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Abstract: The production of Portland cement is widely regarded as a major source of greenhouse gas
emissions. This contributes to 6–7% of total CO2 emissions, according to the International Energy
Agency. As a result, several efforts have been made in recent decades to limit or eliminate the usage
of Portland cement in concrete. Geopolymer has garnered a lot of attention among the numerous
alternatives due to its early compressive strength, low permeability, high chemical resistance, and
great fire-resistant behaviour. This study looks at the strength and microstructure of geopolymer
based on fly ash and a combination of metakaolin and fly ash. Compressive strengths were measured
at 7, 14, and 28 days, and microstructure was examined using SEM and XRD.
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1. Introduction

Researchers have been examining the impact of greenhouse gases on global warming
for the past three decades. Rising sea levels, changes in ocean water that threaten marine life,
shifting weather patterns, and ecological degradation are all results of global warming [1].
In the next 100 years, the global temperature is expected to rise by 3 ◦C, with a possible
increase of 4.6 ◦C. As a result of these temperature increases, the sea level is anticipated
to rise by up to 28 cm [2,3]. The International Panel on Climate Change (IPCC) believes
that human activity is the most likely cause of observed warming since the mid-twentieth
century. Given that people are a major cause of global warming, businesses such as coal
power and the cement industry must reduce emissions.

A number of programmes and policies have been established in an attempt to minimise
global carbon emissions and, as a result, global warming. The Kyoto Protocol [4] is an
international agreement established by the United Nations Framework Convention on
Climate Change (UNFCCC) in 1997 that commits signatories to emission reduction goals.
Emissions trading is a concept for bolstering the Kyoto Protocol by giving economic
incentives to companies, notably the concrete industry, to reduce carbon emissions [5]. The
cost of carbon is expected to be around US $15 per tonne [6]. Portland cement production is
widely acknowledged as a major source of greenhouse gas emissions [7–12]. This accounts
for 6–7% of total CO2 emissions, according to the International Energy Agency (IEA) [13].
As a result, various initiatives have been made in recent decades to reduce or eliminate
the use of Portland cement in concrete. Geopolymer has gotten a lot of attention among
the many alternatives because of its early compressive strength, low permeability, high
chemical resistance, and outstanding fire resistance behaviour [14–19].

The interaction of aluminosilicate material with alkaline solutions produces geopoly-
mers. As a result, the two main components of geopolymers are source materials and
alkaline liquids. Natural minerals such as kaolinite, clays, micas, andalousite, spinel, and
by-products such as fly ash, silica fume, slag, rice husk ash, red mud, and so on might
be used as source materials [20,21]. Fly ash and slag, in particular, have become popular
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source materials due to their high silica and alumina concentration and availability in
landfill sites. A combination of fly ash and slag has also been employed by researchers.

During both the preparation and development stages, the metakaolin (MK)-based
geopolymer has the advantage of being able to be manufactured consistently and with
predictable qualities.

The plate-shaped particles, on the other hand, produce rheological challenges, increas-
ing the processing complexity as well as the water need of the system. The geopolymer
made from fly ash (FA) is often more durable and stronger [22]. FA-based geopolymers,
on the other hand, are observed to have a substantial quantity of pores. The addition of
metakaolin to FA-based geopolymers can result in a denser structure, which can result in
increased strength. Because metakaolin alone produces a weak structure, it is combined
with additional elements [23]. The strength, microstructure, and nanomechanical character-
istics of several geopolymer mixtures based on metakaolin and fly ash are described in this
work. At 7, 14, and 28 days, the compressive strengths were assessed. SEM and XRD were
used to investigate the microstructure.

2. Experimental Programme
2.1. Materials, Mixing, and Curing of Samples

Based on earlier research [24], the mix design parameters of geopolymer mixes used in
this investigation were chosen. The activating liquid was made up of a mixture of sodium
silicate and sodium hydroxide solutions. The sodium silicate solution has a mass ratio of
2.61 (SiO2 = 30.0%, Na2O = 11.5%, and water = 58.5%) for SiO2 to Na2O. In a fume cupboard,
sodium hydroxide pellets were dissolved in deionized water to make an 8 M solution.

The sodium silicate to sodium hydroxide ratios were varied between (1.0, 1.5, and 2.5).
The activator solution was held at a constant mass ratio of 0.4 with the binder. One mix was
made entirely of fly ash, while the other was made with 70% fly ash and 30% metakaolin.
Both fly ash and metakaolin were obtained from local sources in Western Australia. The
properties of fly ash and metakaolin are summarised in Table 1. The compressive strength
testing was performed on 50 × 50 × 50 mm cube samples. After casting, the samples
were demoulded and dried at room temperature of 20 (±2) ◦C with a relative humidity of
70 (±10) percent.

Table 1. Properties of fly ash and metakaolin.

Parameters Fly Ash Metakaolin

SiO2 (%) 51.80 52.10
Al2O3 (%) 26.40 41.00
Fe2O3 (%) 13.20 4.30
CaO 1.61 0.09
MgO 1.17 1.36
SO3 0.21 -
Na2O 0.31 0.01
K2O 0.68 0.62
P2O5 1.39 -
Loss of ignition (%) 0.50 0.50
Specific gravity 2.60 2.63

2.2. Test Methods

The compressive strength tests were done in line with ASTM C109 [25] Standard at
7, 14, and 28 days. A MIRA3 TESCAN scanning electron microscope (SEM) was used to
investigate the morphology of the hardened samples). On a Siemens D500 BraggeBrentano
diffractometer X-ray diffraction (XRD) studies were carried out across a 2θ range of 5–80.
Using a Cu ka X-ray source, operating parameters for the XRD were set at 40 kV and 30 mA.
The geopolymers’ crystalline phases were detected using a Powder Diffraction File (PDF).
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3. Results and Discussion
3.1. Compressive Strength

Figures 1–3 compare the compressive strength of FA and MK-based geopolymers and
FA-based geopolymers at various curing ages and alkaline solution molar ratios. As can be
shown, the majority of FA and MK-based geopolymer samples showed higher compressive
strength than the FA-based geopolymers. MK has a stable chemical composition and
particle size, which explains this. According to Parande et al. (2009) [26], unlike FA, MK is
generated under regulated conditions, making it more reactive for geopolymerisation and
hence improving geopolymer strength development. As a result, metakaolin’s tiny particle
sizes allow for improved particle packing and can fill the holes left by unreacted FA.
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Figure 1. Compressive strength development at alkaline solution molar ratio 1.0.
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When compared to the FA-based geopolymer, the FA and MK-based geopolymer
samples demonstrated a maximum gain in strength of 30% when an alkaline solution molar
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ratio of 1.0 was utilised. The strength of the FA and MK-based geopolymers improved the
greatest after 28 days, with the FA-based geopolymers improving by 9.8%. In Mix 3, the
strength of both geopolymers was equal. The compressive strength difference between
each increment in the alkaline molar ratio is noteworthy in this study. This shows that
FA-based geopolymers are more affected by the alkaline solution ratio. In contrast, the
FA and MK-based geopolymer performed better in the early stages. The strength of the
FA and MK-based geopolymers, for example, was 13% higher at 7 days than the FA-
based geopolymer. Zhang et al. (2014) [27] discovered that a 50/50 mixture of FA and
MK geopolymers exhibited higher compressive strength after being heated than 100% FA
geopolymers. The researchers also discovered that a geopolymer containing both FA and
MK had a better compressive strength than geopolymers based on MK.

3.2. Microstructure

Figure 4 shows an example of several geopolymerisation phases. Mullite needles are
found in the fly ash particle, indicating partial geopolymerization. The image also shows
the remaining fly ash particles after the bond has been broken and geopolymer gels have
formed and diffused throughout the structure, indicating that it has reached crystalline
phase. Finally, the particle has a smooth surface, indicating that it did not participate in the
geopolymerisation process and is, therefore, an unreacted FA particle. Numerous holes
and compacted geopolymer gels may also be seen in the image.
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Figure 4. Microstructure of FA-based geopolymer.

Figures 5 and 6 depict the microstructure of FA and MK-based geopolymers with 1.0
(Mix 1) and 2.5 (Mix 3) molar ratios of alkaline solution, respectively. The structure becomes
less porous with fewer unreacted FA and MK particles as the alkaline solution molar ratio
of the FA and MK-based geopolymer utilised in this study is increased, resulting in a
stronger structure. The compressive strengths of Mix 1 and Mix 3 were 44 MPa and 62 MPa,
respectively, as shown in Figure 1. By “extending the reaction”, an increase in the molar
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ratio of sodium silicate to sodium hydroxide, or an increase in the use of sodium silicate,
aids in the geopolymerisation process. More FA and MK particles can react as a result,
resulting in a more compact structure. Figure 5 also shows matrix porosity generated by
FA or MK particles that failed to fully react during the geopolymerisation process.
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Figures 7 and 8 show the microstructure of FA-based geopolymers Mix 1 and Mix 3,
respectively. Despite the fact that the compressive strengths of Mix 1 and Mix 3 are 35 MPa
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and 63 MPa, respectively, there are little to no differences between the two mixtures. The
morphology of FA and MK-based geopolymers, on the other hand, differs significantly.
Mix 1 of the FA-based geopolymer has more pores and unreacted pozzolan, which accounts
for its lower compressive strength. Pores identify weak spots in the structure and generate
routes for water to flow through. MK tends to fill pores when added to geopolymers
because of its lower particle size and consistent chemical composition, resulting in a more
compact and stronger structure. FA and MK-based geopolymers also appear to have a
more consistent matrix or structure than FA-based geopolymers. Metakaolin’s chemical
makeup aided in the dissolving of pozzolan, resulting in a more evenly dispersed structure.
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3.3. Mineralogical Analysis

The XRD patterns for FA and MK-based geopolymers are shown in Figure 9. The
largest peak, which can be observed at around 27◦, was identified as quartz (SiO2). Amor-
phous phases are also indicated by multiple tiny peaks between 20◦ and 40◦. Mullite,
Maghemite, Haematite, and Aluminum Silicon Oxide (Al2 SiO5) are among the other
phases discovered. Despite the increase in compressive strength seen in Figure 1, there
is little variation between the three blends. On the other hand, the intensity of quartz in
Mix 3 with a molar ratio of 2.5 is slightly higher. A rise in compressive strength usually
corresponds to an increase in the intensity of crystalline products, particularly quartz. This
is in line with the fact that Mix 3 has a higher compressive strength, as well as a denser
matrix, as seen in Figure 1.
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pozzolan, resulting in a more evenly dispersed structure. This was seen at a temperature
of about 25◦. Mullite, Maghemite, Haematite, and Aluminum Silicon Oxide (Al2SiO5) are
among the other phases found. When XRD patterns of FA and MK-based geopolymers
were compared to FA-based geopolymers (Figure 10), the peak/intensity for quartz in the
FA and MK-based geopolymer was slightly greater. This is to be expected given the inequal-
ities in compressive strength. Amorphous phases were also identified by minor uneven
bumps between 20◦ and 43◦. There is no discernible difference between the three mixes.
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