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A B S T R A C T

Little is known of how autonomic arousal relates to neural responsiveness during auditory attention. We pre-
sented N=21 5-7-year-old children with an oddball auditory mismatch paradigm, whilst concurrently mea-
suring heart rate fluctuations. Children with higher mean autonomic arousal, as indexed by higher heart rate
(HR) and decreased high-frequency (0.15-0.8 Hz) variability in HR, showed smaller amplitude N250 responses to
frequently presented (70%), 500 Hz standard tones. Follow-up analyses showed that the modal evoked response
was in fact similar, but accompanied by more large and small amplitude responses and greater variability in peak
latency in the high HR group, causing lower averaged responses. Similar patterns were also observed when
examining heart rate fluctuations within a testing session, in an analysis that controlled for between-participant
differences in mean HR. In addition, we observed larger P150/P3a amplitudes in response to small acoustic
contrasts (750 Hz tones) in the high HR group. Responses to large acoustic contrasts (bursts of white noise),
however, evoked strong early P3a phase in all children and did not differ by high/low HR. Our findings suggest
that elevated physiological arousal may be associated with high variability in auditory ERP responses in young
children, along with increased responsiveness to small acoustic changes.

1. Introduction

The Autonomic Nervous System (ANS) is the neural substrate of the
body’s stress response (Cacioppo et al., 2000). It has two main com-
ponents: the Sympathetic Nervous System (SNS), involved in quick
response mobilising (‘fight or flight’) (Cacioppo et al., 2000), and the
Parasympathetic Nervous System, involved in slow-acting, response-
dampening (‘rest or digest’) responses (Ulrich-Lai and Herman, 2009).
Although the two interact largely in opposition, their function is non-
additive (Janig and Habler, 2000; Lacey, 1967). One widely used per-
ipheral index of ANS function is heart rate, which receives contribu-
tions from both the SNS and PNS, with faster HR indexing greater SNS
and less PNS activity (McCabe, 2000). In addition, ‘high-frequency’
activity in the respiration range (e.g. 0.15-0.8 Hz) is thought to index
PNS activity (Bush et al., 2011). Although some researchers have dif-
ferentiated ‘high-frequency’ from ‘low-frequency’ activity (< 0.15 Hz),
treating the latter as an index of SNS activity (Berntson et al., 1997),
more recent research has criticised this differentiation (Reyes del Paso
et al., 2013; Billman, 2013).

Research has shown that fluctuations in both long- (Richards, 1985)

and short-term (de Barbaro et al., 2016a; Wass et al., 2016) physiolo-
gical arousal associate with fluctuations in visual attention (Arnsten,
2009; Liston et al., 2009; Wass, 2018). Behaviourally, increased auto-
nomic arousal (increased SNS and decreased PNS) associates with de-
creased voluntary attention control and increased responsivity to
salient targets, whereas lower arousal is associated with increased vo-
luntary (endogenous) attention control (Arnsten, 2009; Liston et al.,
2009; Broadbent, 1971; Alexander et al., 2007). These findings have
been observed from animal research (Usher et al., 1999) and recordings
of ANS function in adults (Holzman and Bridgett, 2017; Thayer et al.,
2009), children and infants (Richards, 2010; Richards et al., 2011;
Bacher and Robertson, 2001), including experimental manipulations of
stress (Liston et al., 2009).

Non-human primate research in this area has focused on the Locus
Coeruleus (LC), a brainstem area implicated in ANS control (Usher
et al., 1999; Sara and Bouret, 2012). At times of elevated physiological
stress, tonic firing rates in the LC are increased (McCall et al., 2015).
With higher tonic firing rates, phasic (stimulus-evoked) responses be-
come more inconsistent (Usher et al., 1999; Aston-Jones and Cohen,
2005). Neural gain, the degree to which neural signals are amplified or
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suppressed contingent on relevance, is lower during elevated arousal
(Aston-Jones and Cohen, 2005). Atypical neural gain (Hauser et al.,
2016) and hyper-tonic arousal (Sonuga-Barke et al., 2010; Imeraj et al.,
2012) have both been hypothesised to be core deficits in ADHD. Phasic,
stimulus-evoked activity in the LC has been associated with evoked
brain components such as the P3 (Murphy et al., 2011; Nieuwenhuis
et al., 2005). However, no previous research, to our knowledge, has
examined the relationship between arousal and variability in neural
evoked responses, in human participants (Wass, 2018).

Most previous research into physiological arousal and attention has
studied attention in the visual domain. Relatively few studies have
examined the relationship between physiological arousal and auditory
attention - despite that auditory attention is considered a key gateway
skill during language acquisition, for example (Choudhury and
Benasich, 2011; Bishop, 2007). Understanding relationships between
physiological arousal and auditory attention may, for example, be
helpful for recognising differences in auditory processing that have
been noted as a function of socio-economic status (SES) (Stevens et al.,
2015, 2009), and which have been implicated in understanding in-
dividual differences in language learning capacity (Bishop, 2007;
Tonnquist-Uhlen, 1996; Montgomery and Windsor, 2007). In-
vestigating this was the aim of the present paper.

We used a version of an auditory oddball paradigm in which fre-
quently presented 500 Hz tones were interspersed with two rare var-
iants: 750 Hz tones and broadband white noise (Kushnerenko et al.,
2002a, 2007). Typically, in response to frequently presented standards,
two main components can be observed in children under the age of 10
years: the P150 (P2), positive component, peaking at about
100–200ms, and the N250 (N2), negative component peaking at about
250–350ms or even later if merged with the subsequent N450 at faster
presentation rates (Čeponien et al., 1998). The functional significance
of these obligatory components in children remains to be clarified.

In adults, the source of the P2 has been located by magnetoence-
phalography (MEG) to the superior temporal gyri (Hariº et al., 1987). In
addition, some results indicate that the P2 at least partially reflects
auditory driven output of the reticular activating system and conse-
quently associated with the maintenance of behavioural arousal (Knight
et al., 1980; Rif et al., 1991; Robinson, 1999). The P2 modulation in
response to infrequent deviant in oddball paradigms was observed only
in young children but not in adults ({Ruhnau, 2013 #3165, Ruhnau
et al., 2010). The N2 elicited by frequent repetitive stimuli (‘basic’ N2;
Näätänen and Picton, 1986) was reported mainly in children and often
denominated N250 according to its latency (Čeponiené et al., 2001;
Čeponien et al., 2002; Ceponien et al., 1998; Korpilahti and Lang,
1994). In children, the N2 amplitude was found larger in response to
complex rather than simple tones (Čeponiené et al., 2001). It is assumed
to originate bilaterally in the auditory cortex of the superior temporal
lobes with frontal predominance (Čeponien et al., 2002; Gomot et al.,
2000). There are several studies reporting smaller N250 amplitudes in
children born prematurely (Fellman et al., 2004; Gomot et al., 2007), in
infants with craniofacial anomalies associated with a risk for a devel-
opmental delay (Ceponien et al., 1998; Balan et al., 2002), and in
language-impaired (Tonnquist-Uhlen, 1996), and dysphasic children
(Korpilahti and Lang, 1994).

In addition the rare, or ‘oddball’ stimuli allowed us to investigate
auditory change detection to both small- and large-spectral changes
(Kushnerenko et al., 2013a). The response to larger spectral changes
(noises or so called ‘novel’ sounds) is usually very consistent across
subjects, representing early negativity (N1/Mismatch Negativity/
MMN), followed by a large positivity (P3a) and a late negativity (LN)
commencing at about 400ms (Wetzel and Schröger, 2014). The P3a is
only elicited when auditory change is large enough to trigger in-
voluntary (bottom-up, saliency-driven) attention mechanisms and is
sometimes linked to a behavioural distraction from the task and im-
pairment in performance (Wetzel and Schröger, 2014).

The brain response to smaller acoustic changes (deviants) in

children, called the Mismatch response (MMR), can be characterized by
either negative (nMMR or Mismatch negativity, MMN (Näätänen et al.,
1978) or positive (pMMR) components, usually seen as an increases in
N250 or P150 amplitudes in response to deviants compared to stan-
dards. Coexistence of positive and negative MMRs in children and in-
fants presented a riddle for more than a decade for developmental re-
searchers. Recently, however, there has been development in
understanding these two components, presumably indexing different
functional characteristics (Kushnerenko et al., 2002a, 2007). It has been
proposed that the mismatch response associated with high attentional
demands in the sound discrimination exhibits a positive polarity
(pMMR) and is considered a less mature MMR response. The mismatch
response associated with low attentional demands (more automatic)
exhibits a negative polarity (i.e., MMN) and is considered the more
mature MMR (Garcia-Sierra et al., 2016).

Both MMN and pMMR co-exist in the same age group (4–6 year old
pre-schoolers) with larger and easier deviants eliciting adult-like
MMNs, whereas smaller deviants elicit P-MMRs (Lee et al., 2012).
Therefore, auditory change detection can occur with high or low at-
tentional demands that are mediated by language experience (Garcia-
Sierra et al., 2016; Rivera‐Gaxiola et al., 2005; Friedrich et al., 2009),
discriminability of the stimuli (Lee et al., 2012; Cheng et al., 2015) and
maturational factors (Kushnerenko et al., 2002a; Morr et al., 2002;
Maurer et al., 2003). There has been also been a discussion of whether
pMMR can represent an early phase of the P3a component elicited in
response to attention-getting stimuli (Kushnerenko et al., 2002a, 2007).
However, this still requires further investigation.

Our research participants were 5-7-year-old children. We predicted
that heightened levels of arousal would be associated with increased
distractibility, potentially triggering attention mechanisms to a larger
extent, in response to small acoustic changes. Therefore we predicted
that a more P3a-like response, manifesting as a higher amplitude P150
component, would be observed in children with higher physiological
arousal. Based on previous research (Aston-Jones and Cohen, 2005) we
also predicted that increased physiological arousal would result in more
variable trial-to-trial brain responses to the same stimulus.

2. Method

Participants: 39 participants were originally tested for the study.
Their mean (std) age on the day of testing was 73.6 (sd 12.2) months.
Although detailed demographic data were not collected it should be
noted that the recruitment area for this study, Stratford in East London,
is a demographically mixed area of London. The nature of our study
meant that data from a number of participants were unavailable due
either to technical problems with one of the recording streams, to in-
sufficiently good quality data recording from one of the measures, or to
technical problems sending event codes between the two streams.
Technical problems with the ECG recording systems led to the loss of
data N=8 participants. Further technical problems led to problems
with sending event codes between with ECG and EEG recording
equipment (N= 7). Insufficiently good quality EEG data led to the loss
of data from 8 participants. In total, ECG data were available for N=30
participants; EEG data were available for N=34 participants; both
ECG and EEG data were available from N=21. The age of participants
who contributed both usable ECG and EEG data was 71.9 (sd 11.9)
months on the day of testing.

Equipment: EEG was recorded using a high-density 128-channel
HydroCel Geodesic Sensor Net (HGSN) produced by EGI (EGI, Eugene,
OR). The size of the HGSN was chosen based on the child’s head cir-
cumference. The EEG signal was referenced to the vertex, recorded at a
500 Hz sampling rate with band-pass filters set from 0.1 to 100 Hz using
a Kaiser Finite Impulse Response filter. Prior to recording the im-
pedance of each electrode was manually checked to ensure that they
were below 100 kΩm.

ECG was recorded using a BioPac (Santa Barbara, CA) system
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recording at 1000 Hz. Disposable Ag–Cl electrodes were used, placed in
a modified lead II position. Stimuli were presented using E-Prime. In
order to ensure accurate time-synchronisation between the EEG and
ECG recording systems, simultaneous event codes were sent con-
currently from E-Prime via TTL pulses to the EEG and ECG recording
systems during stimulus presentation.

Procedure: The experiment consisted of 4 blocks of 100 trials. Each
block consisted of: 70 ‘standard’ 500 Hz tones; 15 ‘deviant’ 750 Hz
tones; 15 ‘noise’ (white-noise segments). The harmonic tones of 500 and
750 Hz fundamental frequency were constructed from the three lowest
partials, with the second and third partials having a lower intensity
than the first one by 3 and 6 dB, respectively. The harmonic tones were
used instead of sinusoids for two reasons. Firstly, because it has been
shown previously that complex tones result in larger N250 amplitudes
in children then sinusoids (Čeponiené et al., 2001). Secondly, we aimed
to use the same paradigm that was used in a number of longitudinal and
cross-sectional studies in infants and children in order to increase our
understanding of the observed previously effects (Kushnerenko et al.,
2007). The duration of the sounds was 100ms, including 5-ms rise and
5-ms fall times. The interstimulus (offset-to-onset) interval was 700ms.
The order in which the trials were presented was pseudo-randomised in
order to ensure that two deviant and noise trials were always separated
by at least two standard trials. In between blocks, 60-second videos
were presented of actors reciting nursery rhymes to the camera, in
order to allow participants to rest and to minimise the cumulative effect
of fatigue over consecutive blocks. The total paradigm, including pre-
paration, recording, breaks and EEG cap removal, lasted approximately
one hour per participant. The proposal was approved, prior to the
commencement of the study, by the University Research Ethics Com-
mittee at the University of East London.

Data analysis: The vertex-referenced EEG was algebraically re-
computed to an average reference. The signal was off-line low-pass
filtered at 30 Hz using a Kaiser Finite Impulse Response filter and seg-
mented into epochs starting 100ms before and ending 600ms after the
stimulus onset. Channels contaminated by eye or motion artifacts were
rejected manually, and trials with more than 20% bad channels were
excluded. The average (std) [min-max] proportion of channels excluded
per trial was 0.09 (0.12) [0.01-0.45] for standard trials; 0.09 (0.10)
[0.01-0.37] for deviant trials; 0.06 (0.09) [0.001-0.32] for noise trials.
The mean (range) (std) number of trials included was 248 (210–270)
(19) for standard; 50 (42–56) (4) to deviant; 54 (48–60) (4) for noise.
This number of accepted trials has proven to be sufficient for this type
of paradigm (Kushnerenko et al., 2013a; Guiraud et al., 2011; Dehaene-
Lambertz and Dehaene, 1994; Friederici et al., 2007; Kushnerenko
et al., 2013b, 2008).

The valid ERPs obtained for each stimulus type were first averaged
to create a per-participant mean waveform. The electrode locations
used are shown in Fig. 1b. Because P150 and the early phase of the P3a
represent an overlapping double-peaked component in response to
white noise (Fig. 1a), the amplitude and latency of the maximum po-
sitive change was measured between 100 and 300ms post stimulus
onset.1 The following negative peak representing merged N250 and

N450 components, will be called throughout N250 and was measured
as the maximum negative change between 200 and 500ms post sti-
mulus onset. The late negativity (LN) in response to white noise was
measured in the time window from 400 to 600ms. The amplitude was
calculated as the mean amplitude +/- 20ms around the peak ampli-
tude. The time windows were defined based on the longitudinal and
cross-sectional research using the same paradigm (Kushnerenko et al.,
2007, 2002b) and the average of fronto-central channels was used as
the largest MMN/P3a/LN were expected to occur over this area
(Gumenyuk et al., 2005, 2004).

Raw ECG data were parsed to identify heart beats using a variable
amplitude thresholding criterion. The amplitude threshold was in-
spected and adjusted between participants using the data visualisation
illustrated in the SM (see Fig. S1). Then, automatic artefact rejection
criteria were used to automatically identify artefactual beats: if the time
interval between beats was less than 400ms or greater than 1100ms, or
if the rate of change between that beat and the preceding beat exceeded
400ms. This level was set, following visual inspection, as greater than
the maximum rate of change of heart rate in vagally mediated HR
changes (see Fig. S1). Following automatic parsing, data were visually
inspected in order to identify erroneously identified beats. The criteria
used to identify short- and large-scale variability in HR are described in
the Supplementary Materials.

3. Results

In Analysis 1 we examine how between-participant variability in HR
related to neural evoked responses on the Standard (Figs. 2,3), Deviant
(Fig. 4) and Noise (Fig. 5) conditions. In Analysis 2 we examine how
within-participant variability in HR – fluctuations in HR within the
testing session – associated with altered patterns of evoked neural re-
sponses.

3.1. Preliminary analyses – descriptive

Fig. 1 shows the grand average ERPs (Fig. 1a), the electrode loca-
tions used to calculate all ERPs (Fig. 1b) and the deviant-standard
waveform (Fig. 1c). ERPs to standard and deviant both consist of the
P150 followed by N250, the latter being more negative displaced in the
deviant compared to the standard. This can be seen in the deviant-
standard difference wave with the negative peak around 200ms. ERPs
to white-noise segments also represent a typical waveform consisting of
a large and prolonged positive peak (merged P150 and early phase of
P3a), followed by a merged N250 and Late Negativity (LN).

Fig. S2, in the Supplementary Materials, shows the raw HR data
collected during the experiment, rank ordered by mean HR obtained
across the entire trial. The participants showed generally consistent
inter-individual differences in mean HR across the recording session. It
can also be seen that, in addition to differences in mean HR, partici-
pants showed differences both in the level of high-frequency heart rate
variability (regular, vagally mediated changes in HR with the respira-
tion cycle, known as Respiratory Sinus Arrhythmia) (Anrep et al., 1935;
Porges, 2017) as well as low-frequency variability, often considered an
index of sympathetic nervous system activity (Berntson et al., 1997;
Billman, 2013). In the Supplementary Materials we present analyses to
examine these other aspects of variability in the time series. In the main
text we focus on mean HR (Analysis 1) and within-participant

1 The reason for not analysing P150/P3a separately is that in children these
components are often inseparable. Firstly, due to large inter-individual differ-
ences the latency windows for these peaks overlap and therefore analysing
these two peaks in two separate windows we are at risk to miss the component’s
maximum amplitude if it is elicited earlier or later than on the average.
Secondly, in Kushnerenko et al. (2002a, b) it has been shown that there is a
superposition of the positive and negative ERP components in infants and
young children in the same latency range (see also Morr et al, 2002 for cor-
roborating evidence) and an emerging negative component is often seen riding
on top of the wider positivity dividing it into two subcomponents P150 and an
early P3a. In the absence of this negative peak (presumably emerging N1) the
response is often seen as one positive peak, so in fact the separation of this
positive component into two might be artificial. Kushnerenko et al. (2002a, b,

(footnote continued)
2013a, b) have argued that certain amount of involuntary attention in young
children can be triggered even by small acoustic change, i.e. by frequency de-
viants, and therefore mismatch positivity observed in children might be elicited
due to recruiting of some involuntary attention mechanisms. However, in re-
sponse to noise sounds the elicitation of the early P3a observed much more
clearly due to more salient acoustic contrast.
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variability in HR (Analysis 2).

3.2. Analysis 1 – between-participant variability in HR

In Analysis 1 we examine how between-participant variability in HR
related to participant responses on the Standard (Figs. 2,3), Deviant
(Fig. 4) and Noise (Fig. 5) conditions.

3.2.1. Standard
Fig. 2c shows the mean ERP responses for the standard trials, sub-

divided using a median split by mean HR across the testing session.
Although the latency of the N250 component is similar between the two
groups, the amplitude is lower for the high HR group. Topoplots
(Fig. 2a and b) indicate that this effect was observed consistently across
all fronto-central channels. Fig. 2d shows the bivariate relationship
between mean HR and N250 peak amplitude. (For this, and all sub-
sequent bivariate relationships reported below, normality plots were
conducted; but these have not been reported throughout for reasons of
space. Because not all data were found to be parametrically distributed,
the more conservative nonparametric Spearman’s test was used
throughout, for consistency.) The bivariate relationship between mean
HR and N250 peak amplitude was found to be ρ(20)= .49, p= .027,
suggesting that higher mean HR is associated with lower amplitude
N250 responses on Standard trials.

In order further to investigate why smaller average N250 responses
were observed in participants with higher HR, we investigated the

hypothesis that participants with higher HR might show increased be-
tween-trial variability in evoked responses. First, the peak amplitude ERP
responses were calculated trial by trial, and pooled into high HR and
low HR groups, based on a median split. Individual trials more than 2
IQR +/- the mean were excluded. Separate histograms were computed
for each distribution and compared (Fig. 3c). The median results are
similar: -10.2μV for both the high and low HR groups. But the high HR
group shows both more high and low values than the low HR group,
along with a longer tail. In order to quantify these differences ex-
Gaussian distributions were fitted, as described in the Supplemenary
Materials section 2.iii (Lacouture and Cousineau, 2008). In brief, these
analyses suggested that the model responses were similar across the two
populations (as shown by similar μ components of the ex-Gaussian), but
that both τ (exponential component) and σ (the variance of the Gaus-
sian component) were larger in the high HR group.

Second, we calculated the average between-trial variance in N250
amplitude, by computing the N250 peak amplitude individually for
each trial presented, log transforming the data, and calculating the
standard deviation between trials. A significant relationship was ob-
served between mean HR and between-trial variance in N250 ampli-
tude ρ(20)= .46, p= .045, suggesting that participants with higher
mean HR showed greater between-trial variance in N250 amplitude
(Fig. 3a). A marginally non-significant bivariate relationship was
identified when comparing between-trial variance in N250 peak am-
plitude and N250 amplitude, suggesting that participants with greater
between-trial variance in N250 amplitude showed lower average N250

Fig. 1. a) Left - grand average ERPs. Shaded areas represent the error bars, calculated as the Standard Error of the Mean. Right – amplitudes for the P150/P3a and
N250. b) Electrode locations used to calculate all ERPs. The locations used are marked red. c) Deviant-Standard difference wave (grand average). Shaded areas
represent the error bars, calculated as the Standard Error of the Mean.

S.V. Wass et al. Developmental Cognitive Neuroscience xxx (xxxx) xxx–xxx

4



Fig. 2. a and b) - topoplots for responses to the Standard trials, split by the participants’ mean HR across the entire testing session. The figure above each time plot
indicates the mean time of each bin, in ms, relative to stimulus onset. Only the time intervals 100–200ms and 250–350ms, corresponding to the main ERP peaks, are
shown. Results for other time intervals are shown in the SM (Fig. S6). The colour bar indicates the voltage, in μV. a) High HR group; b) Low HR group. c) ERP
response to the Standard trials, subdivided into the low HR group (red) and the high HR group (blue) and downsampled to 20ms. Shaded areas represent the error
bars, calculated as the Standard Error of the Mean. d) Scatterplot showing the significant relationship observed between mean HR and peak amplitude of the N250 on
Standard trials.

Fig. 3. a) Scatterplot showing the relationship
between mean HR and between-trial variance
in N250 amplitude. b) Scatterplot showing the
relationship between N250 peak amplitude and
between-trial variance in N250 amplitude. c)
Histogram showing the distributions of ERP
amplitude responses observed across all
Standard trials, sub-divided into the low
average HR group and the high average HR
group. Although the modal response is similar,
the high HR group show greater variability in
responses. d) Scatterplot showing the relation-
ship between mean HR and between-trial var-
iance in N250 latency.
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peak amplitude responses ρ(20)= .42, p= .067 (Fig. 3b). Identical
relationships were observed between mean HR and the latency of the
peak amplitude: participants with higher mean HR showed increased
variability in the latency of the peak N250 response ρ(20)= .60,
p= .005 (Fig. 3d) and participants with increased variability in the
latency of the peak N250 response showed smaller average amplitude
N250 responses ρ(20)= .62, p= .003.

Overall, these results suggest that the modal responses are similar
across the two populations, but that response variability was larger in
the high HR group. Thus, despite the fact that large amplitude

responses were marginally more common in the high HR group
(Fig. 3c), the greater between-trial variability both in the peak ampli-
tude and the latency of the peak amplitude in the high HR group
(Fig. 3a and d) leads to lower average response amplitudes.

3.2.2. Deviant
Fig. 4c shows the mean ERP responses for the deviant trials, sub-

divided using a median split by mean HR across the testing session. It
can be seen that the P150/P3a component appears to show a larger
positivity in the high HR group. The topoplots (Fig. 4a and b) indicate

Fig. 4. a) and b) - topoplots for responses to the Deviant trials, split by the participants’ mean HR across the entire testing session and binned into 100ms time
intervals. The figure above each time plot indicates the mean time of each bin, in ms, relative to stimulus onset. Only the time intervals 100–200ms and 250–350ms,
corresponding to the main ERP peaks, are shown. Results for other time intervals are shown in the SM (Figure S6). The colour bar indicates the voltage, in μV. a) High
HR group; b) Low HR group. c) ERP response to the Deviant trials, subdivided into the low HR group (red) and the high HR group (blue) and downsampled to 20ms.
Shaded areas represent the error bars, calculated as the Standard Error of the Mean. d) histogram showing the distributions of ERP P150/P3a amplitude responses
observed across Deviant trials, sub-divided into the low average HR group (red) and the high average HR group (blue). e) Bar chart showing the P150 standards
observed for the Standard and Deviant trials, split by low HR and high HR groups. Error bars represent the Standard Error of the Mean. The star indicates the results
of the mixed ANOVA described in the main text (p < .05).

Fig. 5. a) and b) - topoplots for responses to the Noise trials, split by the participants’mean HR across the entire testing session and binned into 100ms time intervals.
Only the time intervals 100–200ms and 250–350ms are shown. Results for other time intervals are shown in the SM (Fig. S6). The figure above each time plot
indicates the mean time of each bin, in ms, relative to stimulus onset. The colour bar indicates the voltage, in μV. a) High HR group; b) Low HR group. c) ERP
response to the Noise trials, subdivided into the low HR group (red) and the high HR group (blue) and downsampled to 20ms. Shaded areas represent the error bars,
calculated as the Standard Error of the Mean.
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that this effect was observed consistently across fronto-central chan-
nels. In order to assess whether a larger P150/P3a was observed to the
deviant relative to the standard trials, the P150/P3a peak amplitude
was directly compared between the standard and deviant conditions,
and subdivided by participant mean HR (Fig. 4e). A mixed ANOVA with
P150/P3a amplitude as the DV, condition (Standard vs Deviant) as
within-participants factor and HR group (Low vs High) as between-
participants factor indicated a significant interaction between condition
and group F(1,19)= 9.9, p= .025, partial η2= .24. Post-hoc analyses
using paired-sample t-tests indicated that the P150/P3a was higher to
deviant than standard trials in the high HR group t(9)= 2.30, p= .047,
Cohen’s d=0.79 but not the low HR group t(10)= 1.01, p= .34,
Cohen’s d=0.28.

In order further to investigate why larger average P150/P3a re-
sponses were observed in participants with higher HR, we again in-
vestigated between-trial variability in evoked responses. Peak ampli-
tude ERP responses were calculated trial by trial, and pooled into high
HR and low HR groups, based on a median split. Individual trials more
than 2 IQR +/- the mean were excluded. Separate histograms were
computed for each distribution and compared (Fig. 4d). Ex-Gaussian
distributions were fitted (see Supplementary Materials section 2.iii)
(Lacouture and Cousineau, 2008). These results suggest that, whereas
the modal responses were again similar between the two groups (shown
by the similar μ components), the increased mean P150/P3a amplitudes
observed in the high HR group were associated with a sub-group of
trials with a high response amplitude, manifesting as an increased τ
(exponential component).

3.2.3. Noise
Fig. 5c shows the mean ERP responses for the Noise trials, sub-

divided using a median split by mean HR across the testing session.
Fig. 5a and b show topoplots split by mean HR. An identical series of
analyses were conducted to those reported for the Standard and Deviant
condition, including a mixed ANOVA with condition (Standard vs De-
viant) as within-participants factor and HR group (Low vs High) as
between-participants factor were conducted, but no significant group
differences were observed. In addition neither the latency (ρ(20)= .17,
p= .47) or the amplitude (ρ(20)= .21, p= .36) of the Late Negativity
component showed a significant relationship to mean HR.

3.2.4. Relationship between HR variability and ERP responses
In the Supplementary Materials we examine how low- and high-

frequency variability in our ECG data relate to the ERP responses ob-
served. Robust individual differences in both low- (< 0.15 Hz) and
high- (0.15-0.8 Hz) frequency variability could be obtained, as in-
dicated by strong correlations between time and frequency domain
estimates (Fig. S7). As expected (Cacioppo et al., 2000), high-frequency
variability, which is thought to index vagal/parasympathetic influence,
showed strong associations with mean HR (ρ=-0.76) (Fig. S7d) (lower
HR associated with increased high-frequency variability). Virtually
identical patterns of association with the ERP responses were observed
for high-frequency variability as were observed for mean HR: increased
high-frequency variability was associated with larger N250 Standard
responses and reduced P150/P3a Deviant responses (Figs. S8, S9). In
addition, increased low-frequency variability was also associated with
smaller amplitude N250 Standard responses (Figure S8b), although no
relationship was observed between low-frequency variability and
P150/P3a Deviant responses (Fig. S8e).

3.3. Analysis 2 – within-participant changes in HR

Our main analyses presented above look at between-participant
differences based on mean HR recorded across the entire testing ses-
sion. In addition, we also looked at whether similar patterns could be
identified when we examined within-participant variability – i.e. fluc-
tuations in HR within a particular individual, within a testing session.

Results for this analysis are given in the Supplementary Materials
section 2.iv (Fig. S10). In brief, highly comparable patterns of results
were observed. Trials where HR was high showed smaller amplitude
N250 Standard responses – albeit with a smaller effect size than the
between-participant analyses. For P150/P3a Deviant responses, a di-
rectionally similar result (larger amplitude associated with higher HR)
was observed but the effect was not significant. Of note, because these
analyses examine within-participant variability (comparing high and
low HR trials within a testing session, separately for each participant),
these findings are entirely independent of the results in the Analysis 1,
which examine between-participant differences.

4. Discussion

We used an ERP paradigm to measure passive auditory attention in
5-7-year-old children whilst concurrently measuring between- and
within-participant variability in heart rate (HR). Our results had two
main features of interest: first, children with higher physiological
arousal showed smaller amplitude N250 responses to Standard tones,
which follow-up analyses suggested was due to increased within-par-
ticipant variability in neural responsiveness in the high-arousal group.
Second, children with higher physiological arousal showed larger am-
plitude P150/P3a responses to Deviant tones. Responses to noise
showed a response with much larger early P3a phase across all children,
with no significant differences related to heart rate. We shall discuss our
two main findings in turn.

First, Fig. 2 illustrates the significant negative relationship observed
between mean HR and N250 response amplitudes to 500 Hz tones.
High-frequency variability in HR, thought to index Respiratory Sinus
Arrhythmia (Parasympathetic Nervous System control) was associated
negatively with mean HR (Fig. S7d) and showed the same pattern: more
high-frequency variability associated with larger N250 amplitude (Fig.
S8). We also examined within-participant variability in HR in a separate
analysis that controlled for differences in mean HR. Consistent with the
results of Analysis 1, we found that, within each testing session, trials
with higher HR showed reduced N250 responses to standard tones (Fig.
S10), albeit with a smaller effect size than noted in the between-par-
ticipant analyses.

Between participants, elevated HR was associated with increased
trial-to-trial variability for both response amplitudes (Fig. 3b) and re-
sponse latencies (Fig. 3d). Previous research has reported that when
single-trial ERPs are averaged, the amplitude of a peak in the average
ERPs is inversely related to the trial-to-trial variability in latency of that
peak (Thomas et al., 1989), consistent with the relationship we ob-
served in our data (Fig. 3c). Our results were consistent with this. Thus,
despite that the response histogram showed more high-amplitude
evoked responses in the high HR group (Fig. 3c), the averaged evoked
responses in the high HR group were lower (Ouyang et al., 2016).

One possible artifactual explanation of our findings is that the
children with higher HR moved more during testing, which may have
contributed to the increased variability in our results (Georgieva et al.,
2017). However, this appears unlikely because our participants were
seated during recording, and any trials containing gross movement
artefact were excluded by our artefact rejection techniques. Further, it
is unclear how movement artefact would contribute to the presence
both of larger, and smaller N250 responses, as well as to both smaller
average ERPs in one condition and larger ERP responses in another.

Previous studies have noted high levels of variability in ERP studies
with infants and children (Bishop, 2007; Kushnerenko et al., 2002a,
2007). However, the present results are, to our knowledge, the first
demonstration that increased variability in neural evoked responses
associates with elevated physiological arousal. Consistent with this,
previous research with non-human primates has identified systematic
relationships between an individual’s level of pre-stimulus physiolo-
gical arousal and the consistency of the phasic responsiveness that they
show to relevant stimuli (Usher et al., 1999). Other research has
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suggested that at times when pre-stimulus arousal is higher, neural
gain, the degree to which neural signals are amplified or suppressed
contingent on relevance, is reduced (Aston-Jones and Cohen, 2005;
Hauser et al., 2016; Aston-Jones et al., 2007). Our results may be
consistent with this – albeit that ERPs represent the summed activity of
populations of neurons (Harris et al., 2014), whereas most previous
research has measured responses from single-cell recordings (Usher
et al., 1999).

The present results may also, potentially, be consistent with beha-
vioural research focusing on conditions such as ADHD that has identi-
fied links between arousal and response time variability (Johnson et al.,
2007; Kofler et al., 2013; Hicks et al., 1989; Wainstein et al., 2017). For
example, Wainstein and colleagues recorded pupil size, which is
thought to index physiological arousal (Loewenfeld, 1993) in children
with ADHD and found that, at times when pupil size was higher, re-
sponse time variability on a visuospatial working memory task was
increased. Bluschke and colleagues have also identified increased intra-
participant variability in neural responses during a conflict monitoring
in patients with ADHD (Bluschke et al., 2017).

The second novel aspect of our findings was the elevated P150/P3a
response that we observed in the high-arousal group in response to rare,
15% 750 Hz deviant tones. This larger mean response was observed
despite the fact that the trial-to-trial variability in the high HR group
was higher (Fig. 4d); and, as discussed above, greater trial-to-trial
variability is typically associated with a lower averaged response. The
enhanced P150 (P2) in response to deviants has repeatedly been re-
ported in the literature (Näätänen et al., 1978; Maurer et al., 2003;
Seery et al., 2014) and was referred to as positive mismatch response
(pMMR). Several hypotheses about its nature and functional sig-
nificance have been discussed (Wetzel and Schröger, 2014; Ruhnau
et al., 2013). One hypothesis interpreted positive MMR as an inverted
MMN (Maurer et al., 2003), however the mechanism of such inversion
is not clear. Another proposal suggests that the positive MMR reflects an
early P3a, a mechanism governing or initiating an attention shift to the
distracting stimuli in environment (Kushnerenko et al., 2002b;
Čeponienė et al., 2004). One more proposed explanation was based on
the close temporal proximity (or overlap) of the positive MMR and the
P2, and suggested that the positive mismatch response reflects a mod-
ulation of the P2 component (Ruhnau et al., 2010).

Finally, there is an interpretation offered independently by two re-
search teams (Kushnerenko et al., 2002a; Morr et al., 2002;
Kushnerenko et al., 2002b), which does not rule out the above dis-
cussed ones. Since scalp-recorded ERPs represents contributions from
different concurrent generators with different relative strengths or
maturation rates, the observed ERP waveform represents a sum of the
overlapping superimposed positive and negative deflections, with one
potentially obscuring another depending on the relative strength of the
generator (Kushnerenko et al., 2002a, b). Morr and colleagues illu-
strated how polarity of the resulting mismatch response would depend
on relative strengths of positive and negative generators depending on
deviance size and children age (Morr et al., 2002).

Interpreting our results, we hypothesize that here we also have
inter-relation between negative (N250/MMN) and positive generators
(P150/P3a). For example, in response to ‘noise’ (Fig. 1a), which is
thought to trigger the involuntary attention shift due to the saliency of
the stimulus (Wetzel and Schröger, 2014), one can see that the P150 is
almost merged with the following P3a. We can hypothesize that in trials
with high HR, the overall brain excitability was higher and therefore
more prone to involuntary attention. Thus, even small acoustic con-
trasts (frequency deviant) could potentially elicit a P3a-like response,
which due to a larger amplitude could obscure the N250/MMN gen-
erator response and contribute to the scalp-recorded amplitude of the
P150. The increased positivity in high HR group could be reflecting
higher attentional demands as discussed in several recent studies
(Garcia-Sierra et al., 2016; Rivera‐Gaxiola et al., 2005) and less auto-
matic auditory change detection (which should have resulted in

negative MMN) in high arousal state.
Although novel, our findings are consistent with previous research

into the relationship between physiological arousal and change detec-
tion. Whereas the detection of sought-for stimuli (targets on a stimulus
detection task) is generally thought to show an inverted-U-shaped re-
lationship with physiological arousal, with optimal performance ob-
served at intermediate levels (Aston-Jones and Cohen, 2005; Yerkes and
Dodson, 1908; McGinley et al., 2015), it is known that during hyper-
arousal, neural systems involved in exogenous, salience-driven or-
ienting become more active. This leads to a shift from ‘top-down’, more
frontally mediated control at lower levels of physiological arousal to
‘bottom-up’ control by low-level aspects of the sensory stimulus at
higher levels of arousal (Arnsten, 2009; Liston et al., 2009). Consistent
with this, greater neural responsiveness to small acoustic changes has
been shown in adults with PTSD (Morgan and Grillon, 1999), and
heightened physiological arousal has also been discussed in relation to
auditory hypersensitivity in Autism Spectrum Disorders (Jones et al.,
2009); although see (Rogers and Ozonoff, 2005).

Overall, our findings demonstrate the complex relationships be-
tween physiological arousal and cognitive performance (Arnsten, 2009;
de Barbaro et al., 2016b). Sensitivity to small acoustic changes may
confer advantages in certain learning situations – reduced sensitivity to
change has been identified, for example, as a risk factor for conditions
such as dyslexia (Baldeweg et al., 1999) and SLI (Rinker et al., 2007).
However, inconsistent stimulus responses have, independently, been
implicated in a diverse range of conditions, such as ADHD and ASD
(Geurts et al., 2008). Further investigating the relationship between
physiological arousal and auditory attention, and its potential long-
term impact on learning in cognitive domains such as language, should
be a goal for future research.
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