
PORBS: A Parallel Observation-based Slicer
Syed Islam

School of Architecture, Computing and Engineering
University of East London, United Kingdom

syed.islam@uel.ac.uk

David Binkley
Loyola University Maryland

Baltimore, USA
binkley@cs.loyola.edu

Abstract—This paper presents PORBS, a parallelised
observation-based slicing tool. The tool itself is written in
Java making it platform independent and leverages the build
chain of the system being sliced to avoid the need to replicate
complex compiler analysis. The target audience of PORBS
is software engineers and researchers working with and on
tools and techniques for software comprehension, debugging,
re-engineering, and maintenance.

I. Introduction

Program Slicing has many applications [1], including
comprehension, testing, debugging, maintenance, re-
engineering, re-use, and refactoring. Despite these many
applications, program slicing has not been widely adopted
as part of a modern development toolkit. Two long-standing
shortcomings contribute to this lack of broader use: slicing
tools are typically unable to handle multi-language systems nor
systems that use (unknown) binary components or libraries.

We introduced Observation Based Slicing (ORBS) [2]
to address these two issues. ORBS can compute slices for
heterogeneous systems. In addition to handling multiple
languages, it removes the need for the slicer to replicate
much of the compiler’s analysis (e.g., parsing) by leveraging
the existing build system. The tool used for the initial
proof-of-concept (herein referred to as serial ORBS) was
single threaded and thus computed a slice sequentially.

In this paper we present the tool PORBS, which computes
parallel observation-based slices. The tool leverages multiple
threads to perform simultaneous observations as opposed to
the single observation of serial ORBS. PORBS constructs a
slice faster than the serial version and scales to better use the
available hardware resources of modern multi-core processors.

II. Motivation& RelatedWork

Modern software systems are typically composed of two
to fifteen programming languages [3, pp. 504-505]. As the
number of languages involved increases, the challenges faced
by those who must understand and maintain these systems
also increases. A slicer for multi-language systems provides
a stronger incentive for industrial adaptation as part of a
development, comprehension, and maintenance toolkit.

Of the many tools aimed at aiding a software engineer, the
two most closely related to PORBS, Critical Slicing [4] and
Delta-Debugging [5], both employ a similar deletion-oriented
approach. However comparison studies have shown that
these two can produce incorrect slices and can also become
prohibitively expensive [2].

The tool most similar to PORBS is serial ORBS. Initial exper-
iments find that even when using only moderate parallisation

on an eight core machine, PORBS takes up to 82% less time
to construct slices. Given the abundance of hardware available
in the cloud, for instance, Microsoft Azure1 provides virtual
machines with 32 cores while Amazon Web Services2 provides
up to 40, PORBS stands to benefit as it can leverage these
enormous hardware resources to reduce slice computation time.

III. PORBSUseCase
This section presents a PORBS use case. Consider the code

shown in Figure 1, which consists of three components: a Java
program, a C program, and some connecting logic written
in Python. Assume an engineer needs to understand the
computation of the variable dots at Line 12 of checker.java
(this line-variable pair is referred to as a slicing criterion).
The resulting PORBS slice, shown in Figure 2, includes only
those statements that influence the computation of dots.

IV. PORBSDesign andConfiguration
This section considers the design and configuration of the
PORBS tool. For a complete description of the configuration
options, log files, and output file formats please refer to the
online distribution website.3

A. Design
The underlying ORBS approach finds its origin in Weiser’s

original motivation for slicing [6]: uninteresting statements can
be deleted (sliced out) of a program to help focus attention
on relevant statements (i.e., the slice). Operationally, PORBS
achieves this by tentatively deleting one or more lines and
then observing the behavior of the resulting program. In
greater detail, first a candidate slice is produced by deleting
one or more lines of text from a program. Then this candidate
is compiled and executed. If the compilation fails or the
execution fails to terminate normally, the candidate is rejected.
Otherwise, its output, restricted to the slicing criterion, is
compared to that of the original program. If the two differ the
candidate is rejected. Only if the candidate compiles, executes,
and produces the correct output is it accepted and becomes the
current slice from which further line deletions are attempted.
This process is repeated until no further deletions are possible.
One PORBS goal is language independence. Thus the tool does
not consider language specific deletions such as removing the
body of a function.
PORBS starts with an initialization phase (Figure 3), where it

builds the original system and executes it n times to determine

1https://goo.gl/pJYshj
2https://aws.amazon.com/ec2/instance-types
3http://www.syedislam.com/orbs.html

checker.java:
1 class checker {
2 public static void main(String[] args) {
3 int dots = 0;
4 int chars = 0;
5 for (int i = 0; i < args[0].length(); ++i) {
6 if (args[0].charAt(i) == ‘.’)
7 ++dots;
8 else if ((args[0].charAt(i) >= ‘0’)
9 && (args[0].charAt(i) <= ‘9’))

10 ++chars;
11 }
12 System.out.println(dots); // Slice here
13 System.out.println(chars);
14 }
15 }

reader.c:
1 #include <stdlib.h>
2 #include <stdio.h>
3 #include <locale.h>
4 int main(int argc, char **argv) {
5 setlocale(LC_ALL, "");
6 struct lconv *cur_locale = localeconv();
7 if (atoi(argv[1]))
8 printf("%s\n", cur_locale->decimal_point);
9 else

10 printf("%s\n", cur_locale->currency_symbol);
11 return 0;
12 }

glue.py:
1 # Glue reader and checker together.
2 import commands
3 import sys
4 use_locale = True
5 currency = "?"
6 decimal = ","
7 if use_locale:
8 currency = commands.getoutput(‘./reader 0’)
9 decimal = commands.getoutput(‘./reader 1’)

10 cmd = (‘java checker ’ + currency
11 + sys.argv[1] + decimal + sys.argv[2])
12 print commands.getoutput(cmd)

Fig. 1. Example Multi-Language Application

checker.java:
1 class checker {
2 public static void main(String[] args) {
3 int dots = 0;
4 for (int i = 0; i < args[0].length(); ++i) {
5 if (args[0].charAt(i) == ‘.’)
6 ++dots;
7 }
8 }

reader.c:
1 #include <locale.h>
2 int main(int argc, char **argv) {
3 struct lconv *cur_locale = localeconv();
4 printf("%s\n", cur_locale->decimal_point);
5 }

glue.py:
1 import commands
2 import sys
3 use_locale = True
4 currency = "?"
5 if use_locale:
6 decimal = commands.getoutput(‘./reader 1’)
7 cmd = (‘java checker ’ + currency
8 + sys.argv[1] + decimal + sys.argv[2])
9 print commands.getoutput(cmd)

Fig. 2. Sliced Example from Fig. 1

Source

101010101010
101010101000
110101010101
010010101010
101010101010
101010101010
101010101010

101101010

Executable

Oracle

Timeout
Execute X nBuild

Timeout
Updated

Fig. 3. PORBS initialization step

C
ur

re
nt

 S
lic

ed
 P

ro
g

ra
m

Update the Slice and repeat

D
el

et
e

Li
ne

 L

D
el

et
e

Li
ne

s
L

…
 L

+
1

D
el

et
e

Li
ne

s
L

…
 L

+
 2

D
el

et
e

Li
ne

s
L

…
 L

+
 3

N
ew

 S
lic

e
af

te
r

S
uc

ce
ss

Build >> Execute >> Oracle Match

A
cc

ep
t

la
rg

es
t

su
cc

es
sf

ul
 d

el
et

io
n

Fig. 4. PORBS parallel windowing strategy

an average execution time as well as the expected output,
referred to as the oracle output. The average execution time is
used to setup a runtime limit for each candidate execution as
a guard against non-termination. The oracle is used to ensure
the slice preserves the desired behavior.

While it is possible to delete a single line at a time, it is
often more efficient to remove multiple lines. Sometimes, for
example in the case of matching braces on consecutive lines, it
is necessary to delete multiple lines to produce a syntactically
valid program. PORBS controls the number of lines simultane-
ously deleted using the configuration parameter window size.

Although ORBS is sequential by nature, PORBS exploits
the possibility of different deletion windows sizes to create
parallel variants (Figure 4). The program resulting from the
largest deletion that succeeds (i.e., compiles and produces the
oracle output) becomes the current slice. The other attempts
are discarded. This process continues until an iteration (a
complete pass over the current slice) fails to delete any lines.

In a preliminary study, we ran PORBS against serial ORBS
on several systems and found that the total number of
executions performed by PORBS is similar to that of serial
ORBS and often PORBS requires fewer compilations than
serial ORBS. The net effect is that, user time often decreases,
which can lead to a dramatic drop in wall-clock time: PORBS
with a window size of 4 needs 70%-82% less time than serial
ORBS. PORBS does not impose an upper bound on the number
of windows that can be considered in parallel but available
system resources provide a pragmatic limit.

B. PORBS Configuration

PORBS uses a standard Java properties file
OrbsFramework.Properties for all its configuration
settings. For example, which files of the subject system should
be sliced, the number of parallel deletion windows to be
used, slicing direction (top of file to bottom or bottom of

Fig. 5. Delete pattern file

Fig. 6. Iteration-level Statistics

Fig. 7. Window-level statistics

file to top), whether to include a check for non-deterministic
behavior, whether to cache binaries and execution results, and
the directory structure of the application being sliced. Separate
scripts are used to setup the test system (setup.sh), build
the test system (compile.sh), and execute the test system
(execute.sh) using a set of inputs.

C. Running PORBS
PORBS is currently distributed as a JAR file and can be run

with Java 1.8 and above. All dependencies for the system are
packaged within the jar file and thus PORBS has no external
system dependencies. A bash script (orbs.sh) is provided
to simplify the process of starting PORBS. Scripts are also
provided to help developers and researchers run PORBS in
batch mode on several systems using a variety of window sizes.

D. PORBS Output
Every PORBS run creates a new output directory (by

default under the directory regression), which contains the
executable slice, copies of all the configuration files used, and
statistics and log files. The compile and execute scripts can
be used directly on the output directory to validate that the
slice produces the oracle output. The remaining output files
include statistics, the deletion pattern, and the execution logs.
PORBS creates two csv files of statistics. The first,
iterationLevelStat.csv (see Figure 6) provides
summary details regarding compilations, cache hits (when
a build produces the same binary as a previous build),
deletions, and run times for each iteration. The second file,
windowLevelStat.csv (see Figure 7), provides similar
information broken down by window size. These statistics also
describe deterministic re-run failures for each window size.
PORBS also outputs, in the file DeletePattern.log (see

Figure 5), the results of the deletion attempts at each line
for every iteration. The pattern visually depicts the deletion
process’ progress. Letters in the pattern depict the size of a
successful deletion. For example, the three c’s on the second
line indicate a deletion of a window of size three. Each line
in the pattern corresponds to an iteration.

Finally, PORBS produces two log files. The first, orbs.log,
contains the configuration information, details of PORBS
deletion attempts, and all the raw statistics from a run. In
most cases, this log file alone provides all the information
regarding the computation of a slice. The second log file,
trace.log, contains detailed information about each compile
and execution attempt for every window size. This log file
is useful in debugging and in understanding the details of the
deletion attempts (e.g., why a particular attempt failed, what
output was actually generated, etc). The logging level is set
by the log4j2.xml configuration file.

E. Observations and Challenges

During experiments with PORBS we made several behavioral
observations that impact the slice. For example, the order
of the file in which the slicing is attempted, the execution
environment and the number of parallel windows all have
an impact on the observed slice. By definition ORBS is
guaranteed to produce a correct, executable, and minimal slice,
technically the observed slice is 1-minimal, that is, nothing
can be removed from the observed slice but there may also
be other minimal slices built using the same slicing criterion
and input. Additionally, we also observed that in C programs
removing initialization code can lead to non-determinism in
the slice. PORBS can re-run accepted deletions with varying
memory initialization bit patterns, in an attempt to reduce the
chances of introducing non-deterministic behaviour.

V. Summary and Future work

This paper presents PORBS, a parallelised scalable
observation-based program slicer that can deal with
heterogeneous systems. Given the initial success in preliminary
studies (where PORBS reduces slicing time by up to 82%), we
are optimistic that the PORBS tool will be useful in a variety
of analyses. In the future we plan to make improvements to
PORBS both in terms of precision, for example by implementing
token-level deletion rather than line-level deletion, and in
terms of speed, for example, by allowing slicing to be carried
out at the binary level forgoing the compilation step.

References

[1] Andrea De Lucia. Program slicing: Methods and applications. In 1st

IEEE International Workshop on Source Code Analysis and Manipulation,
pages 142–149, Los Alamitos, California, USA, 2001.

[2] David Binkley, Nicolas Gold, M. Harman, Syed Islam, Jens Krinke, and
Shin Yoo. ORBS: Language-independent program slicing. In Proceedings
of the 22nd ACM SIGSOFT International Symposium on the Foundations
of Software Engineering, FSE 2014, pages 109–120, 2014.

[3] Capers Jones. Software Engineering Best Practices. McGraw-Hill, 2010.
[4] Richard A DeMillo, Hsin Pan, and Eugene H Spafford. Critical slicing for

software fault localization. In Proceedings of the 1996 International Sym-
posium on Software Testing and Analysis (ISSTA), pages 121–134, 1996.

[5] Andreas Zeller and Ralf Hildebrandt. Simplifying and isolating
failure-inducing input. IEEE Transactions on Software Engineering,
28(2):183–200, 2002.

[6] Mark Weiser. Program slicing. In 5th International Conference on
Software Engineering, pages 439–449, San Diego, CA, March 1981.

	Introduction
	Motivation & Related Work
	PORBS Use Case
	PORBS Design and Configuration
	Design
	PORBS Configuration
	Running PORBS
	PORBS Output
	Observations and Challenges

	Summary and Future work
	References

