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Abstract

Background: An artificial intelligence (AI) approach can be used to predict venous

thromboembolism (VTE).

Objectives: To compare different AI models in predicting VTE using data from patients

with COVID-19.

Methods: We used feature ranking through recursive feature elimination with AI

algorithms (logistic regression and random forest classifier) and standard statistical

methods to identify the significant factors that contribute to developing VTE in

COVID-19 patients using a large dataset from “Coagulopathy associated with COVID-

19,” a multicenter observational study. We developed 7 AI models (Multilayer per-

ceptron classifier, Artificial neural network with backpropagation, eXtreme gradient

boosting, Support vector classifier, Stochastic gradient descent classifier, Random

forest classifier and Logistic regression classifier) using the selected significant fea-

tures to predict the development of VTE during hospitalization and used K-fold cross-

validation and hyperparameter tuning to validate and optimize the models. The

models’ predictive power was tested on 2649 (33% of 8027 overall patients), which

were previously separated and not used during model training and validation stages.

Results: Age, female sex, white ethnicity, comorbidities (diabetes, liver disease,

autoimmune disease), and laboratory features (increased hemoglobin, white cell

count, D-dimer, lactate dehydrogenase, ferritin), and presence of multiorgan failure

were major factors associated with the development of thrombosis. Support vector

classifier (SVC) model outperformed all other models, achieving an accuracy of 97%.

The SVC model also led in precision (0.98), recall (0.97), and F1 score (0.97), and

recorded the lowest log-loss score (0.112 on the test dataset), reflecting better model

convergence and an improved fit to the data. Additionally, it achieved the highest area

under the curve score (0.983).

Conclusion: The SVC model delivered the best overall performance outperforming

similar studies that developed deep learning and machine-learning models for COVID-19.
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Essentials

• VTE is a major complication in COVID-19 patients.

• An AI approach can be used to predict VTE.

• Seven AI models using the selected significant features were developed to predict VTE.

• SVC model outperformed all other models, achieving an accuracy of 97%.
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1 | INTRODUCTION

Artificial intelligence (AI) in medical diagnosis and treatment has

revolutionized the field of healthcare, offering new levels of accuracy

and efficiency. AI technologies, particularly in medical diagnostics, are

transforming how diseases are detected, analyzed, and treated. By

utilizing machine-learning and deep-learning algorithms, AI can pro-

cess a large amount of data quickly and accurately, providing

healthcare providers with invaluable insights [1]. Key areas in medi-

cine that use AI are development of disease or clinical outcome pre-

diction models and tracking the spread of disease or infections. It

played a significant role in COVID-19, which was first declared as a

global pandemic in early 2020 [2,3]. Thrombosis was a major compli-

cation in patients with COVID-19 admitted to hospitals. The risk of

venous thrombosis in COVID-19 patients was 3 to 6 times higher than

those hospitalized for other reasons [3].

Broadly, AI has been applied to COVID-19 in 4 key areas: diag-

nosis, public health, clinical decision-making, and therapeutics [4].

Several AI-driven studies have been published on predicting throm-

bosis in non–COVID-19 patients [5]. During and after the COVID-19

pandemic, there has been a surge in studies integrating AI to predict

clinical outcomes in various contexts. Zhang et al. [6] developed an

enhanced machine-learning model to improve deep venous throm-

bosis (DVT) prediction in COVID-19 patients. Their approach resulted

in the creation of a DVT prediction model called bSES-AC-RUN-

FKNN, which combines fuzzy k-nearest neighbor (FKNN) with an

improved Runge-Kutta optimizer (RUN). The model incorporates key

features such as age, sex, body mass index (BMI), prothrombin time

(PT), international normalized ratio (INR), thrombin time (TT), C-

reactive protein (CRP), tumor necrosis factor (TNF), interferon (IFN),

and the neutrophil-to-lymphocyte ratio. The model achieved an ac-

curacy of 91.02% and a sensitivity of 91.07%. However, its perfor-

mance was constrained by the limited dataset size, including only 424

patients, of whom 202 developed DVT [6].

AI will play a significant role in the future of prediction models

and clinical practice, as it has the ability to enhance precision,

efficiency, and scalability in clinical medicine, facilitating better

outcomes for the patients. Using AI prediction models to

improve patient outcome has the potential to reduce costs and pre-

pare for the future, making medicine more proactive, accessible, and

effective.

Selecting the best model is the key in AI as the model’s perfor-

mance directly impacts patient safety and clinical outcomes in addition

to ethical considerations. Selection of the best AI prediction model
significantly benefits biostatisticians and researchers by enhancing

research accuracy, facilitating precision medicine, efficient data

analysis, increasing the prediction power, and preparing for future

challenges effectively. However, it must be mentioned that there is an

important ongoing debate on the use of AI methodology as its

implementation raises some issues related to safety, ethical account-

ability, and how effectively it can be integrated into clinical practice.

Good quality, reliable data representing a diverse population are

fundamental in developing successful AI models that can be applicable

to the general population because poor quality or biased datasets lead

to inaccurate and unsafe predictions. Strict regulation of privacy and

data security, especially when data are shared across institutions or

between countries, is vital as breach of data security is a major ethical

concern. Effective integration of AI into clinical practice requires

infrastructure, training for clinicians to understand the systems, and

interdisciplinary collaboration.

Although COVID-19 is no longer a major threat to public health

due to mass vaccination and antiviral treatment of patients who

develop severe infection, models developed using data obtained from

patients with COVID-19 can be used as examples for other disease

conditions that may share some common risk factors. Although

COVID-19 disease was itself a major cause of venous thromboem-

bolism (VTE), some patient risk factors are common to many diseases

that are associated with VTE.

In this study, using a large set of data obtained from a multicenter

observational study conducted across 26 UK National Health Service

(NHS) Trusts (Coagulopathy in COVID19-A Multi-Centre Observa-

tional Study in UK https://www.clinicaltrials.gov/ct2/show/NCT044

05232), we aimed to compare the ability of different AI

models to predict VTE in hospitalized COVID-19 patients to obtain

the best-performing model. Data from the Coagulopathy in COVID-19

study have been used to assess the clinical outcomes such

as thrombosis, major bleeding, multiorgan failure (MOF), and mortal-

ity, as well as their associations with patient demographics, comor-

bidities, and admission laboratory data, using standard statistical

methods [7–12].
2 | METHODS

2.1 | Data source

The study was approved by the Health Research Authority (HRA),

Health and Care Research Wales, and received local Caldicott

https://www.clinicaltrials.gov/ct2/show/NCT04405232
https://www.clinicaltrials.gov/ct2/show/NCT04405232
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Guardian approval in Scotland (reference number: 20/HRA/1785). The

dataset comprises records of 8027 COVID-19 patients aged 18 years

and older admitted to hospitals between April 1, 2020, and July 31,

2020. VTE was defined as radiologically confirmed pulmonary embo-

lism and/or DVT. All patients received prophylactic dose low molec-

ular weight heparin on admission to the hospital unless

contraindicated, for example, by the presence of a bleeding disorder

or platelet count < 30 × 109/L. However, all patients included into this

study received prophylactic dose low molecular weight heparin. Pa-

tients who had VTE at admission were excluded (Supplementary

Figure S1) and only patients with symptomatic VTE, who had imag-

ing (Doppler scans or CT pulmonary angiogram or CT scans) to

confirm VTE during hospitalization, were considered to have VTE.
2.2 | Data cleansing and feature engineering

During the data preprocessing stage, we identified outliers and invalid

data using scatter plots, data sorting, and IQR calculations. We also

applied constraints to certain features, such as human weight, height,

and blood test results, to ensure no unrealistic values were recorded

and k-Nearest Neighbors imputation strategy was used to account for

missing laboratory values (<10%) of D-dimer, troponin I, ferritin, and

lactate levels but not for comorbidities or clinical outcomes. Once the

imputation was done, results were reviewed for each imputed feature

to make sure that the imputation had generated plausible data.

Body mass index (BMI) and age were categorized using clinically

relevant cutoff points (“<18.5,” “18.6-24.9,” “25-29.9,” “30-39.9,”
T AB L E 1 Features used to identify the significant factors for the mod

Demographics features Como

Sex (male/female) Multio

Ethnicity (White/Asian/Black) Histor

Age (y) Histor

Age groups (y); (18-29, 30-49, 50-69, 70-89, >90) Histor

BMI groups (kg/m2) (0-18.5, 18.6-24.9, 25-29.9, 30-39.9, >40) Histor

Histor

Histor

Histor

Histor

Histor

Histor
“>40”) and (“18-29 years,” “30-49 years,” “50-69 years,” “70-89 years,”

“>90 years”), respectively. A full list of features is given in Table 1.

Categorical clinical and demographic features were encoded using

a one-hot encoding scheme, which created binary columns for each

category. Numerical features, such as laboratory test results, were

standardized using a standard scaler to bring the values within a

consistent range (normalization). This was done to prevent varying

feature scales from biasing the model’s predictions, which could

otherwise lead to higher misclassification errors and reduced accuracy.
2.3 | Feature selection

Following initial feature selection based on clinical expertise, we

employed multiple methods including (1) Statistical tests (t-test/

Mann–Whitney U-test/chi-squared test); (2) Pearson pairwise corre-

lation; (3) feature ranking through recursive feature elimination with

logistic regression; and (4) random forest classifiers, to identify the

features most relevant to thrombosis development in COVID-19 pa-

tients. All the features included in the study (demographics, comor-

bidities, laboratory features) are presented in Table 2.

The t-test or Mann–Whitney U-test was used to compare groups

based on the distribution of the data. Pearson correlation measures

the strength of the linear relationship between 2 variables, with

Pearson’s correlation coefficient quantifying this relationship for each

feature with respect to the target label. In feature selection, pairwise

correlation helps identify groups of highly correlated features, allow-

ing the model to retain maximum predictive power while minimizing
el development.

rbidities Laboratory results

rgan failure Hemoglobin

y of smoking Platelets

y of liver disease D-dimer

y of lung disease White cell count

y of diabetes Neutrophils

y of heart disease Lymphocytes

y of hypercholesterolemia Fibrinogen

y of hypertension Alanine transferase

y of malignancy Bilirubin

y of autoimmune disease Creatinine

y of bleeding disorder C-reactive protein

Lactate dehydrogenase

Troponin I

Ferritin

Prothrombin time

Activated partial thromboplastin time

Lactate



T AB L E 2 Demographics, clinical characteristics, and laboratory
features of the 8027 COVID patients included in the study.

Total

n = 8027 Percentage

Sex Male 4403 55%

Female 3624 45%

Age (y) 18-29 207 3%

30-49 991 12%

50-69 2237 28%

70-89 3864 48%

>90 728 9%

Ethnicity White 5811 72%

Black 313 4%

Asian 428 5%

Other 1475 19%

Body mass index (kg/m2) <18.5 215 3%

18.6-24. 979 12%

25.0-29. 5596 69%

30-39.9 1007 13%

>40.0 230 3%

History of liver disease Yes 295 4%

No 7732 96%

History of lung disease Yes 1964 24%

No 6063 76%

History of diabetes Yes 2256 28%

No 5771 72%

History of heart disease Yes 1837 23%

No 6190 77%

History of

hypercholesterolemia

Yes 1265 16%

No 6762 84%

History of hypertension Yes 3740 47%

No 4287 53%

History of malignancy Yes 873 11%

No 7154 89%

History of autoimmune

disease

Yes 604 8%

No 7423 92%

History of bleeding

disorders

Yes 59 1%

No 7968 99%

Laboratory features

Laboratory results Median

Inter

quartile

Reference

range

Hemoglobin (g/L) 130 114-143 130-160

(115-150)a
110a 98-134a

(Continues)

T A B L E 2 (Continued)

Laboratory features

Laboratory results Median

Inter

quartile

Reference

range

Platelets (109/L) 220 168-289 150-400

D-dimer (ng/mL) 1077 585-2851 0-500

White cell count (109 /L) 7.68 5.5-7.8 4.1-11.1

Neutrophils (109/L) 5.89 3.9-8.8 2.1-6.7

Lymphocytes (109/L) 0.9 0.6-1.3 1.3-3.7

Fibrinogen (g/L) 5.6 4.3-6.8 1.5-4.5

Alanine transferase (IU/L) 26 17-43 8-40

Bilirubin (μmol/L) 10 7-14 0-20

aFemale hemoglobin.
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the number of features used. This approach enhances model’s effi-

ciency and reduces redundancy. Recursive feature elimination (RFE) is

an iterative process that fits a model, then removes the least impor-

tant feature at each step until a specified number of features remain.

RFE is a wrapper-type feature selection method because it relies on a

machine-learning algorithm at its core to rank and select features. This

distinguishes it from filter-based methods, which independently score

each feature and select those with the highest or lowest scores.

We applied logistic regression and random forest classifier algo-

rithms with RFE. RFE starts by including all features from the training

dataset, then iteratively removes the least important features until the

desired number remains. This is done by fitting the chosen machine-

learning algorithm, ranking the features by importance, discarding

the least important ones, and refitting the model. This process con-

tinues until the optimal subset of features is achieved.

Based on the common features identified through the feature

selection methods (Table 3) and existing literature on COVID-19, we

selected key features for the model training. These features included

the presence of MOF; history of diabetes, liver disease, and autoim-

mune disease; age, female sex, white ethnicity; and levels of hemo-

globin, white cell count, D-dimer, lactate dehydrogenase (LDH), and

ferritin at hospital admission.
2.4 | AI models

We developed and compared 7 binary classification AI models in

predicting the risk of developing VTE in COVID-19 patients.
2.4.1 | Multilayer perceptron classifier

This artificial neural network (ANN) model employs a feedforward

architecture, linking input data to corresponding output values

through multiple interconnected layers. Each layer is connected to the



T AB L E 3 Significant features for developing thrombosis clinical
outcome of COVID-19 patients.

Feature selection

method Significant features

Statistical tests (t-test/

Mann–Whitney

U-test/chi-squared

test)

Multiorgan failure (P < .001), White

ethnicity (P < .014), history of diabetes

(P < .019), history of autoimmune

disease (P < .038), hemoglobin

(P < .041), white cell count (P < .044)

Pearson pairwise

feature correlation

Multiorgan failure, major bleeding, White

ethnicity, history of diabetes, history of

autoimmune disease, hemoglobin,

white cell count, age (y)

Feature ranking with

recursive feature

elimination

(logistic

regression)

Multiorgan failure, major bleeding, Black

ethnicity, age (y), history of liver

disease, White ethnicity, history of

autoimmune disease, history of

diabetes, sex female

Feature ranking with

recursive feature

elimination

(random forest

regressor)

Raised levels of D-dimer, lactate

dehydrogenase, ferritin, white cell

count, creatinine, activated partial

thromboplastin time
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next, with neurons utilizing nonlinear activation functions, except in

the input layer. The network may contain 1 or more nonlinear hidden

layers positioned between the input and output layers to enhance

learning and predictive capabilities.
2.4.2 | ANN with backpropagation

Backpropagation is a process used to update the weights and biases of

a neural network by calculating the difference between the predicted

output and the true output. The algorithm propagates this error

backward through the network, from the output layer to the input

layer, adjusting the weights and biases of each neuron in the process

to minimize the overall error and improve the model’s performance.
2.4.3 | eXtreme gradient boosting

It is a boosting algorithm utilizing bagging, where multiple decision

trees are trained independently, and their results are combined to

improve overall performance.
2.4.4 | Support vector classifier

It is an implementation of the Support Vector Machine algorithm and

identifies the optimal hyperplane that maximally separates data points

into distinct classes.
2.4.5 | Stochastic gradient descent classifier

This linear classification algorithm identifies the optimal decision

boundary (hyperplane) to separate data points into different classes

within a feature space. It works by iteratively adjusting the model’s

parameters to minimize a cost function using the stochastic gradient

descent (SGD) optimization technique.
2.4.6 | Random forest classifier

This method generates multiple decision trees using random subsets

of both the data and features. Each decision tree acts as an inde-

pendent "expert," offering its classification of the data. Predictions are

made by aggregating the outputs of all trees and selecting the most

frequent (or popular) result as the final prediction.
2.4.7 | Logistic regression classifier

This algorithm estimates the probability of an input belonging to a

specific class. Although it is a (generalized) linear method, it applies

the logistic function to transform predictions, ensuring the output is a

probability value between 0 and 1.
2.5 | Cross-validation and hyperparameter tuning

We applied 5-fold cross-validation (K = 5) to evaluate model perfor-

mance, ensuring each train/test split was large enough to be statisti-

cally representative of the entire dataset. In K-fold cross-validation,

the data is divided into K equal subsets (folds). The model is trained K

times, each time using K-1 folds for training and the remaining fold for

testing. The results from each iteration are averaged to provide a

comprehensive assessment of model performance. This method helps

to reduce the risk of overfitting and gives a more reliable indication of

how the model will generalize to unseen data.

Grid Search and Random Search were also utilized for hyper-

parameter tuning to identify the optimal parameters for each model,

maximizing their predictive power. Tuning these hyperparameters was

critical, as they significantly impacted model performance. After

evaluating various combinations using the 5378 records out of 8027,

stratified K-fold cross-validation in the hyperparameter tuning resul-

ted in the optimum parameters for getting the best possible perfor-

mance for each model (Table 4).
2.6 | Performance measurements

The validity and predictive power of the models were evaluated using

a confusion matrix and key performance metrics such as accuracy,



T AB L E 4 Optimum values for each model parameter after per-
forming hyperparameter tuning.

Model Modified hyperparameters and extra details

Multilayer

perceptron

classifier

Activation = relu, Hidden layer sizes = (100, 1),

Learning rate = constant

Artificial neural

network

Keras sequential API with optimizer function =

adam, number of times to run the model =

10 and compilation with binary cross

entropy loss function and rectified linear

unit and sigmoid activation functions

eXtreme gradient

boosting

Learning rate = 0.01, maximum tree depth = 3,

and minimum child weight = 1

Support vector

classifier

Strength of the regularization (C) = 3.4067,

gamma = 0.331, probability estimates = True

Stochastic gradient

descent classifier

Elastic Net mixing parameter (l1_ratio) = 0.05

loss = log, penalty (regularization term) =

elasticnet

Random forest Minimum number of samples at a leaf node = 5,

Maximum depth of the tree = 4, function to

measure the quality of a split = entropy

Logistic regression Inverse of regularization strength (C) = 10
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precision, recall, F1 score, area under the receiver operating charac-

teristic curve (ROC AUC), and log loss.

Confusion matrix provides a summary of prediction results by

comparing actual vs predicted values, allowing for the calculation of

important metrics like accuracy, precision, recall, and F1 score.

ROC AUC measures the model’s ability to distinguish between

positive and negative cases, with a higher area under the curve (AUC)

indicating better classification performance.

Precision is the proportion of predicted positive cases that are

actually positive.

Recall is the proportion of actual positive cases correctly identi-

fied by the model.

F1 score is the harmonic mean of precision and recall, offering a

single measure of performance by balancing both metrics.

Log loss is a performance metric used in classification problems,

which reflects how close predicted probabilities are to actual values in

binary classification, penalizing inaccurate predictions with higher

values.

These metrics provide a comprehensive understanding of the

model’s overall performance and predictive accuracy.

Hyperparameter tuning was used with ROC AUC scoring as a

metric to get best hyper parameters for the model and then used ROC

curve functionality to derive an optimum threshold for each model.

When establishing the threshold, experts’ advice was taken on the

threshold value matching for the binary classification problem that we

try to resolve in these models (VTE is likely or not). Considering all

these factors, we finalized the probability threshold at 0.4, which is an

arbitrary threshold used for all the models. It is important to highlight

that the arbitrary threshold will vary based on sensitivity and speci-

ficity of the prediction of VTE desired and what is the acceptable
balance between risk of missing a VTE vs risk of causing bleeding by

giving thromboprophylaxis
3 | RESULTS

Out of 8027 patients included in the study; 335 patients developed

VTE (4.17%). We present the performance results of 7 AI models,

which were built using a dataset of 5378 patient records. Testing was

conducted with the remaining 2649 patient records. The data split for

training and testing was done through a stratified shuffle split to

prevent the imbalance in the distribution of classes in the training and

testing datasets. As outlined earlier, the model development process

included 5-fold cross-validation and hyperparameter tuning.

Among the models, the support vector classifier (SVC) demon-

strated the best performance in predicting thrombosis, achieving an

accuracy of 97%. It was 100% accurate in predicting the absence of

VTE (true negatives) and outperformed other models in correctly

predicting thrombosis development (true positives). Additionally, the

SVC model excelled in key metrics, with a precision of 0.98, recall of

0.97, F1 score of 0.97, and the lowest log-loss score of 0.112 on the

test dataset, indicating superior model convergence and data fitting. It

also achieved the highest ROC AUC score of 0.983, highlighting its

excellent ability to distinguish between positive and negative cases.

Following the SVC, the multilayer perceptron (MLP) classifier and

ANN models showed a strong overall performance across metrics

such as accuracy, precision, recall, F1 score and ROC AUC score,

surpassing the other models in comparison. The MLP classifier and

random forest models followed the SVC model closely with a loss

score of 0.157, demonstrating reasonable convergence and a rela-

tively low level of error during training. The MLP classifier followed

the SVC model with an ROC AUC score of 0.685, demonstrating a

good, though not as strong ability to differentiate between classes.

Random forest and eXtreme gradient boosting (XGBoost) models also

showed reasonably good ROC AUC scores (0.669 and 0.663 respec-

tively). However, based on both the loss and ROC AUC scores as well,

the SVC model stands out as the top performer, showing strong

convergence during training and exceptional discriminatory power.

The multilayer perceptron classifier, random forest, and SGD classifier

followed the SVC model closely with accuracy scores of 0.96 however

among them, multilayer perceptron classifier outperformed random

forest and SGD classifier when evaluated using F1 score, precision,

and recall metrics with a value of 0.94.

Confusion matrices were created by selecting an arbitrary prob-

ability threshold of 0.4 for classifying VTE, which are presented in

Figure 1. The confusion matrices highlight true positives (sensitivity—

correctly predicting patients who develop thrombosis), true negatives

(specificity—correctly predicting patients who do not develop throm-

bosis), false positives (incorrectly predicting thrombosis development),

and false negatives (incorrectly predicting no thrombosis

development).

A summary of the results is provided in Tables 5 and 6 and

Figures 1 and 2.



F I GUR E 1 Confusion matrices

for each classifier with a test

dataset of 2649 patient records.

ANN, artificial neural network;

MLPClassifier, multilayer

perceptron classifier; SGDClassifier,

stochastic gradient descent

classifier; SVC, support vector

classifier; XGBoost, eXtreme

gradient boosting.

RAJAKARUNA ET AL. - 7 of 12



T AB L E 5 Performance evaluation based on accuracy, F1 score, precision, and recall.

Model Accuracy Precision (macro/weighted) Recall (macro/weighted) F1 Score (macro/weighted)

Multilayer perceptron classifier 0.96 0.62/0.94 0.61/0.94 0.62/0.94

Artificial neural network 0.94 0.63/0.94 0.62/0.94 0.62/0.94

eXtreme gradient boosting 0.93 0.59/0.94 0.60/0.93 0.60/0.93

Support vector classifier 0.97 0.99/0.98 0.69/0.97 0.77/0.97

Stochastic gradient descent classifier 0.96 0.98/0.96 0.51/0.96 0.51/0.94

Random forest 0.96 0.71/0.94 0.54/0.96 0.56/0.94

Logistic regression 0.95 0.63/0.93 0.53/0.96 0.54/0.94

T AB L E 6 Performance evaluation based on log loss and area and
the curve score.

Model

Log loss

(training

data/test data)

ROC AUC

(training

data/test data)

Multilayer perceptron classifier 0.153/0.157 0.732/0.685

Artificial neural network 0.160/0.157 0.64/0.63

eXtreme gradient boosting 0.118/0.162 0.93/0.663

Support vector classifier 0.110/0.112 0.984/0.983

Stochastic gradient descent classifier 1.412/1.361 0.628/0.608

Random forest 0.155/0.157 0.767/0.669

Logistic regression 0.158/0.158 0.682/0.655

ROC AUC, area under the receiver operating characteristic curve.
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After evaluating all key metrics including accuracy, precision,

recall, F1 score, loss score, and ROC AUC score, we determined that

the SVC model delivered the best overall performance in predicting

development of VTE in COVID-19 patients, outperforming all other

models.
4 | DISCUSSION

In this study, by using AI algorithms and standard statistical analysis,

we identified demographic factors (increasing age, being female, white

ethnicity), comorbidities (diabetes, liver disease, autoimmune disease),

and laboratory features (raised hemoglobin, white cell count, D-dimer,

lactate dehydrogenase, ferritin) and presence of MOF, as major

contributory factors for developing VTE in hospitalized COVID-19

patients. Using these features, we developed and compared 7 AI

models to predict the development of VTE in patients with COVID-19

and found that that the SVC model outperformed all other models,

achieving an accuracy of 97%. Notably, it was 100% accurate in pre-

dicting the absence of thrombosis (true negatives) and surpassed

other models in accurately predicting development of VTE (true

positives). The SVC model also led in precision (0.98), recall (0.97), and

F1 score (0.97), and recorded the lowest log-loss score (0.112 on the

test dataset), reflecting better model convergence and an improved fit
to the data. Additionally, it achieved the highest AUC score (0.983), a

key metric for evaluating the model’s ability to distinguish between

positive and negative cases. A higher AUC score highlights its superior

discriminatory power. Following the SVC, both MLP Classifier and

ANN models also demonstrated strong overall performance, consis-

tently outperforming other models across key metrics, including ac-

curacy, precision, recall, F1 score, log-loss score, and AUC score. For

example, the study on “individual-level fatality prediction of COVID-

19 patients using AI methods” reported accuracy and specificity just

above 90% in its top-performing autoencoder model.

Our best-performing model (SVC) is an implementation of the

Support Vector Machine algorithm, and it finds the hyperplane that

best separates the data points into different classes. It achieved an

accuracy of 97%, outperforming similar studies that developed deep-

learning and machine-learning models on data related to COVID-19

patients. Since all patients included into the models received throm-

boprophylaxis with low molecular weight heparin, the prediction

models are not affected by this variable.

The use of AI to predict the development of VTE in hospitalized

patients has been studied prior to the COVID-19 pandemic. A study

by Ryan et al. [5] used machine-learning to predict DVT among hos-

pitalized patients. The study included a total of 99 237 patients and of

these patients, 2378 experienced DVT during their hospital stay. It

developed and validated a gradient gradient-boosted learning algo-

rithm to predict a patient’s risk of developing DVT at 12- and 24-hour

windows prior to onset, enhancing clinicians’ ability to identify and

monitor high-risk patients. It used features such as cancer history, VTE

history, and INR for building the machine-learning predictors obtained

area under the receiver operating characteristics of 0.83 and 0.85 for

DVT risk prediction on hospitalized patients at 12- and 24-hour

windows, respectively. Similar to our study, DVT prediction in

COVID-19 patients developed by Zhang et al. [6], which included a

smaller number of patients (only 424) also incorporated features such

as age, sex, BMI, PT, INR, CRP, TNF, IFN with model achieving an

accuracy of 91.02% and a sensitivity of 91.07%.

The main strengths of this study are the use of a large number of

patients to develop the model, data accuracy, as the data were

collected by clinicians with appropriate clinical knowledge, and rep-

resentation of the overall patient population in the UK, as the data

were collected from 26 NHS Trusts in England, Wales, and Scotland



F I GUR E 2 Receiver operating curve diagrams for each classifier. ANN, artificial neural network; MLPClassifier, multilayer perceptron

classifier; ROC AUC, area under the receiver operating characteristic curve; SGDClassifier, stochastic gradient descent classifier; SVC, support

vector classifier; XGBoost, eXtreme gradient boosting.
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during a specific period. In addition, the study used 7 models to find

the best predictive model.

As the data used for the development of AI models were obtained

from patients with COVID-19 admitted to hospitals in early 2020,

during the peak of the pandemic when thrombosis and severe illness

due to COVID-19 were much higher, these models will no longer be

useful in predicting VTE in patients with COVID-19 in clinical practice

at present as the disease is milder and the risk of VTE much lower.

Although our models do not help in the clinical practice for COVID-19

at present, the methodology of this study (ie, data cleaning, AI-driven

data imputation, feature selection, model building, cross-validation,

hyperparameter tuning, and testing) can be used as a framework for

the future disease prediction models. This cross-disease applicability is

possible due to shared data patterns, underlying biological mecha-

nisms, shared risk factors for disease outcomes (eg, some of the pa-

tient factors associated with increased risk VTE) and adaptability of

the AI algorithms. Furthermore, the lack of validation using an

external dataset is a limitation of the study as there is a possibility that

our best-performing SVC model may be overfitted to the data.

In conclusion, we developed and compared 7 AI models for pre-

dicting the development of VTE in hospitalized COVID-19 patients

using patient demographics, comorbidities, and on-admission labora-

tory data. Our best-performing model achieved an accuracy of 97%,

outperforming similar studies that developed deep-learning and

machine-learning models on data related to COVID-19 patients. In

addition to the outstanding performance of the developed models, the

unique contribution of this study is the specific focus on predicting

VTE in COVID-19 patients, a clinical outcome not addressed by other

AI-driven COVID-19 studies in the published literature, particularly

using a dataset of this size. Although the models cannot be used to

predict VTE in patients admitted to hospitals with COVID-19 in cur-

rent clinical practice due to the milder form of the disease and lower

risk of VTE, techniques used in this study can be repurposed for other

clinical conditions.
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Jerry, Euan Haynes, Fatima Jamil, Ian McVittie, John Hanley, Julie

Parker, Kayleigh Smith, Keir Pickard, Laura Kennedy, Meghan Acres,

Mikaela Wiltshire, Nitha Ramachandran, Paul McAlinden, Paula
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Care NHS Foundation Trust, Cumbria, United Kingdom: Alexander

Brown, Barbara Cooper, Beverley Wilkinson, Diane Armstrong, Grace

Fryer, Jane Gregory, Katherine Davidson, Melanie Clapham, Nicci
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Harper, Sara Abdelhamid, Theresa Cooper, Una Poultney, Zoe
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Kingdom: Anna Tarnakina, Aniqa Tasnim, Anja Drebes, Cecilia Garcia,

Elsa Aradom, Mariarita Peralta, Michaella Tomlin, Pratima Chowdary,
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