of the clustering thus aids in
program comprehension and provides further support for RQJ5.

The following discussion illustrates a side-effect of decluvi’s multi-level vi-
sualization, how it can help find potential problems with the structure of a
program. Util.c consists of small utility functions called from various parts of
the program. This file contains code from Clusters 1 and 2 (Figure 6). Five
of the utility functions belong with Cluster 1, while six belong with Cluster 2.
Furthermore, Figure 7 shows that the distribution of the two clusters in red
(dark gray) and blue (medium gray) within the file are well separated.

Both clusters do not occur together inside any function with the exception
of init_gen (highlighted by the rectangle in first column of Figure 7). The other
functions of util.c thus belong to either Cluster 1 or Cluster 2. Separating these
utility functions into two separate source files where each file is dedicated to
functions belonging to a single cluster would improve the code’s logical separa-
tion and file-level cohesion. This would make the code easier to understand and
maintain at the expense of a very simple refactoring. In general, this example
illustrates how Decluvi visualization can provide an indicator of potential points
of code degradation during evolution.

Finally, the Code View for function init_gen shown in Figure 8 includes Lines
244, 251, 254, and 255 in red (dark gray) from Cluster 1 and Lines 247, 248,
249, and 256 in blue (medium gray) from Cluster 2. Other lines, shown in light
gray, belong to smaller clusters and lines containing no executable code. Ide-
ally, clusters should capture a particular functionality; thus, functions should
generally not contain code from multiple clusters (unless perhaps the clusters
are completely contained within the function). Functions with code from multi-
ple clusters reduce code separation (hindering comprehension) and increase the
likelihood of ripple-effects [16]. Like other initialization functions, bc’s init_gen
form an exception to this guideline.

This case study not only provides an affirmative answer to research question
R@5, but also illustrates that the visualization is able to reveal structural defects
in programs.

8.6.4. Case Study: copia
The final case study in this series is copia, an industrial program used by the
ESA to perform signal processing. Copia is the smallest program considered in

33

Cluster Cluster Size Files Functions
number % vertices/lines | spanned | spanned
1 48% 1609/882 1 239
2 | 01% 4/2 1 1
3] 01% 4/2 1 1
4 | 01% 4/2 1 1
5 | 01% 2/1 1 1

Table 7: copia’s top five clusters

100 100

80 80
60 J 60 -
40 i 40 -
20 t 20

: - ; J
0 20 40 60 80 100 0 20 40 60 80 100
(a) Original (b) Modified

Figure 17: SCGs for the program copia

this series of case studies with 1,168 LoC and 1,111 SLoC all in a single C file.
Tts largest coherent cluster covers 48% of the program. The program is at the
top of the group with large coherent clusters. CodeSurfer extracts 6,654 slices
(backward and forward).

The B-SCG for copia is shown in Figure 17a. The single large coherent
cluster spanning 48% of the program is shown by the dashed red (dark gray) line
(running approx. from 2% to 50% on the z-axis). The plots for same-backward-
slice cluster sizes (light gray line) and the coherent cluster sizes (dashed line)
are identical. This is because the size of the coherent clusters are restricted
by the size of the same-backward-slice clusters. Although the plot for the size
of the backward slices (black line) seems to be the same from the 10% mark
to 95% mark on the z-axis, the slices are not exactly the same. Only vertices
plotted from 2% through to 50% have exactly same backward and forward slice
resulting in the large coherent cluster.

Table 7 shows statistics for the top five coherent clusters found in copia.
Other than the largest cluster which covers 48% of the program, the rest of
the clusters are extremely small. Clusters 2-5 include no more than 0.1% of
the program (four vertices) rendering them too small to be of interest. This
suggests a program with a single functionality or structure.

During analysis of copia using decluvi, the File View (Figure 18) reveals an
intriguing structure. There is a large block of code with the same spatial ar-
rangement (bounded by the dotted black rectangle in Figure 18) that belongs to
the largest cluster of the program. It is unusual for so many consecutive source

34

vold selezional a)
int a;

switch (a) !
case 0: grid(); break;|
case L: hexi(); break;
case 2: trii); break;
case 31 reci); break;
case 4: squi); hreak;
5: xx(]; break;

Figure 18: File View for the file copia.c of Program copia. Each line of pixels
represent the cluster data for one source code line. The lines in red (dark gray
in black & white) are part of the largest cluster. The lines in blue (medium
gray) are part of smaller clusters. A rectangle highlights the switch statement
that holds the largest cluster together.

code lines to have nearly identical length and indentation. Inspection of the
source code reveals that this block of code is a switch statement handling 234
cases. Further investigation shows that copia has 234 small functions that even-
tually call one large function, seleziona, which in turn calls the smaller functions
effectively implementing a finite state machine. Each of the smaller functions
returns a value that is the next state for the machine and is used by the switch
statement to call the appropriate next function. The primary reason for the high
level of dependence in the program lies with the statement switch(next_state),
which controls the calls to the smaller functions. This causes what might be
termed ‘conservative dependence analysis collateral damage’ because the static
analysis cannot determine that when function f() returns the constant value 5
this leads the switch statement to eventually invoke function g(). Instead, the
analysis makes the conservative assumption that a call to f() might be followed
by a call to any of the functions called in the switch statement, resulting in a
mutual recursion involving most of the program.

Although the coherent cluster still shows the structure of the program and
includes all these stub functions that work together, this is a clear case of de-
pendence pollution [10], which is avoidable. To illustrate this, the code was

35

re-factored to simulate the replacement of the integer next_state with direct re-
cursive function calls. The SCG for the modified version of copia is shown in
Figure 17b where the large cluster has clearly disappeared. As a result of this re-
duction, the potential impact of changes to the program will be greatly reduced,
making it easier to understand and maintain. This is even further amplified for
automatic static analysis tools such as CodeSurfer. Of course, in order to do
a proper re-factoring, the programmer will have to consider ways in which the
program can be re-written to change the flow of control. Whether such a re-
factoring is deemed cost-effective is a decision that can only be taken by the
engineers and managers responsible for maintaining the program in question.

This case study provides further affirmative support in support of RQ5 by
showing the structure and dependency within the program. It also identifies
potential refactoring points which can improve the performance of static analysis
tools and make the program easier to understand.

3.7. Inter-cluster Dependence

This final section addresses research question RQ6: Does dependence between
coherent clusters induce larger dependence structures? The question attempts
to reveal whether there is dependence (slice inclusion) relationship between the
vertices of different coherent clusters and whether this can be used to identify
larger dependence structures. If such containment occurs, it must be a strict
containment relationship because of the external and internal requirements of
coherent clusters. This section empirically investigates the existence of such
containment. In the series of case studies presented earlier we have seen that
coherent clusters map to logical components of a system and can be used to
gain an understanding of the architecture of the program. If such containment
relationships were present, coherent clusters could be treated as atomic sub-
systems which could be combined to deduce higher-level abstractions of the
system, opening up the potential use of coherent clusters in reverse engineering.

All vertices of a coherent cluster share the same external and internal de-
pendence, that is, all vertices have the same backward slice and also the same
forward slice. Because of this, any backward/forward slice that includes a ver-
tex from a cluster will also include all other vertices of the same cluster. The
same is not true for non-coherent clusters. For example, in the case of a same-
backward-slice cluster, a vertex contained within the forward slice of any vertex
of the cluster is not guaranteed to be in the forward slice of other vertices of
the same cluster.

The study exploits this unique property of coherent clusters to investigate
whether or not a backward slice taken with respect to a vertex of a coherent
cluster includes vertices of another cluster. Note that if vertices of coherent
cluster z are contained in the slice taken with respect to a vertex of coherent
cluster y, then all vertices of x are contained in the slice taken with respect to
each vertex of y.

Figure 19 shows Cluster Dependence Graphs (CDG) for each of the four
case study subjects. Only the five largest clusters of the case study subjects

36

(b) acct (c) indent

Figure 19: Cluster Dependence Graphs

are considered during this study. The graphs depict slice containment relation-
ships between the top five clusters of each program. In these graphs, the top
five clusters are represented by nodes (1 depicts the largest coherent cluster,
while 5 is the 5" largest cluster) and the directional edges denote backward
slice inclusion relationships: a — b depicts that vertices of cluster b depend on
vertices of cluster a, that is, a backward slice of any vertex of cluster b will
include all vertices of cluster a. Bi-directional edges show mutual dependen-
cies, whereas uni-directional edges show dependency in one direction only. In
the graph for copia (Figure 19a), the top five clusters have no slice inclusion
relationships between them (absence of edges between the nodes of the CDG).
Looking at Table 7, only the largest cluster of copia is truly large at 48%, while
the other four clusters are extremely small making them unlikely candidates for
inter-cluster dependence.

For acct (Figure 19b) there is a dependence between all of the top five clus-
ters. In fact, there is mutual dependence between clusters 1, 2, 3 and 4, while
cluster 5 depends on all the other four clusters but not mutually. Clusters 1
through 4 contain logic for manipulating, accessing, and maintaining the hash
tables, making them interdependent. Cluster 5 on the other hand is a loop
structure within the main function for executing different cases based on com-
mand line inputs. Similarly for indent (Figure 19¢), clusters 1, 2, 4, and 5 are
mutually dependent and 3 depends on all the other top five clusters but not
mutually.

Finally, in the case of bc (Figure 19d), all the vertices from the top five
clusters are mutually inter-dependent. The rest of this section uses bc as an
example where this mutual dependence is used to identify larger dependence
structures by merging of the inter-dependent coherent clusters.

At first glance it may seem that the merging of the coherent clusters is sim-
ply reversing the splitting of same-backward-slice or same-forward-slice clusters
observed earlier in Section 3.6.3. However, examining the sizes of the top five
same-backward-slice clusters, same-forward-slice clusters and coherent clusters
for be illustrates that it is not the case. Table 8 shows the size of these clusters
both in terms of number of vertices and as a percentage of the program. The
size of the dependence structure resulting from the merging of top five coherent

37

Same Same

Backward-Slice Forward-Slice Coherent
Cluster Cluster Size Cluster Size Cluster Size
Number | vertices \ % vertices \ % vertices \ %
1 4,135 54.86 2,452 32.52 2,432 32.26
2 1,111 14.74 1,716 22.76 1,655 21.96
3 131 1.74 1,007 13.36 1,003 13.31
4 32 0.42 157 2.08 117 1.55
5 25 0.33 109 1.45 102 1.35

Merged Cluster: 70.43

Table 8: Various cluster statistics of bc

clusters is 70.43%, which is 15.67% larger than the largest same-backward-slice
cluster (54.86%) and 37.91% larger than the same-forward-slice cluster (32.35%).
Therefore, the set of all (mutually dependent) vertices from the top five coherent
clusters when merged form a larger dependence structure.

This section thus provides an affirmative answer to RQ6, there are depen-
dence relationships between coherent clusters and in some cases there are mutual
dependences between large coherent clusters. Furthermore, combining inter-
dependent coherent clusters result in dependence structures larger than same-
slice clusters. This also indicates that the sizes of dependence clusters reported
by previous studies [9, 10, 11, 26, 29] maybe conservative and mutual depen-
dence clusters are larger and more prevalent than previously reported. Finally,
this inter-cluster relationship can also be leveraged for hierarchical clustering
in reverse engineering applications where coherent clusters can be treated as
atomic components that are clustered based on the dependence between coher-
ent clusters.

3.8. Threats to validity

This section presents threats to the validity of the results presented. The
primary external threat arises from the possibility that the programs selected are
not representative of programs in general (i.e., the findings of the experiments
do not apply to ‘typical’ programs). This is a reasonable concern that applies
to any study of program properties. To address this issue, a set of thirty open-
source and industrial programs were analyzed in the quantitative study. The
programs were not selected based on any criteria or property and thus represent
a random selection. However, these were from the set of programs that were
studied in previous work on dependence clusters to facilitate comparison with
previous results. In addition, all of the programs studied were C programs, so
there is greater uncertainty that the results will hold for other programming
paradigms such as object-oriented Java or aspect-oriented.

Internal validity is the degree to which conclusions can be drawn about
the causal effect of the independent variables on the dependent variable. In
this experiment, one possible threat arises from the potential for faults in the

38

slicer. A mature and widely used slicing tool (CodeSurfer) is used to mitigate
this concern. Another possible concern surrounds the precision of the pointer
analysis used. Section 3.2 discusses the various pointer analysis settings and
validates its precision. Finally, the use of hash values to approximate slice
content is also a source of potential threat. Hash functions are prone to hash
collision, which is minimized by carefully crafting the hash function, and its use
is validated in Section 3.3.

4. Related Work

In testing, dependence analysis has been shown to be effective at reducing
the computational effort required to automate the test-data generation pro-
cess [2]. In software maintenance, dependence analysis is used to protect a
software maintainer against the potentially unforeseen side effects of a mainte-
nance change. This can be achieved by measuring the impact of the proposed
change [16] or by attempting to identify portions of code for which a change can
be safely performed free from side effects [22, 41]. A recently proposed impact
analysis framework [1] reports that impact sets are often part of large depen-
dence clusters when using time consuming but high precision slicing. When low
precision slicing is used, the study reports smaller dependence clusters. This
paper uses the most precise static slicing available.

Dependence clusters have previously been linked to software faults [15] and
have been identified as a potentially harmful ‘dependence anti-pattern’ [9]. The
presence of large dependence cluster was thought to reduce the effectiveness
of testing and maintenance support techniques. Having considered dependence
clusters harmful, previous work on dependence clusters focuses on locating de-
pendence clusters, understanding their cause, and removing them.

The first of these studies [10, 26] were based on efficient technique for lo-
cating dependence clusters and identifying dependence pollution (avoidable de-
pendence clusters). One common cause of large dependence clusters is the use
of global variables. A study of 21 programs found that 50% of the programs
had a global variable that was responsible for holding together large dependence
clusters [12]. Other work on dependence clusters in software engineering has con-
sidered clusters at both low-level [10, 26] (SDG based) and high-level [19, 34]
(models and functions) abstractions.

This paper extends our previous work which introduced coherent dependence
clusters [29] and decluvi [28]. Previous work established the existence of coher-
ent dependence clusters and detailed the functionalities of the visualization tool.
This paper extends previous work in many ways, firstly by introducing an effi-
cient hashing algorithm for slice approximation. This improves on the precision
of previous approximation techniques from 79% to 96%, resulting in precise and
accurate clustering. The coherent cluster existence study is extended to empir-
ically validate the results by considering 30 production programs. Additional
case studies show that coherent clusters can help reveal the structure of a pro-
gram and identify structural defects. Finally, this paper studies inter-cluster

39

dependence for the first time which can form the base of reverse engineering
techniques.

In some ways our work follows the evolutionary development of the study
of software clones [6], which were thought to be harmful and problematic when
first observed. Further reflection and analysis revealed that these code clone
structures were a widespread phenomena that deserved study and consideration.
While engineers needed to be aware of them, it remains a subject of much debate
as to whether or not they should be refactored, tolerated or even nurtured
[17, 30].

We believe the same kind of discussion may apply to dependence clusters.
While dependence clusters may have significant impact on comprehension and
maintenance and though there is evidence that these clusters are a widespread
phenomena, it is not always obvious whether they can be or should be removed
or refactored. There may be a (good) reason for the presence of a cluster and/or
it may not be obvious how it can be removed (though its presence should surely
be brought to the attention of the software maintainer). These observations
motivate further study to investigate and understand dependence clusters, and
to provide tools to support software engineers in their analysis.

In support of future study, we make available all data from our study at
the website http://www.cs.ucl.ac.uk/staff/s.islam/decluvi.html. The
reader can obtain the slices for each program studied and the clusters they
form, facilitating replication of our results and other studies of dependence and
dependence clusters.

The visualizations used in this paper are similar to those used for program
comprehension. Seesoft [18] is a seminal tool for line oriented visualization of
software statistics. The system pioneered four key ideas: reduced representation,
coloring by statistic, direct manipulation, and capability to read actual code.
The reduced representation was achieved by displaying files in columns with
lines of code as lines of pixels. This approach allows 50,000 lines of code to be
shown on a single screen.

The SeeSys System [5] introduced tree maps to show hierarchical data. It
displays code organized hierarchically into subsystems, directories, and files by
representing the whole system as a rectangle and recursively representing the
various sub-units with interior rectangles. The area of each rectangle is used
to reflect statistic associated with the sub-unit. Decluvi builds on the SeeSoft
concepts through different abstractions and dynamic mapping of line statistics
removing the 50,000 line limitation.

An alternative software visualization approach often used in program com-
prehension does not use the “line of pixels” approach, but instead uses nested
graphs for hierarchical fish-eye views. Most of these tools focus on visualizing
high-level system abstractions (often referred to as ‘clustering’ or ‘aggregation’)
such as classes, modules, and packages. A popular example is the reverse engi-
neering tool Rigi [39].

40

5. Summary

Dependence clusters are known to be problematic as they inhibit program
understanding and maintenance. This paper introduces and evaluates the pres-
ence of a specialized form of dependence cluster: the coherent cluster. Such
clusters have vertices that share the same internal and external dependencies.
This paper presents new approximations that support the efficient and accurate
identification of coherent clusters. Empirical evaluation finds that 23 of the 30
subject programs have at least one large coherent cluster. A series of four case
studies illustrate that coherent clusters map to logical program constructs and
can be used to depict the structure of a program. In all four case studies, coher-
ent clusters map to subsystems, each of which is responsible for implementing
concise functionality. As side-effects of the study, we find that the visualiza-
tion of coherent clusters can identify potential structural problems as well as
refactoring opportunities. Finally, the paper discusses inter-cluster dependence
and how mutual dependencies between clusters may be exploited to reveal large
dependence structure which can form the basis of reverse engineering efforts.

Looking forward, the copia case study highlights how static analysis can suf-
fer from collateral damage caused by its conservative nature. This can lead to
large slices resulting in large clusters. Dynamic slicing, which does not suffer
from the need to make conservative approximations, may lead to more precise,
smaller clusters. Future work will consider the use of dynamic slicing in depen-
dence cluster formalization to determine how the size and location of dependence
clusters within a program varies.

References

[1] Acharya, M., Robinson, B., May 2011. Practical change impact analysis
based on static program slicing for industrial software systems. In: Proceed-
ings of the 33rd International Conference on Software Engineering (ICSE
2011). ACM, pp. 746-755.

[2] Ali, S., Briand, L., Hemmati, H., Panesar-Walawege, R., 2010. A systematic
review of the application and empirical investigation of search-based test
case generation. Software Engineering, IEEE Transactions on 36 (6), 742—
762.

[3] Andersen, L. O., May 1994. Program analysis and specialization for the
C programming language. Ph.D. thesis, DIKU, University of Copenhagen,
(DIKU report 94/19).

[4] Anderson, P., Teitelbaum, T., 2001. Software inspection using CodeSurfer.
In: First Workshop on Inspection in Software Engineering. pp. 1-9.

[5] Baker, M. J., Eick, S. G., 1995. Space-filling software visualization. Journal
of Visual Languages & Computing 6 (2), 119-133.

41

[6]

[11]

[12]

[13]

[14]

[15]

Bellon, S., Koschke, R., Antoniol, G., Krinke, J., Merlo, E., 2007. Com-
parison and evaluation of clone detection tools. IEEE Trans. Softw. Eng.
33 (9), 577-591.

Beszédes, A., Gergely, T., Jasz, J., Toth, G., Gyiméthy, T., Rajlich, V.,
October 2007. Computation of static execute after relation with applica-
tions to software maintenance. In: 23"¢ IEEE International Conference on
Software Maintenance (ICSM 2007). IEEE Computer Society Press, Los
Alamitos, California, USA, pp. 295-304.

Binkley, D., May 2007. Source code analysis: A road map. ICSE 2007
Special Track on the Future of Software Engineering.

Binkley, D., Gold, N., Harman, M., Li, Z., Mahdavi, K., Wegener, J.,
September 2008. Dependence anti patterns. In: 4" International ERCIM
Workshop on Software Evolution and Evolvability (Evol’08). pp. 25-34.

Binkley, D., Harman, M., 2005. Locating dependence clusters and depen-
dence pollution. In: 21%* IEEE International Conference on Software Main-
tenance. IEEE Computer Society Press, Los Alamitos, California, USA, pp.
177-186.

Binkley, D., Harman, M., 2009. Identifying ‘linchpin vertices’ that cause
large dependence clusters. In: Ninth IEEE International Working Confer-
ence on Source Code Analysis and Manipulation. pp. 89-98.

Binkley, D., Harman, M., Hassoun, Y., Islam, S., Li, Z., April 2009. Assess-
ing the impact of global variables on program dependence and dependence
clusters. Journal of Systems and Software.

Binkley, D. W., Harman, M., Sep. 2003. A large-scale empirical study of
forward and backward static slice size and context sensitivity. In: IEEE In-
ternational Conference on Software Maintenance. IEEE Computer Society
Press, Los Alamitos, California, USA, pp. 44-53.

Black, S., Counsell, S., Hall, T., Bowes, D., 2009. Fault analysis in OSS
based on program slicing metrics. In: EUROMICRO Conference on Soft-
ware Engineering and Advanced Applications. IEEE Computer Society, pp.
3-10.

Black, S., Counsell, S., Hall, T., Wernick, P., 2006. Using program
slicing to identify faults in software. In: Beyond Program Slicing. No.
05451 in Dagstuhl Seminar Proceedings. Internationales Begegnungs- und
Forschungszentrum fiir Informatik (IBFI), Schloss Dagstuhl, Germany.

Black, S. E., 2001. Computing ripple effect for software maintenance. Jour-
nal of Software Maintenance and Evolution: Research and Practice 13,
263-279.

42

[17]

[26]

[27]

28]

[29]

Bouktif, S., Antoniol, G., Merlo, E., Neteler, M., 8-12 Jul. 2006. A novel
approach to optimize clone refactoring activity. In: GECCO 2006: Proceed-
ings of the 8th annual conference on Genetic and evolutionary computation.
Vol. 2. ACM Press, Seattle, Washington, USA, pp. 1885-1892.

FEick, S., Steffen, J., Sumner, E., 1992. Seesoft-a tool for visualizing line
oriented software statistics. IEEE Trans. Softw. Eng. 18, 957-968.

Eisenbarth, T., Koschke, R., Simon, D., 2003. Locating features in source
code. IEEE Trans. Softw. Eng. 29 (3).

Fahndrich, M., Foster, J. S., Su, Z., Aiken, A., Jun. 1998. Partial online
cycle elimination in inclusion constraint graphs. In: Proceedings of the
ACM SIGPLAN 98 Conference on Programming Language Design and
Implementation. Association for Computer Machinery, pp. 85-96.

Ferrante, J., Ottenstein, K. J., Warren, J. D.; Jul. 1987. The program
dependence graph and its use in optimization. ACM Transactions on Pro-
gramming Languages and Systems 9 (3), 319-349.

Gallagher, K. B., Lyle, J. R., Aug. 1991. Using program slicing in software
maintenance. IEEE Trans. Softw. Eng. 17 (8), 751-761.

Garey, M. R., Johnson, D. S.; 1990. Computers and Intractability; A Guide
to the Theory of NP-Completeness. W. H. Freeman & Co., New York, NY,
USA.

Grammatech Inc., 2002. The codesurfer slicing system.
URL www.grammatech.com

Hajnal, A Forgéacs, 1., 2011. A demand-driven approach to slicing legacy
COBOL systems. Journal of Software Maintenance and Evolution: Re-
search and Practice.

Harman, M., Binkley, D., Gallagher, K., Gold, N., Krinke, J., Oct. 2009.
Dependence clusters in source code. ACM Transactions on Programming
Languages and Systems 32 (1), article 1.

Horwitz, S., Reps, T., Binkley, D., January 1990. Interprocedural slicing
using dependence graphs. ACM Transactions on Programming Languages
and Systems 12, 26-60.

Islam, S., Krinke, J., Binkley, D., 2010. Dependence cluster visualization.
In: SoftVis’10: 5th ACM/IEEE Symposium on Software Visualization.
ACM.

Islam, S., Krinke, J., Binkley, D., Harman, M., 2010. Coherent dependence
clusters. In: PASTE "10: Proceedings of the 9th ACM SIGPLAN-SIGSOFT
Workshop on Program Analysis for Software Tools and Engineering. ACM.

43

[30]

[31]

[39]

[41]

Kapser, C., Godfrey, M. W., 2008. ” Cloning considered harmful” considered
harmful: patterns of cloning in software. Empirical Software Engineering
13 (6), 645-692.

Krinke, J., Jun. 1998. Static slicing of threaded programs. In: ACM
SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools
and Engineering (PASTE’98). pp. 35-42.

Krinke, J., Oct. 2002. Evaluating context-sensitive slicing and chopping. In:
IEEE International Conference on Software Maintenance. IEEE Computer
Society Press, Los Alamitos, California, USA, pp. 22-31.

Krinke, J., 2003. Context-sensitive slicing of concurrent programs. In: Proc.
ESEC/FSE. pp. 178-187.

Mitchell, B. S., Mancoridis, S., 2006. On the automatic modularization of
software systems using the bunch tool. IEEE Trans. Softw. Eng. 32 (3),
193-208.

Ottenstein, K. J., Ottenstein, L. M., 1984. The program dependence graph
in software development environments. Proceedings of the ACM SIGSOFT-
/SIGPLAN Software Engineering Symposium on Practical Software Devel-
opment Environmt, SIGPLAN Notices 19 (5), 177-184.

Ren, X., Chesley, O., Ryder, B. G., 2006. Identifying Failure Causes in
Java Programs: An Application of Change Impact Analysis. IEEE Trans.
Softw. Eng. 32 (9), 718-732.

Ren, X., Ryder, B. G., Storzer, M., Tip, F., 2005. Chianti: a change im-
pact analysis tool for Java programs. In: 27th International Conference on
Software Engineering (ICSE 2005). ACM, pp. 664-665.

Savernik, L., 2007. Entwicklung eines automatischen Verfahrens zur
Auflésung statischer zyklischer Abhéngigkeiten in Softwaresystemen (in
german). In: Software Engineering 2007 - Beitrige zu den Workshops. Vol.
106 of LNI. GI, pp. 357-360.

Storey, M.-A. D., Wong, K., Muller, H. A., 1997. Rigi: a visualization envi-
ronment for reverse engineering. In: Proceedings of the 19th international

conference on Software engineering - ICSE '97. ACM Press, New York, New
York, USA, pp. 606-607.

Szegedi, A., Gergely, T., Beszédes, A., Gyimoéthy, T., Téth, G., 2007. Ver-
ifying the concept of union slices on Java programs. In: 11** European
Conference on Software Maintenance and Reengineering (CSMR ’07). pp.
233-242.

Tonella, P., June 2003. Using a concept lattice of decomposition slices for
program understanding and impact analysis. IEEE Trans. Softw. Eng. 29,
495-509.

44

[42] Weiser, M., Park, C., 1981. Program slicing. In: International Conference
on Software Engineering.

[43] Wheeler, D. A 2004. SLOC count user’s guide.
http://www.dwheeler.com/sloccount /sloccount.html.

[44] Yau, S. S., Collofello, J. S., Sep. 1985. Design stability measures for software
maintenance. IEEE Trans. Softw. Eng. 11 (9), 849-856.

45

