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Abstract

Recommender systems have the ability to filter unseen information for predicting whether a particular user would prefer
a given item when making a choice. Over the years, this process has been dependent on robust applications of data
mining and machine learning techniques, which are known to have scalability issues when being applied for recommender
systems. In this paper, we propose a k-means clustering-based recommendation algorithm, which addresses the scalability
issues associated with traditional recommender systems. An issue with traditional k-means clustering algorithms is that
they choose the initial k centroid randomly, which leads to inaccurate recommendations and increased cost for offline
training of clusters. The work in this paper highlights how centroid selection in k-means based recommender systems
can improve performance as well as being cost saving. The proposed centroid selection method has the ability to
exploit underlying data correlation structures, which has been proven to exhibit superior accuracy and performance in
comparison to the traditional centroid selection strategies, which choose centroids randomly. The proposed approach
has been validated with an extensive set of experiments based on five different datasets (from movies, books, and music
domain). These experiments prove that the proposed approach provides a better quality cluster and converges quicker
than existing approaches, which in turn improves accuracy of the recommendation provided.

Keywords: Recommender systems, Collaborative filtering, K-means clustering, Centroid (seed) selection in k-means
clustering

1. Introduction

1.1. Recommender systems
The need for recommendations from trusted sources is

triggered when it is not possible to make choices with
insufficient personal experience of a particular domain.
This is also seen as a natural phenomenon of the hu-
man decision making process [39]. In today’s digital era,
we are overwhelmed with volumes of information, where
processing all of this information is beyond human ca-
pabilities. This proliferation of available digital infor-
mation (i.e. music in LastFm (last.fm), videos in Netflix
(netflix.com) and YouTube (youtube.com), electronic re-
sources (i.e. research papers in CiteULike (citeulike.org)),
and on-line services (i.e. Amazon (amazon.com), Delicious
(delicious.com), Flicker (flickr.com))) need an automated
tool to extract and present preferred information to the
user. This information also needs to be prioritized, as
management and usage of this data can be over-whelming.

Although search engines provide the most relevant pages
in response to a user query, however it is still a challenge

to generate specific recommendations based on a series of
simple keywords. Hence there is a need for information
filtering system, which extracts the most relevant unseen
information based on the assumption that the user will like
the resource. These systems are called recommender sys-
tems, which fulfill aforementioned needs and guide users
to choose the best resource among all the available re-
sources. Various algorithms are used to model peoples’
preferences, predict rating of the resource, and provide rec-
ommendation. BusinessInsider [35] reports Google’s news
algorithms, Facebook new feeds, Netflix and Amazon.com
recommendation engines are among the 11 most essential
algorithms that make the Internet works. Recommender
systems are also being used in an academic setting to pro-
vide the relevant research resources [48, 55, 58].

1.2. Formulation of Recommender systems

Item and user both are finite sets, We denote
all these users by U = {u1, u2, · · · , uM} and items by
I = { i1, i2, · · · , iN }. While |U| = M denotes the total
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number of users and |I| = N, denotes the total number of
items. Rating is numerical representation of user’s interest
in any item. This quantitative measure facilitates the rec-
ommender systems to exploit user’s preferences for provid-
ing better recommendation. The rating set by the whole
community is mostly represented in the form of a matrix,
called User-Item matrix. The rows of matrix are the users
in the community and columns displays the items in the
system. The term ri,u denotes a matrix entry i.e. rating
provided by user u to item i. These ratings are denoted by
(ri,u|(i, u) ∈ D). A single user usually rates small number
of items, where set D ⊂ I × U refers to users-item pairs
that have been rated. A rating matrix R of dimensions
M ×N stores the set of possible ratings made by the user.
All ratings by user u is denoted by Du while the set of
users who have rated an item i by Di. The aim of recom-
mender system is to predict an unseen rating ri,u, i.e. for
(i, u) 6∈ D.

1.3. Main Types of Recommender Systems

There are two main types of recommender systems—
Collaborative Filtering (CF) and Content-Based Filtering
(CBF) recommender systems—as follows:

1. Collaborative Filtering (CF): Collaborative filtering is
considered to be the most popular approach for rec-
ommendation systems [17]. The collaborating filter-
ing takes into account the interests of similar users,
under the assumption that the active users will be
interested in items that users similar to them have
rated highly. This technique is used by Amazon (ama-
zon.com), iTunes, GroupLens system [32] and Ringo
(www.ringo.com). Collaborative filtering can be clas-
sified into two sub-categories as follows:

• Memory-based approaches make predictions by
taking into account the active user’s rating data.
All the ratings provided by the users are kept
in memory and used for predictions. To com-
pute similarity between items/users all the previ-
ously rated items are considered. This approach
is used by GroupLens recommender systems [32].

• Model-based approaches initially train a model
based on training data and then makes pre-
diction for real data. Usually these models
are based on clustering or classification tech-
niques and are used to find pattern from train-
ing set. Typical examples are clustering mod-
els [4, 24, 44], Kernel-mapping recommender
[23, 25, 26], and Singular Value Decomposition
(SVD) based models [22, 63].

2. Content-Based filtering : Content-based filtering ap-
proach uses textual (content) features of items in or-
der to make recommendations. These approaches
train machine learning classifiers over user’s and
item’s profiles. An example of content-based sys-
tems is Pandora (www.pandora.com) that uses the

attributes (properties) of a song (or artist) a user is
currently playing (or listening to) in order to gener-
ate recommendations of music with similar properties.
Some other well-known approaches include [42, 43].

Furthermore, hybrid recommender systems have been
proposed [7, 10, 13, 18, 21, 36, 38], which combine indi-
vidual recommender systems to avoid certain limitations
of individual recommender systems.

Recommendations can be presented to an active user in
two different ways:

1. Predicting ratings of item that the user has not seen.

2. Construct a list of items ordered by the users prefer-
ences, which is known as top-N recommendations.

In this paper, we will investigate both of these approaches.

1.4. Problem Statement and Design Objectives

K-Means-based CF recommendation approaches have
been proposed to solve the recommendation problem
[7, 49, 54, 64, 66, 67]; however, using random seeds prior to
cluster the user-item rating matrix, which has been heavily
used in the literature, is not a reasonable approach.

The proposed work aims to improve the quality of clus-
ters and recommendations by investigating different cen-
troid selection approaches and analysing how they affect
the quality of clusters/recommendations. We have pro-
posed various centroid selection algorithms using domain
specific characteristics, with the following design objec-
tives:

• Accuracy : The accuracy is one of the most impor-
tant design objectives in recommender system’s com-
munity. The reason being, if a customer leverages a
recommender system and then discover that they are
getting false recommendations, it is unlikely they will
continue using the system. Consequently, an algo-
rithm should make accurate recommendations. We
want a recommendation algorithm to be accurate
than the conventional K-Means based CF algorithms.

• Scalability : A recommendation algorithm should scale
gracefully with the increase in data. The conventional
collaborative filtering based methods fail to achieve
good scalability. The conventional K-Means cluster-
ing algorithms cluster the users into different groups;
however, choosing random initial centroids can lead
to slow convergence. It must be noted that a rec-
ommender system’s robustness is measured by two
factors—accuracy and scalability. These factors are
in conflict, as the less time an algorithm takes build-
ing the clusters, the more scalable it will be; however
it might lead to poor quality recommendations due to
partially formed clusters.

• Cluster quality : The idea of clustering algorithm is
to separate users into different groups based on their
similarity. But as clustering is very computationally
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difficult task (NP-hard problem) [4]; hence, many lo-
cal solutions are possible. Since the conventional K-
Means algorithms choose initial centroids randomly
hence they can converge to local optima [4] resulting
in poor quality clusters (refer to Section 5.2 for cluster
quality).

• Coverage: The coverage (the number of test samples
an algorithm can make prediction for [25]) of a recom-
mendation algorithm should be maximum. However,
as the K-Means CF-based recommendation approach
uses random seeds to cluster the data; hence, the qual-
ity of the clusters might suffer with these seeds that
might degrades recommendation coverage.

• Robustness to sparsity : The performance of a recom-
mendation algorithm should not degrade sharply un-
der sparse datasets (refer to Section 4.1 for sparsity).
Figure B.10 shows how different centroid selection ap-
proaches work under sparse condition. Result shows
that convention k-means suffer the most under spar-
sity.

• Cold start problem: Usually for testing recommender
systems, some ratings from the dataset are used for
training purpose while other are treated as unseen
ratings, which are used to test the performance of
proposed solution. Mostly the dataset is selected
having users with large number of ratings, in or-
der to achieve accurate recommendations. But to
make practical recommendation on real application,
we come across different issues. Real application gen-
erally have highly skewed data, that is a large number
of items may have received just few ratings and a large
number of users may have just provided very small
number of rating. So it become really tough provide
reliable recommendation which can attract new users.
CF-based algorithms often come across two important
cold-start problem as given below:

– New user cold-start problem: As the CF rec-
ommender system generates recommendations
based on liking and disliking of active user.
When a new user enters the system, the sys-
tem don’t have much information about the user,
also the user is not aware of product/services
and he/she is hesitant to rate them, hence re-
liable recommendation can not be provided to
that user. This is called new user cold-start
problem [1]. We have proposed solution for this
problem and the results are shown in Table 10
and Table 11.

– New item cold-start problem: As CF recom-
mender system relies on users’ rating, so the item
is recommended to the user based on the ratings
provided by other users to that item. Initially
when a new item is introduced in the system,
the system don’t have any rating for that item

and an item can not be recommended to any user
until it gets significant ratings. In CF approach
it is tough to get ratings for new item from sig-
nificant number of users. This is called new item
cold-start problem [1]. We have proposed solu-
tion for this problem and the results are shown
in Table 12 and Table 13.

• Long tail problem: : In real application all the items
in the dataset are not rated by significant number of
users. Some of the unpopular or newly introduced
items may have relatively small number of ratings.
CF-based recommender systems are unable to provide
reliable recommendations for such items or sometimes
simply ignore them. This problem is known as long
tail problem and most of the items in recommender
systems fall in this category [46]. As these item can’t
be left overlooked and there is a need to develop some
algorithm that can filter and provide accurately rec-
ommendations from the items that exist in long tail
category. Our proposed approaches solve this prob-
lem and the results are shown in Table 14 and Table
15.

Against the aforementioned research objectives, this pa-
per aims at developing new K-Means-based recommenda-
tion approaches and comparing them with other K-Means
CF-based recommendation approaches proposed in litera-
ture.

The rest of the paper is organised as follows. In Sec-
tion 2, we present the related work by giving an overview
of different clustering algorithms that have been used for
recommendation purposes. In Section 3, we present vari-
ous centroid selection algorithms. We briefly describe the
experimental setup in Section 4. In Section 5, we present
the results in detail followed by the conclusion in Section 6.

2. Related Work

2.1. Clustering in Recommender Systems

Clustering is an unsupervised classification approach for
recognising patterns, which is based on grouping simi-
lar objects together. This approch is useful for finding
patterns in an unlabeled dataset. Machine learning, bio-
informatics, image analysis, pattern recognition and out-
lier detection are few of many application areas of cluster-
ing [2]. Two major approaches of clustering are hierarchi-
cal and partitional clustering.

• Hierarchical Clustering: Hierarchical clustering
[3] produces nested series of partitions whether it is
agglomerative or divisive. In agglomerative approach
every pattern is placed in distinct cluster and clusters
keep merging based on similarity until any desired
condition is met. While in divisive method inverse
happens, all the patterns are placed in single cluster
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and clusters keep splitting until any stopping crite-
rion is met. Hierarchical clustering produces a den-
dogram showing pattern and different similarity levels
of grouping. Single linkage and complete linkage are
most popular examples of hierarchical clustering while
some variants of these are also used.

• Partitional Clustering: Partitional clustering [29]
aims at finding the single partition rather than nu-
merous as in hierarchical methods. Its benefit is that
it can be applied on large datasets for which dendo-
gram does not work. But its quality depends upon
choice of number of output clusters. It can be applied
on whole dataset in order to find out global optimal
or local optimal. Examples are k-means, graph theo-
retic, and expectation maximization. Several Collab-
orating filtering approaches based on partitional clus-
tering techniques (including k-means clusterin) have
been proposed [49, 54, 64].

2.2. Hard vs. Soft Clustering

Generally clustering is divided into hard and soft clus-
tering.

• Hard clustering (exclusive clustering): In hard
clustering [57] each object belong to exactly one clus-
ter, there is no uncertainty in cluster membership of
an object. Object is allocated to only the cluster
with which it has the greatest level of similarity [60].
K-means (Hard C means) is an important and well
known hard clustering technique.

• Soft clustering (Overlapping clustering): In soft
clustering [57] each object belongs to two or more
clusters with different degrees of membership. In-
stances on the boundaries between several clusters do
not fully belong to one of the clusters, rather they are
given membership degrees between 0 and 1 indicating
their partial membership. Fuzzy C-means is very well
known soft clustering technique.

2.3. Fuzzy C-means Clustering (FCM)

Fuzzy logic is different from the traditional logic meth-
ods where exact results are expected, rather fuzzy logic
is used in the problems where the results can be approx-
imate. Therefore, fuzzy logic is well suited for clustering
problems, because the notion of clustering is to group sim-
ilar objects together by some degree of closeness. One of
the well known approach of fuzzy classification is Fuzzy
C-means (FCM) clustering.

FCM produces soft partition for a given dataset by al-
lowing the data elements to practically belong to multiple
clusters. This technique was developed by Dunn [15] in
1973 and later on improved by Bezdek [5] in 1981 . The
main purpose of FCM is to divide data elements that pop-
ulate some multidimensional space into definite number
of clusters, with the objective to find out centroids that

minimizes the dissimilarity function between the clusters.
The centroids (cluster centers) are calculated as the mean
of all points, weighted by their likelihood of belonging to
that cluster.

In FCM, a data element does not belong to exactly
one cluster rather it is allowed to gradually change the
membership for every cluster measured as degrees in
(0,1). FCM employs fuzzy partitioning to assign each
data element to multiple clusters with different member-
ship grades. Let, the sample set be X = {x1, x2, · · · , xn}
is provided, FCM divides it into c groups with centers as
cj (j= {1, 2, · · · , c}), and the goal is to minimize the ob-
jective function, which is:

Jc =
c∑
j=1

n∑
i=1

uaij‖xi − cj‖2, 1 ≤ a ≤ ∞ , (1)

where, uij ∈ [0, 1] represents the membership of ith data
element to jth cluster center. The initial value of cj (jth

cluster center) is selected randomly. Fuzziness is controlled
by a which is any real number greater than 1. Cluster
center cj and membership function uij keep on updating
until an optimize objective function is met.

uij =
1∑c

k=1

(
‖xi−ci‖2
‖xi−ck‖2

)2(a−1)
(2)

cj =

∑n
i=1(uij)

axi∑n
i=1(uij)a

(3)

FCM algorithm follows the given steps.

1. First step in FCM is to select number of clusters c.

2. Initially, cluster centers cj are chosen randomly.

3. Membership function uij for each data element is
computed for each cluster by equation 2.

4. Repeat the procedure until converged.

• Compute the updated cluster center cj by the
equation 3.

• Compute the degree of membership uij for each
data element by equation 2.

Cluster center is initially selected randomly and then
this procedure continues to adjust the cluster center and
the degree of membership for each sample. The goal is to
be converged to a saddle point of Jc or a local minimum.
Performance of FCM is dependent upon initial selection of
centroids, it can provide better cluster than basic k-means
if the randomly chosen centers are well separated but this
can not be guaranteed all the time [? ].

FCM has become the very well-known method in clus-
ter analysis and it performs really well in certain clustering
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problems. Several researchers [34, 57, 60, 61, 62? ] em-
ploy FCM in their research work. [61] applies FCM on
Netflix dataset by adjusting objective function to directly
minimize RMSE (Root mean square error) which is used
to measure accuracy, in Netflix competition. But one of
the limitation of FCM and its variants is that they don’t
perform well in high dimensional space and have consider-
able trouble in noisy environment [62]. A good clustering
algorithm should be robust and able to tolerate these sit-
uations that often happen in real application systems.

2.4. Expectation-maximization (EM) Algorithm

The EM algorithm is an iterative method, introduced by
Dempster et.al. [14] in 1977, for computing the maximum
likelihood parameters of a model for incomplete data. EM
algorithm iterates to recognize the expectation (E) step
and the maximization step (M-step). The goal of (E) step
is to computes the expectation of the log-likelihood eval-
uated using the current estimate for the parameters while
maximization (M) step computes parameters maximizing
the expected log-likelihood.These parameter-estimates are
then used to determine the distribution of the latent vari-
ables in the next (E) step [14].

Given procedure is followed in EM algorithm.

1. Initialization: Randomly select value for the parame-
ter θ that is θ0 = {µ0

1, µ
0
2, · · · , µ0

k},

θ0k= µ0
k , (4)

where, θ0 is the estimate at 0th iteration, µ is the
mean, k is the current number of Gaussians and σ is
the standard deviation.

2. Expectation (E) step: Estimate the best value for the
hidden variables Zij using given parameter θ values,
θt = {µt1, µt2, · · · , µtk}

E(Zik)=

exp

[
− (xi−µt

k)
2

2σ2

]
∑k
j=1 exp

[
− (xi−µt

k)
2

2σ2

] ,

where, t is the number of the iteration, E(Zik) is the
expected value for the hidden variables, k is the di-
mension, σ is the standard deviation.

3. Maximization (M) step: Use the computed value of
E(zik) to get better estimate of the parameters θ.

µt+1
k =

∑n
i=1E(Zik)xi∑n
i=1E(Zik)

(5)

4. Convergence step: Repeat steps 2 and 3 until conver-
gence, if ‖θt+1 − θt‖ < e, stop ; otherwise, go to step
2.

A research [14] shows that each of the two steps (ex-
pectation and maximization) monotonically increase the
probability of the data. But in the initialization step, the
parameter values are selected randomly. Effective selec-
tion of parameter values in step 1 can yet improve the
performance of EM as shown in Table 9.

2.5. k-means Clustering

Literature study shows that various methods have been
proposed for solving clustering problems. k-means cluster-
ing is one of the classical and most widely used clustering
algorithms developed by Mac Queen in 1967. This ap-
proach is a partitional clustering algorithm which divides
the whole dataset in k disjoint clusters. It is famous for
handling large datasets and its speedy convergence to local
optimal. In k-means (outlined in Algorithm 1), firstly k
initial points are chosen where k is a parameter defining
the number of clusters to be sought and this parameter is
defined at the start. These randomly chosen initial points
are taken as cluster centers and then all the remaining
dataset is scanned and each data point is allocated to clos-
est cluster based on Euclidean distance matrix. Meanwhile
the mean of all the clusters is calculated and cluster cen-
ters are updated to mean value. Subsequently this whole
process is repeated with new centroid values and all the
points are reassigned to new clusters. The update in cen-
troid value is based on assignment of any new data point
to the cluster or removal of any data point from the clus-
ter. Centroid’s value keeps on updating after each iteration
and this process continues till there is no change in any of
cluster centers i.e. cluster has converged.

2.6. Initial Centroid Selection in k-means Clustering

k-means [29] is highly unstable in initial cluster centers
and this inherent limitation of k-means highly affects its
efficiency. k-means randomly chooses initial centers there-
fore it does not guarantee to produce unique clustering
results. Initial centroid selection not only influences the
efficiency of the algorithm but also the number of itera-
tions desired to run the original k-means algorithm [45].
Though k-means is known for its intelligence to cluster
large datasets but its computation complexity is very ex-
pensive for massive data sets [45]. P. S. Bradley et. al. [8]
put forth the concept of choosing initial centroids to re-
solve scalability issue. Because of the importance of initial
centroid selection and k-means complexity, various meth-
ods have been proposed in the literature to enhance the
accuracy and efficiency of k-means clustering with better
centroid selection approaches.

Arthur and Vassilvitskii [4] proposed an algorithm called
k-means++ which exploits probabilistic approach for se-
lecting initial seeds and generates better quality clusters,
as compared to classical k-means algorithm (Algorithm 1).
It guarantees to produce accurate and speedy solution
which is O(logk) competitive to the optimal k-means solu-
tion (O(k×n× itr), which is linear in the number of users

5



being clustered (n), number of clusters (k), and number of
iterations (itr)). The initial centroid is chosen uniformly
at random as in k-means but rest of the centroids are se-
lected based on the probability proportional to the shortest
distance from all existing centroids. Arthur et. al. report
that k-means++ efficiently produces better quality both
for synthetic and natural datasets. Shindler [56] reviewed
many clustering algorithm and reported k-means++ as
the most successful method for defining initial seeds of
k-means clustering. The problem [56] with k-means++
algorithm is that it is inherently sequential.

Abdul Nazeer et al. [44] proposed an algorithm to solve
time complexity and initial centroid selection issue of orig-
inal k-means. The author modified two phases of k-means,
where in phase one, pair-wise distance of data points
are calculated and closest data point forms the cluster.
Threshold value for number of data points in a cluster is
defined. Mean value of resulting clusters are taken as ini-
tial centroids. The second phase is variant of [30] which
takes the resulting initial centroids of phase one as input.
The algorithm proposed by [44] produces better quality
clusters in less amount of time. This algorithm has fur-
ther been enhanced in [45] by using heuristic approach.
Firstly, all the data points are sorted in ascending order
and then divided in k sets. The mean values of these sets
are calculated and taken as initial centroids. Heuristic for
multidimensional data is also proposed in [45]. Complexity
of this phase is reduced to O(nlogn).

A method for finding initial centroids is proposed by
Fang Yuan et al. [16]. In this method, centroid are pro-
duced systematically, which are consistent with distribu-
tion of data. Though no improvement in time complexity
is proposed but it produces better quality clusters. Fang
YuanFang Yuan et al. [65] provide comparison of 14 k-
means cluster initialization methods, which come under
two main categories—synthetic starting points and actual
sample starting points.

Synthetic initial point refers to a point, which is not
associated with any of the actual point in the dataset.
The main algorithms for synthetic initial points, discussed
in [65] generally divide the dataset into different partitions
(where number of partitions has no significant influence on
clustering results). Then for each partition, values for each
feature acts as initial point of that partition and ultimately
different starting point of the features are combined to
generate initial seeds for k-means clustering. They report
that scrambled midpoints is best synthetic method that
follows the same steps mentioned above, with the addition
that it takes mid points of each partition for each feature
as initial points and then randomly selects any partitions
midpoint as initial starting point for final clustering.

Actual sample starting point, another category dis-
cussed in [65], selects an initial point that actually re-
sides in the dataset. Random, feature value sums and
breakup, are methods discussed in [65] and it is reported
that breakup method outperform rest of two methods, as
it seeks to break up the most populous cluster into two

smaller cluster for choosing initial seeds for k-means clus-
tering. They also compared the best methods of synthetic
and actual categories and concluded that scrambled mid-
point performs much better than breakup.

J.M. Pena et al. [50] compared four k-means cluster ini-
tialization approaches—Random, Forgy, MacQueen and
Kaufman. They performed extensive experiments on three
real world dataset (Iris, Glass, Ruspini) to compare afore-
mentioned initialization approaches in term of quality of
cluster they produce and sensitivity of k-means towards
initial starting conditions of these methods. They reported
that Kaufman initialization algorithm [47] performs the
best among the discussed methods. It chooses k seeds
while the first seed is the most centrally located data point
in the dataset. The rest of points are chosen based on
heuristic rule of having highest number of neighbours in
the multidimensional space.

Arai et.al. [3] uses both k-means and hierarchical clus-
tering for centroid initialization. It exploit clustering re-
sults of k-means algorithm and transform them by com-
bining with hierarchical algorithm, to produce better qual-
ity clusters by finding better initial cluster centers for k-
means. It performs well for complex clustering problems
with large datasets having multidimensional attributes. It
is a computationally expensive approach, as it performs
k-means clustering followed by hierarchical clustering. Di-
visive Correlation Clustering Algorithm (DCCA) is pro-
posed in [6] for grouping of genes. DCCA does not take
value of k and initial centroids as input for clustering. The
time complexity and repairing cost from any misplacement
of [6] are too high.

K-Modes method is another variation of the k-means
clustering algorithm [28], Kmode2001. In K-Mode method
mode is taken as cluster centroid rather than mean. Huang
et al. [28] used both k-means and K-Modes to cluster the
data and proposed K-prototype algorithm for this purpose.

Cluster Center Initialization Algorithm (CCIA) is pro-
posed by Shehroz and Ahmad [31] to solve the initializa-
tion problem. It starts with taking the mean and standard
deviation of object attributes, and then divides the dataset
into definite partitions. k-means and density-based multi
scale data condensation are used to find out the similar-
ity in the partitions, initial clusters are selected afterwards
based on similarity results.

Ivan Cabria [11] proposed Mean Shift initialization
method, which does not depends upon number of clusters
(i.e. k). It finds the modes of the underlying probabil-
ity density function of the given data, and these modes
are a better choice as initial cluster centers for k-means.
Authors performed experimental study on proposed al-
gorithm and other classical algorithm using two real-life
problems—Facility Location and Molecular Dynamics—
with very large amounts of data. Experiments report that
it outperforms other clustering algorithms in term of clus-
tering performance.

Maitra et al. [37] present a detailed evaluation of eleven
widely used and well performing k-means initialization
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methods on nine standard datasets. They report that
their research work on real datasets do not provide defi-
nite results so they evaluated experimental performance of
initialization methods by conducting systematic and com-
prehensive simulation study. Maitra et al. [37] state that
[8, 40, 41] outperforms all the rest methods in minimizing
objective function—WSS (Within group Sum-of-Squares)
as well as in achieving true grouping.

G. Tzortzis et al. [59] proposed the MinMax k-means
algorithm with the objective to minimize the maximum
intra-cluster variance. They claim that MinMax algorithm
provides high quality clusters irrespective of initial selec-
tion, by limiting the occurrence of large variance clusters.
Experiments verify the effectiveness and robustness of pro-
posed approach over traditional k-means.

Recently C. Zhang et al. [68] proposed an enhanced
method that improves centroid selection and determines
value of k for k-means clustering. They performed sim-
ulated analysis on UCI datasets and reported that [68]’s
method improves the accuracy and efficiency of clustering
process because of its stability and capability to avoid the
affect of noisy data. Specifically, this method finds the
distance between all data points and computes density for
each point. A density threshold is defined at the start, and
all the points that realized density threshold are placed in
a centroid set. The first seed is selected as the most popu-
lous point in the centroid set and all the rest are selected
by decreasing density with the rule that they are at largest
distance from already selected centroids. Data points are
assigned to closest centroid and centers are updated based
on an improved and adjusted heuristic function, by assign-
ing different weights to data points as per their distance
from centroid.

There is very limited work for choosing seeds in k-means
clustering for recommender system domain. As the con-
ventional k-means clustering algorithm [29] randomly se-
lects the k initial centroids, an important research question
would be, “how does the quality of clusters and recommen-
dations vary with the choice of different initial centroids in
Clustering-Based CF recommender systems”? We investi-
gate how to improve the quality of clusters and recommen-
dations focusing on the aforementioned key issue.

3. Proposed Centroid Selection Approaches

In this paper, we have implemented a series (eighteen)
of novel centroid selection approaches in k-means clus-
tering for improving the recommendation process for rec-
ommender systems. We have applied these selection ap-
proaches along with traditional k-means for comparing
their performance. The algorithms present the centroid
selection procedure for k-means clustering. After select-
ing k seeds, next steps are followed as per Algorithm 1, to
accomplish k-means clustering.

Algorithm 1, denoted by KMeans, outlines the cen-
troid selection procedure of traditional k-means algorithm
[29] which selects k users from training set uniformly at

random. We have implemented k-means to benchmark our
work with the conventional approach and present the im-
provements in cluster quality and recommendation quality.

Algorithm 2, denoted by KMeansP lus, selects the
first centroid totally at random (as in conventional k-
means). After that KMeansP lus keep choosing seeds
having maximum distance from all existing centroids, until
k centroid are chosen.

In Algorithm 3, denoted by KMeansP lusP lus, rep-
resents a k-means variant, which selects k centroids from
training set by using k-means++ algorithm [4]. The first
centroid is chosen uniformly at random as in k-means but
rests of all centroids are selected based on the probability
proportional to maximum distance from all existing cen-
troids.

Algorithm 4, denoted by KMeansDensity, chooses
initial centroids based on nearest neighbour density. All
the initial centroid are well-separated from each other as
well as they possess large number of neighbours in multidi-
mensional sphere [37]. In step 2, we find out average pair
wise Euclidean distance d1 between all the users. In step
3, we use d1 as threshold to find out neighbouring points,
for all the users. Then in step 4, we sort the users’ list
based on the number of neighbours. In step 5, we choose
first centroid centered at x1, which has maximum number
of neighbours in a multidimensional sphere with the radius
d1. All the rest centroids are chosen based on decreasing
number of neighbours with the rule that they are at d1
distance from the centroid.

Algorithm 5, denoted by KMeansV ariance, proposes
an initialization approach that selects the centroids that
are at varying distances from the overall mean. In step
2, we find out the mean rating provided by all users in
the dataset and in step 3, we sort the dataset based on
Euclidean distance from the mean value — average user
ratings. In step 5, for cluster L : L = {1, 2, · · · k}, the
1 + (L− 1) ∗M/k point is selected to be its initial clus-
ter centre, where K sample points are chosen as the initial
cluster centers from M datapoints [37]. Using this initial-
ization process, it is guaranteed that no cluster will be
empty after the initial assignment.

Algorithm 6, denoted by
KMeansV arianceAvgPairWise, presents a variant of
Algorithm 5, which follows all the steps same as Algo-
rithm 5 except that in step 3, it uses mean value as
average pair-wise distance between all the users.

In Algorithm 7, denoted byKMeansV arianceV ersion,
propose another variant of Algorithm 5 that only differs in
step 4, where we measure standard deviation — for finding
initial centroids — from overall mean rating provided by
all users.

Algorithm 8, denoted by KMeansQuantiles, repre-
sents a variant of k-means which chooses initial centroids
as quantiles of the given datasets [37]. These quantiles
correspond to equal increments in probabilities.

Algorithm 9, denoted by KMeansP lusDensity, is a
modification of Algorithm 4. It initializes the highest den-

7



sity point as the first centroid and automatically computes
minimum distance that separates the centroids based on
highest density point, which is close to maximum number
of other points in the data set [33]. In step 2, we find out
average pair wise Euclidean distance d1 between all the
users. In step 3, we find out sum of distances of all the
users from xi denoted by Sum(i). Then in step 4, we sort
the users’ list based on value of Sum(i) and find out high-
est density point (i.e. user with minimum value of Sum(i)).
In Step 5, we choose first centroid centered at x1, which
has maximum number of neighbours in a multidimensional
sphere with the radius d1. All the rest centroids are cho-
sen based on decreasing number of neighbours with the
rule that they are at d1 distance from the centroid.

Algorithm 10, denoted by KMeansSortedDistance,
uses a simple approach of sorting all user ids based on the
distance from average rating provided in the dataset. We
calculate the distances in step 2 and sort them in step 3.
First k points are chosen as initial centroids in step 4.

Algorithm 1 : KMeans, Selects k users as centroids from
the dataset
Input: U , training users; k, the number of clusters
Output: { c1, c2, · · · ck } , k centroids

1: Define desired numbers of clusters, k.
2: Choose the k users uniformly at random from U , as

initial starting points.
3: Assign each user to the cluster with nearest centroid.
4: Calculate mean of all clusters and update centroid

value to the mean value of that cluster.
5: Repeat step 3 and 4, till no user changes its cluster

membership or any other convergence criteria is met.
6: return { c1, c2, · · · ck } . k centroids

Algorithm 2 : KMeansP lus, Choose k users from the
dataset, as centroids
Input: U , users in training set; k, total number of clusters;
Output: k centroids, { c1, c2, · · · ck }

1: Define desired number of clusters, k.
2: Select initial centroid c1 from U , uniformly at random.
3: repeat
4: Choose next centroid ci where ci = u′ ∈ U with

probability:

Prob =
dist(u′)2∑
u∈U dist(u)2

.

5: until k centroids are found
6: return { c1, c2, · · · ck } . k centroids

3.1. Exploiting Power Users Concept

The users who have rated a large number of items in a
recommender system [27] are referred to as power users. In

Algorithm 3 : KMeansP lusP lus, Choose k users from
the dataset, as centroids
Input: U , users in training set; k, total number of clusters;
Output: k centroids, { c1, c2, · · · ck }

1: Define desired number of clusters, k.
2: Select initial centroid c1 from U , uniformly at random.
3: repeat
4: Choose next centroid ci where ci = u′ ∈ U with

probability:

Prob =
dist(u′)2∑
u∈U dist(u)2

∝ dist(u′)2.

5: until k centroids are found
6: return { c1, c2, · · · ck } . k centroids

some of our approaches we have exploited power users —
for clustering user-item rating matrix. Several researchers
have utilized this concept to generate scalable CF-based
recommendations, for example [66] focused on issues in
tag-based recommender systems. They proposed that by
using power users for recommendation, accurate and scal-
able recommendations can be generated. They claimed
that in social tagging websites like CiteULike, the users
who give large number of tags are referred to as leaders
[66] and those who follow these tags are called followers.
The opinions of leaders, if taken into account, assist to
generate better recommendation—speedy convergence and
better clustering. In this work, up denotes power users—
users with maximum number of ratings in the training set.
We normalize the number of rating assigned by user u, by
dividing it by the rating assigned by power user up, instead
of using raw rating count. Formally:

P(u) =
|Iu|
|Iup |

, (6)

where |Iu| and |Iup
| refers to the number of items rated

by user u and up respectively. Suppose Upower =
{ u1, u2, · · · , uz } is the set of z power users with
highest value for P(u) (that is P(um) > P(un) :
∀um∈UpowerANDun /∈Upower ); C = {c1, c2, · · · ck} represents
k centroids, while G = {g1, g2, · · · gk} is the set of k clus-
ters. The set of user-item pairs rated in any cluster gj
with centroid cj (that is (ri,u|(i, u) ∈ Dcj )), is represented
by Dcj ; the rating assigned to an item i by a centroid cj
is denoted by ri,cj , that is ri,cj = 1

|Dcj
|
∑
i,u∈Dcj

ri,u and

dist(u) represents the shortest distance from any user u to
the closest centroid which is already chosen.

In Algorithm 11, denoted by KMeansP lusPower,
presents a k-means variant, which utilizes power users and
applies k-means++ algorithm on power users only. First
of all power users (Upower users with P(u) > powthr)

1

are identified from steps 2 to 7. After that k-means++

1The value of powthr can be found using training set.
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algorithm is applied which exploits these power users as
candidate centroids while choosing k centroids.

Algorithm 12, denoted by KMeansP lusProbPower,
represents a k-means variant ,which seeks to find k cen-
troids which have probability proportional to distance and
the number of ratings as shown in step 4 of Algorithm 12.
The motivation behind this variant is to get potential
benefits (increased coverage and reduced error) by choos-
ing those users as centroid, who have maximum distance,
(i.e. minimum similarity) with the existing ones and also
who have provided maximum number of ratings.

Algorithm 13, denoted by KMeansP lusLogPower,
represents a k-means variant, which utilizes power users
to find k centroids which have probability proportional to
distance and the log of similarity with existing top power
user, as shown in step 4 of Algorithm 13. Where p(x) can
be computed by dividing, the number of movies seen by
active user by the number of movies seen by power user.

Algorithm 4 : KMeansDensity, Choose k users from
the dataset, as centroids
Input: U , users in training set; k, total number of clusters;
Output: k centroids, { c1, c2, · · · ck }

1: Define desired number of clusters, k.
2: Find the average pair wise Euclidean distance, denoted

by d1, as follows:

d1 =
1

n(n− 1)

n−1∑
i=1

n∑
j=i+1

‖xi − xj‖ .

3: Find out the number of neighbours at distance d for
all users, where d≤ d1

4: Sort all the users based on the number of neighbors in
multidimensional sphere.

5: Select initial centroid c1 from U , as the point xi with
the largest number of points within a multidimensional
sphere with radius d1 that is centered at xi.

6: The remaining seeds are chosen by decreasing density,
with the restriction that all remaining seeds must be
d1 distance away from all previous seeds

7: return { c1, c2, · · · ck } . k centroids

3.2. Exploiting Data Distribution

Whenever we collect data for experimentation, typically
there lies some degree of variability in that data. So the
raw data does not generate better results in certain cases.
For that fitting any appropriate statistical distribution to
the data is a good idea. We apply some of the data distri-
butions to our dataset and compare their results.

In Algorithm 14 and 15 we applied normal distribu-
tion over the dataset and arbitrarily select k centroids from
the distributed dataset. In Algorithm 14, denoted by
KMeansNormalUsers, we exploit average rating provided
by all the users in the dataset as the mean value of normal

Algorithm 5 : KMeansV ariance, Choose k users from
the dataset, as centroids
Input: U , users in training set; k, total number of clusters;
Output: k centroids, { c1, c2, · · · ck }

1: Define desired number of clusters, k.
2: Take mean rating of all the dataset (uids).
3: Sort all uids based on the Euclidean distance from the

mean value.
4: repeat
5: Let L : L = {1, 2, · · · k}. Choose seed using the

following formula:

sL = x1+(L−1)∗M
k

6: until k centroids are found
7: return { c1, c2, · · · ck } . k centroids

Algorithm 6 : KMeansV arianceAvgPairwise, Choose k
users from the dataset, as centroids
Input: U , users in training set; k, total number of clusters;
Output: k centroids, { c1, c2, · · · ck }

1: Define desired number of clusters, k.
2: Take mean rating of all the dataset (uids).
3: Sort all uids based on the Euclidean distance from

the mean—average pair-wise distance between all the
users.

4: repeat
5: Let L : L = {1, 2, · · · k}. Choose seed using the

following formula:

sL = x1+(L−1)∗M
k

6: until k centroids are found
7: return { c1, c2, · · · ck } . k centroids

Algorithm 7 : KMeansV arianceV ersion, Choose k users
from the dataset, as centroids
Input: U , users in training set; k, total number of clusters;
Output: k centroids, { c1, c2, · · · ck }

1: Define desired number of clusters, k.
2: Take mean rating of all the dataset (uids).
3: Sort all uids based on the Euclidean distance from the

mean value.
4: Use Standard Deviation to choose k seeds lying at

varying distance from overall average users’ rating in
the dataset.

5: return { c1, c2, · · · ck } . k centroids
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Algorithm 8 : KMeansQuantiles, Choose k users from
the dataset, as centroids
Input: U , users in training set; k, total number of clusters;
Output: k centroids, { c1, c2, · · · ck }

1: Define desired number of clusters, k.
2: repeat
3: Let L : L = {1, 2, · · · k}. Choose seed using the

following formula:

sL = x1+(L−1)∗M
k

4: until k centroids are found
5: return { c1, c2, · · · ck } . k centroids

Algorithm 9 : KMeansP lusDensity, Choose k users from
the dataset, as centroids
Input: U , users in training set; k, total number of clusters;
Output: k centroids, { c1, c2, · · · ck }

1: Define desired number of clusters, k.
2: Find the average pair wise Euclidean distance, denoted

by d1, as follows:

d1 =
1

n(n− 1)

n−1∑
i=1

n∑
j=i+1

‖xi − xj‖ .

3: Compute the sum of distances from xthi position to all
other points, as Sum(i).

4: Sort Sum(i), and find highest density point xh, which
is the minimum value of Sum at index h.

5: Select initial centroid c1 to be xh
6: repeat
7: Set d(xi) to be the distance between xi and the

nearest point in C, for each point xi.
8: Find the sum of distances of first m/k nearest

points from the xh, denoted by y.
9: Find the unique integer i so that

d(x1)2+d(x2)2+· · ·+d(xi)
2 ≥y> d(x1)2+d(x2)2+· · ·+d(xi−1)2

10: Choose xi as next centroid
11: until k centroids are found
12: return { c1, c2, · · · ck } . k centroids

Algorithm 10 : KMeansSortedDistance, Choose k
users from the dataset, as centroids
Input: U , users in training set; k, total number of clus-
ters;
Output: k centroids, { c1, c2, · · · ck }

1: Define desired number of clusters, k.
2: Find the distance of all uids (user ids) from the global

average rating- ratings provided by all the users to all
the movies.

3: Sort these distances in ascending order.
4: Choose first k data points from sorted list as initial

centroids.
5: return { c1, c2, · · · ck } . k centroids

Algorithm 11 : KMeansP lusPower, Choose k users
from the dataset, as centroids
Input: U , users in training set; k, total number of clus-
ters;
Output: k centroids, { c1, c2, · · · ck }

1: Define desired number of clusters, k
2: Upower = ∅
3: for all u ∈ U do
4: if P(u) > powthr then
5: Upower = Upower ∪ u
6: end if
7: end for
8: { c1, c2, · · · ck } = KMeansP lusP lus (Upower, k)
9: return { c1, c2, · · · ck } . k centroids

Algorithm 12 : KMeansP lusProbPower, Choose k users
from the dataset, as centroids
Input: U , users in training set; k, total number of clusters;
Output: k centroids, { c1, c2, · · · ck }

1: Define desired number of clusters, k
2: Select the initial centroid c1 to be up.
3: repeat
4: Select the next centroid ci where ci = u′ ∈ U with

the probability:

Prob =

(
dist(u′)2∑
u∈U dist(u)2

+
P(u′)2∑
u∈U P(u)2

)
2

.

5: until k centroids are found
6: return { c1, c2, · · · ck } . k centroids
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Algorithm 13 : KMeansP lusLogPower, Choose k users
from the dataset, as centroids
Input: U , users in training set; k, total number of clusters;
Output: k centroids, { c1, c2, · · · ck }

1: Define desired number of clusters, k
2: Select the initial centroid c1 to be up.
3: repeat
4: Select the next centroid ci where ci = u′ ∈ U with

the probability:

Prob = dist(u) + log[
1

p(x)
+ 1]

5: until k centroids are found
6: return { c1, c2, · · · ck } . k centroids

Algorithm 14 : KMeansNormalUsers, Choose k users
from the dataset, as centroids
Input: U , users in training set; k, total number of clusters;
Output: k centroids, { c1, c2, · · · ck }

1: Define desired number of clusters, k
2: Construct a Gaussian distribution of the dataset by

providing average users rating as mean of the distri-
bution.

3: Select k centroid randomly from distributed dataset.
4: return { c1, c2, · · · ck } . k centroids

Algorithm 15 : KMeansNormalMovies, Choose k users
from the dataset, as centroids
Input: U , users in training set; k, total number of clusters;
Output: k centroids, { c1, c2, · · · ck }

1: Define desired number of clusters, k
2: Construct a Gaussian distribution of the dataset by

providing average movies rating as mean of the distri-
bution.

3: Select k centroid randomly from distributed dataset.
4: return { c1, c2, · · · ck } . k centroids

Algorithm 16 : KMeansPoisson, Choose k users from
the dataset, as centroids
Input: U , users in training set; k, total number of clusters;
Output: k centroids, { c1, c2, · · · ck }

1: Define desired number of clusters, k
2: Apply Poisson distribution over the dataset.
3: Select k centroid randomly from distributed dataset.
4: return { c1, c2, · · · ck } . k centroids

Algorithm 17 : KMeansHyperGeometric, Choose k
users from the dataset, as centroids
Input: U , users in training set; k, total number of clus-
ters;
Output: k centroids, { c1, c2, · · · ck }

1: Define desired number of clusters, k
2: Apply Hypergeometric distribution over the dataset.
3: Select k centroid randomly from distributed dataset.
4: return { c1, c2, · · · ck } . k centroids

Algorithm 18 :KMeansUniform, Choose k users from
the dataset, as centroids
Input: U , users in training set; k, total number of clusters;
Output: k centroids, { c1, c2, · · · ck }

1: Define desired number of clusters, k
2: Apply Uniform distribution of the dataset with the

given minimum and maximum range as 0 and k re-
spectively.

3: Select k centroid randomly from distributed dataset.
4: return { c1, c2, · · · ck } . k centroids

Algorithm 19 : KMeansUniformV ersion, Choose k
users from the dataset, as centroids
Input: U , users in training set; k, total number of clus-
ters;
Output: k centroids, { c1, c2, · · · ck }

1: Define desired number of clusters, k
2: Apply Uniform distribution of the dataset with the

given range as minimum and maximum distance of
users from the centroid.

3: Select k centroid randomly from distributed dataset.
4: return { c1, c2, · · · ck } . k centroids

Algorithm 20 : KMeansLog, Choose k users from the
dataset, as centroids
Input: U , users in training set; k, total number of clusters;
Output: k centroids, { c1, c2, · · · ck }

1: Define desired number of clusters, k
2: Apply Logarithmic distribution over the dataset.
3: Select k centroid randomly from distributed dataset.
4: return { c1, c2, · · · ck } . k centroids
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distribution curve, while in Algorithm 15, denoted by
KMeansNormalMovies, we utilized the average rating of
all the movies in the dataset as the mean value of normal
distribution curve.

In Algorithm 16, denoted by KMeansPoisson, we
construct Poisson distribution of the dataset, and arbi-
trarily select k centroids from the distributed dataset.

In Algorithm 17, denoted by
KMeansHyperGeometric, we applied hyper geo-
metric distribution over the dataset, and arbitrarily select
k centroids from the distributed dataset.

In Algorithm 18 and 19, denoted by
KMeansUniform and KMeansUniformV ersion re-
spectively, we apply uniform distribution over the dataset,
and arbitrarily select k centroids from the distributed
dataset.

In Algorithm 20, denoted by KMeansLog, we con-
struct logarithmic distribution of the dataset, and arbi-
trarily select k centroids from the distributed dataset.

3.3. Distance measure

In Algorithm 2, 3, 12, and 13 dist function is used to
measure the distance between a user and a centroid. We
are using similarity instead of distance, which can be com-
puted by measuring the similarity between a user and a
centroid. As similarity and distance are inversely propor-
tional to each other, thus the distance between two points
is maximum if the similarity is zero and vice versa. Dis-
tance function can be modeled as follows:

dist =

{
1

sim if sim 6= 0 ,
MAXDIST otherwise,

(7)

where MAXDIST (chosen as 1000 in our case2) denotes
the maximum distance between two points. As in Pear-
son correlation, the similarity result can be negative as
well, but the negative similarity cannot be modeled using
Equation 7. We handled this issue in centroid selection ap-
proaches, by adding 1 to all the similarity results returned
by Pearson correlation (i.e. sim(u) ← sim(u) + 1 ,∀u∈U ),
after that Equation 7 is applied on positive similarity re-
sults. As CF based approaches only considers the inter-
section of the items, which are voted by both the centroid
and the active user. Thus it does not perform well when
there are less common items between the centroid and the
active user. We can overcome this problem by assuming
some defaults votes for the items that have not been voted
by a user or a centroid, and extending the correlation over
the union of items rather than intersection; in order to
increase the accuracy and coverage of the recommender
system. The resultant distance equation is termed as PC-
CDV. For further information, refer to our previous work
[24].

2Any value greater than 1 can be chosen as MAXDIST.

3.4. Clustering of Dataset and Generating Recommenda-
tion

Algorithm 21 shows the clustering and recommendation
approach used in this work. The user-item rating matrix is
clustered into k clusters and then recommendation is pro-
vided based on the similar centroids ratings. For choosing
k initial centroids, a centroid selection algorithm is desired.
In step 2, CentroidSelect procedure choses any proposed
centroid selection algorithm for finding k initial centroids.
A loop counter is initialized in step 3, for counting num-
ber of iteration for the execution of the algorithm. In Step
5, we find out the similarity between the user and cen-
troids; and each user is assigned to the cluster with the
most similar centroid. Then we update the centroids to
the set of user-item pairs that have been rated by all the
users residing in that cluster, in step 6. In step 7, the loop
counter is incremented and step 5 to 7 keep executing till
the loop counter value is equal to itr or the clusters con-
verges (i.e. no user changes its cluster membership). We
return the clustered data, in step 9.

The centroids of the clusters contain the average rat-
ings assigned to all the items, which are rated by
the users in that cluster. Each centroid can be as-
sumed to be the vector of length N (i.e. total num-
ber of items in the system) and can be denoted by:
cj = { ri1,cj , ri2,cj , · · · , riN ,cj}, where ri,cj represents the
ratings assigned to an item i by the centroid cj , mathe-
matically: ri,cj = 1

|Dcj
|
∑
i,u∈Dcj

ri,u . Equation 8 is used

to estimate the rating value of the item in a cluster, if no
rating has been provided by users in corresponding cluster
to that item.

r =

{
1
|Du|

∑
i∈Dcj

ri,u if ri,u 6= ∅ ,
1
|Dcj

|
∑
i,u∈Dcj

ri,u if ri,cj 6= ∅ ,
(8)

Now all the clusters centroid contains average rating for
the items in the system. In step 12, we find out the sim-
ilarity between the active user and all the k centroids by
Pearson correlation. Then in step 13 we identify most
similar centroids, refer to as neighbours of active user. Af-
ter that prediction is made for the target item and Top-N
items [24] can be presented to user as recommendations.

4. Experimental Setup

4.1. Datasets

For these experiments, our dataset is made up of data
captured from film, book and music recommendation web-
sites, which are commonly used in the field of recommender
systems. As they are some of largest datasets and are
used frequently in literature to test recommendation al-
gorithms, they facilitate us to measure the scalability of
our algorithm as well as to benchmark our algorithm with
some of the state of art algorithms. In this paper, we
used MovieLens (100K and 1M ratings), FilmTrust, Book-
Crossing and LastFM dataset.
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(a) Rating distribution of the SML dataset.
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(b) Rating distribution of the FilmTrust dataset.

(c) Rating distribution of the Book-Crossing dataset. (d) Rating distribution of the ML dataset.

(e) Rating distribution of the FM dataset.

Figure 1: (From left to right and top to bottom) Rating distribution of the MovieLens (SML), FilmTrust (FT), Book-Crossing (BC), MovieLens
(ML), and LastFM (FM) datasets.
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Algorithm 21 : ClustAndRecommend, Clusters the
user-item rating matrix into k clusters and generate rec-
ommendations.
Input: U , training users; k, the number of clusters; itr,
the number of iteration for the k-means clustering algo-
rithm
Output: G, C; the clusters with corresponding centroids

1: procedure Cluster(U , k, itr)
2: C = CentroidSelect
3: t = 0
4: repeat
5: Set the cluster gj , for each j ∈ 1, ..., k, to be the

set of users in U that are closer to cj than they are to
cl for all l 6= j.

6: Set cj , for each j ∈ 1, ..., k, to be the centre of
mass of all users in gj , i.e.

cj =
1

|gj |
∑
u∈gj

u .

7: t = t+ 1
8: until (C no longer changes) OR (t = itr)
9: return (G,C)

10: end procedure

11: procedure Recommend(Dtest)
12: Use Pearson correlation to find the similarity be-

tween an active user and k other centroids using the
13: Find the neighbours of the active user, i.e. l (l ≤ k)

most similar centroids, called
14: Make prediction on target item using the weighted

average of the ratings provided by neighbours
15: end procedure

• MovieLens 100K Ratings (SML): GroupLens [32]
currently provide three movie-rating datasets. We
have utilized one of those datasets (denoted by SML in
this thesis) with 100 000 ratings provided by 943 users
for 1682 movies. Movies are rated on an integer scale
of 1 (bad) to 5 (excellent). This matrix has sparsity

of 93.7% - calculated as
(

1− non zero entries
all possible entries

)
which

means that 6.3% of total user-item pairs have been
rated. Figure1(a) shows the rating distribution of the
SML dataset.

• MovieLens 1M Ratings (ML): We have used an-
other dataset (denoted by ML in this work) provided
by GroupLens [32], which contains 6 040 users, 3 900
movies, and 1 000 000 ratings. Movies are rated on an
integer scale of 1 (bad) to 5 (excellent). We observe
that in the MovieLens dataset, the rating distribution
is skewed towards rating of 4. Figure1(d) shows the
rating distribution of the ML dataset.

• FilmTrust (FT): This is not a pre-packaged dataset,
we crawled FilmTrust website and created this
dataset. The dataset gathered (on 10th March 2009)
includes 28 645 ratings provided by 1 214 users for
1 922 movies. Movies are rated on a floating point
scale of 1 (bad) to 10 (excellent) (with scale of 0.25).
Its sparsity is 98.8%. Figure 1(b) shows the rating
distribution of the FilmTrust dataset. This dataset
is very sparse and imbalanced—one user might have
rated one item and other might have rated dozens
of items (and same is true for items as well)—and
it well represents the cold-start scenarios (where we
have number of new users and items in the system)
[25].

• Book-Crossing (BC): Book-Crossing dataset
was crawled by Cai-Nicolas Ziegler [69] in Au-
gust/September 2004 from the Book-Crossing
community. It contains 1 149 780 ratings (explicit /
implicit) provided by 278 858 users about 271 379
books referring to distinct ISBNs, while invalid
ISBNs were discarded from the dataset. Ratings are
provided on a scale from 1 (bad) to 10 (excellent). We
performed condensation of dataset to overcome the
extreme sparsity problem and to generate meaningful
results. For that we filtered the users and books
with less than 25 overall mentions. Resulting dataset
contains 200 093 ratings provided by 5 892 users
about 5 610 books. Figure 1(c) shows the rating
distribution of the Book-Crossing dataset.

• LastFM (FM): This dataset contains music artist
listening information taken from Last.fm online music
system [12]. This dataset contains 92 834 user-listened
artist relations for 1 892 users and 1 7632 artists. User-
listened artist relations provides a listening count for
each [user, artist] pair. We have utilized listening
count to find out binary scale rating (like/dislike),
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by providing a threshold value (in our case 300), for
each [user, artist] pair. Hence, if a listing count for
a particular [user, artist] pair is greater than 300, we
assign it like class and dislike class otherwise. Fig-
ure 1(e) shows the rating distribution of the resultant
dataset.

4.2. Metrics

Mean Absolute Error (MAE) has been extensively used
in many research projects, such as [9, 19, 22, 23, 51, 52, 53,
64]. It computes the average absolute deviation between
predicted rating provided by a recommender system and
a true rating assigned by the user. It is computed as:

MAE =
1

|Dtest|

|Dtest|∑
i=1

|pi − ai|,

Where |Dtest| is the total numbers of ratings provided
by the test set, pi is predicted rating provided by recom-
mender system and ai is the actual rating assigned by user
to item i. Recommender systems intend to reduce MAE
score by minimizing the difference between predicted and
actual rating of an item.

Moreover, we used coverage, which describes the num-
ber of user-item pairs that a recommendation algorithm
can make prediction for. Some authors denote this metric
by prediction coverage [27]. The coverage metrics has been
used in [20, 22, 25]. There are a number of metrics that are
more specifically designed to measure how well a recom-
mender classifies good quality (relevant) items. These in-
clude the ROC-sensitivity and F1 measure and have been
used in projects, such as [22, 25, 52, 53]. The details of
using coverage, ROC, and F1 metrics for recommender
system settings can be found in our previous work [25].

4.3. Evaluation methodology

In this work, we have randomly divided the dataset into
training and testing set by performing 5-fold cross valida-
tion and reported average results. Specifically, for each
user, 80% randomly divided movies (rated by them) are
chosen as training set and the rest (20%) as the test set.
The training set is further divided into training (80%) and
validation set (20%) to train the parameters.

5. Results and Discussion

In this section, we present the performance compari-
son of aforementioned approaches for different centroid se-
lection approaches in terms of MAE in recommendation,
cluster quality, cluster convergence, cluster building time,
and recommendation coverage. We benchmark the results
with conventional k-means algorithm (i.e. Algorithm 1).

5.1. Performance comparison in terms of recommendation
MAE

To compare the performance of different centroid selec-
tion approaches, in term of recommendation we measure
MAE, ROC-Sensitivity, Precision, Recall, and F1 for all
the aforementioned algorithms. For instance, we present
the results computed under optimal parameters for MAE,
in Table 2.

The results—over SML dataset in Figure 2(a)—
show that Algorithm 12 (i.e. KmeansP lusProbPower)
and Algorithm 13 (i.e. KMeansP lusLogPower) per-
form the best. Figure 2(b), detailing the results
over FT dataset, depicts that the MAE of Al-
gorithm 13 (i.e. KMeansP lusLogPower) outperforms
the rest. Moreover, the accuracy of Algorithm 12
(i.e. KmeansP lusProbPower) is comparable to Algo-
rithm 13 (i.e. KMeansP lusLogPower).

Results over BC dataset in Figure 2(c) show that most
of centroids selection algorithm generate results better
than k-means but Algorithm 16 (i.e. KMeansPoisson)
performs the best. We can also find out that Algo-
rithm 12 (i.e. KmeansP lusProbPower) performs the best
over ML dataset as shown in Figure 2(d). Moreover, the
results of Algorithm 4 (i.e. KMeansDensity) are compa-
rable to the best approaches for this dataset. Figure 2(e)
presents that Algorithm 20 (i.e. KMeansLog) gives out-
standing result for FM dataset. The results of Algorithm 4
(i.e. KMeansDensity) are comparable to the best ap-
proach for this dataset.

5.2. Performance comparison in terms of cluster quality

We proposed various centroid selection approaches in
this work, with the statement that cluster quality (that
is total within-cluster similarity between each cluster cen-
troid and users) is dependent upon initial centroid selec-
tion. To prove our statement, we present results of dif-
ferent centroid selection approaches at varying number of
iterations. For each user u ∈ U in the training set, the
total within-cluster similarity is measured as follows:

TotalSim(U , G) =
∑
gj∈G

∑
u∈Ugj

sim(u, cj), (9)

Where cj denotes the centroid of the cluster gj , while
Ugj are the number of users in the corresponding clus-
ter gj and G denotes the total number of clusters.
Table 3 depict the total within-cluster similarity be-
tween each user and the cluster it belongs to, for SML
dataset. We observe that within-cluster similarity of Al-
gorithm 10 (KMeansSortedDistance) is better than all
of rest for the SML dataset. While for FT dataset within-
cluster similarity of Algorithm 3 (KMeansP lusP lus) is
highest while that of Algorithm 4 (KmeansDensity)
is nearly the same, as shown in Table 4. Results of
BC and ML-1M datasets in Table 5 and 6 shows that
Algorithm 13 (KMeansP lusLogPower) results in high-
est within-cluster similarity for both datasets. While
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Table 1: Tuning the distance measure in term of MAE and coverage to select the optimal one for subsequent experiments. The number
of clusters, iterations and neighbours are set to the optimal value. The best results are shown in bold font. PCCWithDefault represents
the Pearson Correlation distance measure where default votes are used to overcome sparsity, PCCWithoutDefault represents the Pearson
Correlation distance measure without default votes, VSWithDefault represents the Vector Similarity distance measure where default votes
are used to overcome sparsity, and VSWithoutDefault represents the Vector Similarity distance measure without default votes.

Distance Measure
MAE Coverage

SML FT BC ML FM SML FT BC ML FM
PCCwithDefault 0.745 1.493 2.912 0.867 0.390 99.785 95.951 97.325 100.0 100.0
PCCwithoutDefault 0.754 1.495 2.835 0.863 0.376 99.765 95.790 97.497 100.0 98.179
VSWithDefault 0.773 1.508 2.845 0.882 0.381 99.795 95.812 98.074 100.0 97.463
VSWithoutDefault 0.769 1.498 2.844 0.897 0.382 99.775 95.812 98.062 99.999 97.075

Table 2: Inspecting the performance of different centroid selection approaches in terms of MAE and coverage, over the test set. The number
of clusters, iterations and neighbours are set to the optimal one. Also the optimal distance measure is used to find the similarity between a
user and the centroid. The best results are shown in bold font.

Centroid Selection
MAE Coverage

SML FT BC ML FM SML FT BC ML FM
KMeans 0.745 1.493 2.885 0.863 0.376 99.785 96.04 97.497 100 98.179
KMeansP lus 0.745 1.484 2.882 0.873 0.369 99.8 96.00 96.985 100 98.691
KMeansP lusP lus 0.744 1.478 2.874 0.862 0.352 99.795 95.93 96.845 100 99.644
KMeansDensity 0.747 1.496 2.868 0.856 0.344 99.79 96.06 96.651 100 99.687
KMeansV ariance 0.745 1.495 2.885 0.864 0.375 99.795 96.02 97.059 100 98.535
KMeansV arianceAvgPairWise 0.742 1.497 2.883 0.862 0.377 99.8 96.04 97.145 100 97.032
KMeansV arianceV ersion 0.751 1.509 2.859 0.865 0.370 99.8 96.04 97.153 100 99.122
KMeansQuantiles 0.746 1.490 2.864 0.867 0.383 99.8 96.02 97.349 100 98.158
KMeansOnePass 0.753 1.551 2.903 0.877 0.359 99.795 96.02 96.225 99.99 99.666
KMeansSortedDistance 0.746 1.510 2.887 0.866 0.370 99.795 96.02 97.095 100 98.828
KMeansP lusPower 0.742 1.481 2.866 0.856 0.376 99.795 96.02 96.983 100 97.511
KMeansP lusProbPower 0.740 1.468 3.018 0.852 0.430 99.815 96.11 100 100 100
KMeansP lusLogPower 0.738 1.461 3.035 0.854 0.430 99.815 96.11 100 100 100
KMeansNormalUsers 0.759 1.543 2.878 0.906 0.389 99.79 95.99 96.801 99.99 99.208
KMeansNormalMovies 0.768 1.543 2.879 0.9005 0.388 99.775 95.99 96.927 99.99 99.224
KMeansPoisson 0.760 1.511 2.850 0.892 0.387 99.8 96.00 97.619 100 99.348
KMeansHyperGeometric 0.757 1.536 2.871 0.882 0.354 99.79 96.02 97.093 99.99 99.488
KMeansUniform 0.749 1.482 2.863 0.860 0.381 99.8 96.02 97.255 100 98.265
KMeansUniformV ersion 0.753 1.674 2.865 0.883 0.386 99.795 95.95 97.781 99.99 99.369
KMeansLog 0.752 1.596 2.865 0.864 0.336 99.78 96.06 97.197 100 99.806
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Table 3: Inspecting the with-in cluster similarity (TotalSim) over the test set for SML dataset, at the optimal number of clusters. The
PCCDV distance measure has been used to find similarity between a user and a centroid. The best results are shown in bold font.

Centroid Selection
TotalSim observed at diff no. of iterations (Itr)

Convergence
Itr : 2 Itr : 4 Itr : 6 Itr : 8 Itr : 10

KMeans 267.117 299.458 301.802 302.131 302.182 9
KMeansP lus 260.542 300.129 301.000 301.000 301.000 7
KMeansP lusP lus 293.223 297.645 300.296 301.866 302.110 10
KMeansDensity 205.123 271.755 300.840 302.0511 302.238 9
KMeansV ariance 292.604 301.410 302.025 302.146 302.099 7
KMeansV arianceAvgPairWise 291.419 297.960 298.511 298.511 298.511 6
KMeansV arianceV ersion 257.866 267.093 295.433 297.552 297.581 9
KMeansQuantiles 283.793 296.512 301.691 305.313 305.235 9
KMeansOnePass 187.730 268.207 285.035 289.449 298.138 -
KMeansSortedDistance 267.591 303.065 305.619 306.300 306.301 8
KMeansP lusPower 271.919 294.522 296.181 296.691 296.747 7
KMeansP lusProbPower 251.249 300.388 301.738 301.890 301.890 6
KMeansP lusLogPower 269.863 284.024 285.250 285.809 285.835 7
KMeanslNormalUser 185.367 273.672 277.587 278.076 278.076 8
KMeansNormalMovies 182.967 266.5146 276.478 277.290 277.483 8
KMeansPoisson 157.799 247.880 257.348 258.855 258.855 8
KMeansHyperGeometric 193.663 230.730 279.440 280.645 280.799 8
KMeansUniform 257.681 301.872 303.750 303.795 303.795 6
KMeansUniformV ersion 166.200 205.432 210.655 213.201 214.633 10
KMeansLog 185.120 229.862 274.998 275.986 276.055 10

Table 4: Inspecting the with-in cluster similarity (TotalSim) over the test set for FT dataset, at the optimal number of clusters. The PCCDV
distance measure has been used to find similarity between a user and a centroid. The best results are shown in bold font.

Centroid Selection
TotalSim observed at diff no. of iterations (Itr)

Convergence
Itr : 2 Itr : 4 Itr : 6 Itr : 8 Itr : 10

KMeans 313.041 395.707 400.298 404.941 406.928 -
KMeansP lus 356.770 407.120 410.212 411.229 414.259 -
KMeansP lusP lus 324.027 406.483 412.789 413.841 415.836 -
KMeansDensity 226.826 401.112 411.904 413.811 415.861 -
KMeansV ariance 316.914 398.853 408.602 408.960 408.711 7
KMeansV arianceAvgPairWise 349.549 392.253 402.962 404.041 408.935 -
KMeansV arianceV ersion 224.515 295.851 337.295 376.378 376.989 9
KMeansQuantile 314.642 389.163 402.932 404.686 406.593 -
KMeansOnePass 309.879 376.668 384.373 387.501 387.350 9
KMeansSortedDistance 383.295 406.755 410.389 412.394 412.464 9
KMeansP lusPower 125.189 144.483 149.578 149.867 151.913 -
KMeansP lusProbPower 377.911 400.511 404.096 407.241 407.624 9
KMeansP lusLogPower 380.122 397.606 402.108 403.23 404.582 -
KMeansNormalUsers 307.528 401.479 411.113 407.979 410.185 -
KMeansNormalMovies 307.528 401.479 411.113 407.979 410.185 -
KMeansPoisson 308.543 371.509 380.214 384.980 387.721 -
KMeansHyperGeometric 252.912 389.895 401.278 403.584 404.097 -
KMeansUniform 353.010 397.448 405.650 406.441 406.992 8
KMeansUniformV ersion 236.940 317.536 332.904 335.627 331.613 -
KMeansLog 152.128 219.401 351.384 385.705 390.896 -
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Table 5: Inspecting the with-in cluster similarity (TotalSim) over the test set for BC dataset, at the optimal number of clusters. The
PCCwithoutDefault distance measure has been used to find similarity between a user and a centroid. The best results are shown in bold font.

Centroid Selection
TotalSim observed at diff no. of iterations (Itr)

Convergence
Itr : 2 Itr : 4 Itr : 6 Itr : 8 Itr : 10

KMeans 231.519 234.181 235.243 235.925 236.091 10
KMeansP lus 229.053 233.641 238.494 239.950 241.600 -
KMeansP lusP lus 87.111 157.772 173.367 179.237 181.057 -
KMeansDensity 32.8724 182.494 210.227 217.040 219.857 -
KMeansV ariance 227.526 237.565 239.301 239.537 239.685 7
KMeansV arianceAvgPairWise 229.791 246.737 249.650 249.877 249.934 7
KMeansV arianceV ersion 210.906 199.745 202.138 205.228 203.056 -
KMeansQuantiles 188.186 234.952 238.232 239.040 239.306 9
KMeansOnePass 32.8724 109.897 119.613 122.663 123.465 10
KMeansSortedDistance 240.633 248.710 249.379 249.573 249.724 6
KMeansP lusPower 194.522 207.402 212.630 215.923 217.476 -
KMeansP lusProbPower 256.266 256.973 257.360 257.435 257.452 6
KMeansP lusLogPower 410.566 410.460 409.945 410.035 409.890 3
KMeanslNormalUsers 38.6327 287.136 291.095 293.910 294.200 9
KMeansNormalMovies 39.639 287.334 288.656 289.197 289.894 8
KMeansPoisson 46.238 159.231 186.262 190.143 192.605 -
KMeansHyperGeometric 47.463 64.285 69.596 75.5416 78.7656 -
KMeansUniform 207.633 223.082 226.521 227.566 227.943 8
KMeansUniformV ersion 32.8724 180.948 210.089 213.698 228.700 -
KMeansLog 67.0831 94.1721 99.336 110.905 110.581 9

Table 6: Inspecting the with-in cluster similarity (TotalSim) over the test set for ML dataset, at the optimal number of clusters. The
PCCwithoutDefault distance measure has been used to find similarity between a user and a centroid. The best results are shown in bold font.

Centroid Selection
TotalSim observed at diff no. of iterations (Itr)

Convergence
Itr : 2 Itr : 4 Itr : 6 Itr : 8 Itr : 10

KMeans 1304.994 1341.641 1365.691 1381.625 1364.263 -
KMeansP lus 1360.072 1368.232 1396.591 1400.026 1405.320 -
KMeansP lusP lus 1307.144 1342.322 1370.742 1385.479 1397.060 -
KMeansDensity 905.214 1168.651 1193.193 1227.377 1235.821 -
KMeansV ariance 1320.235 1349.232 1359.784 1380.235 1389.992 -
KMeansV arianceAvgPairWise 1308.959 1342.484 1366.106 1380.664 1388.922 -
KMeansV arianceV ersion 1401.208 1434.745 1449.818 1453.075 1455.25 10
KMeansQuantiles 1306.796 1324.766 1357.847 1351.772 1373.844 -
KMeansOnePass 914.601 1114.165 1110.135 1103.081 1118.694 -
KMeansSortedDistance 1311.003 1335.511 1333.004 1356.451 1370.713 -
KMeansP lusPower 1262.301 1305.480 1331.022 1347.630 1358.320 -
KMeansP lusProbPower 1325.611 1358.311 1351.131 1370.375 1399.151 -
KMeansP lusLogPower 1529.412 1535.811 1540.391 1545.852 1545.982 9
KMeanslNormalUsers 925.143 1069.471 1126.808 1139.001 1156.952 -
KMeansNormalMovies 925.145 1077.022 1116.182 1135.342 1144.851 -
KMeansPoisson 937.631 1048.001 1080.415 1096.273 1107.265 -
KMeansHyperGeometric 937.583 1060.014 1101.184 1111.854 1115.794 -
KMeansUniform 1312.881 1326.236 1339.532 1340.093 1371.143 -
KMeansUniformV ersion 905.212 1094.532 1170.811 1193.961 1207.621 -
KMeansLog 929.761 959.771 1003.041 1011.712 1018.522 -
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Table 7: Inspecting the with-in cluster similarity (TotalSim) over the test set for FM dataset, at the optimal number of clusters. The
PCCwithoutDefault distance measure has been used to find similarity between a user and a centroid. The best results are shown in bold font.

Centroid Selection
TotalSim observed at diff no. of iterations (Itr)

Convergence
Itr : 2 Itr : 4 Itr : 6 Itr : 8 Itr : 10

KMeans 59.893 65.662 69.141 69.729 70.097 10
KMeansP lus 60.485 66.189 69.619 70.313 70.613 9
KMeansP lusP lus 7.068 39.916 59.679 63.718 65.433 -
KMeansDensity 1.551 53.474 64.272 68.300 70.292 -
KMeansV ariance 61.947 68.271 69.223 69.563 69.820 8
KMeansV arianceAvgPairWise 61.018 68.445 69.138 69.622 69.758 7
KMeansV arianceV ersion 51.147 62.043 66.461 70.069 70.997 9
KMeansQuantiles 61.596 68.064 69.385 69.867 70.151 10
KMeansOnePass 1.551 40.454 60.977 65.337 66.696 10
KMeansSortedDistance 60.657 67.111 69.498 70.153 70.247 9
KMeansP lusPower 61.426 68.235 69.084 69.481 69.761 7
KMeansP lusProbPower 69.757 71.301 71.715 72.072 72.186 7
KMeansP lusLogPower 64.660 68.801 69.639 70.072 70.151 8
KMeanslNormalUsers 1.551 61.30 64.018 65.085 65.741 8
KMeansNormalMovies 2.952 62.177 64.493 64.962 65.274 10
KMeansPoisson 2.670 45.585 59.234 61.224 62.361 10
KMeansHyperGeometric 4.833 46.836 57.594 59.280 59.961 9
KMeansUniform 60.082 65.602 69.883 71.818 71.981 9
KMeansUniformV ersion 1.551 56.154 66.184 67.065 67.527 9
KMeansLog 3.893 56.921 62.713 66.001 67.029 10

12 (KMeansP lusProbPower) shows highest within-cluster
similarity for LastFM dataset shown in Table 7.

5.3. Performance comparison in terms of cluster conver-
gence

We claimed that initial centroid selection affects the con-
vergence rate of the clusters and consequently recommen-
dation process as well. To prove our statement we present
the convergence rate (the difference between with-in clus-
ter similarity become negligible with increasing number of
iterations) of clusters in Table 3, 4, 5, 6, and 7 for SML,
FT, BC, ML and FM datasets respectively.

We observe for SML and FT datasets, Al-
gorithm 5 KMeansV ariance and Algorithm 10
KMeansSortedDistance provide speedy convergence as
compared to all other approaches as shown graphically
in Figure 3 and 4. While for BC, ML and FT datasets
Algorithm 13 (KMeansP lusLogPower) and Algorithm
12 (KMeansP lusProbPower show speedy covergence as
shown in Figure 5, 6, and 7.

5.4. Performance comparison in terms of cluster building
time

We proposed some centroid selection algorithms for the
situation where we dont have enough training time. Fig-
ure B.11 presents the comparison of different centroid se-
lection approaches, in term of time to build the clusters,
and shows that centroid selection approaches using data
distribution technique takes the minimum time for cluster
building.

5.5. Performance comparison in terms of recommendation
coverage

Beyond accuracy measures we have also compared the
performance of different centroid selection approaches for
a non-accuracy measure that is coverage. To increase
the recommendation coverage we have proposed Algo-
rithm 12 (i.e. KMeansP lusProbPower) and Algorithm 13
(i.eKMeansP lusLogPower) . Results in Figure B.12 shows
that both of aforementioned algorithms outperform all of
the rest algorithms for all five datasets.

5.6. Performance comparison under cold start problems

5.6.1. New user cold-start

We performed experiments to investigate the perfor-
mance of centroid selection approaches under new user
cold-start scenario. For that we randomly selected 100
users, and proceeded the experiment by keeping their num-
ber of ratings in the training set to 2, 10, and 20. The
results are displayed in Table 10 and Table 11, and the
corresponding MAE is represented by MAE 2, MAE 10,
and MAE 20. The results over all 5 datasets show that the
traditional approach is highly affected by these scenarios.
The proposed approaches improve the performance and
provide better recommendation. For comparison purpose,
some best approaches along with conventional k-means are
shown in Table 10 and Table 11.

5.6.2. New item cold start

We performed experiments to investigate the perfor-
mance of centroid selection approaches under new item
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cold-start scenario. For that we randomly selected 100
items, and proceeded the experiment by keeping their
number of ratings in the training set to 2, 10, and 20.
The results are displayed in Table 12 and Table 13, and
the corresponding MAE is represented by MAE 2, MAE
10, and MAE 20. Table 12 and Table 13 show that the per-
formance of the conventional k-means suffer under these
scenarios, for all 5 datasets. The proposed approaches
improve the performance and provide better recommen-
dation. For comparison purpose, some best approaches
along with conventional k-means are shown in Table 12
and Table 13.

5.7. Performance comparison under long tail problems

We produced artificial tail by randomly selecting 20%
of items in the tail, for testing the performance of centroid
selection approaches under long tail scenario. We kept the
ratings in the tail to 2, 10, and 20 and the corresponding
MAE—represented by MAE 2, MAE 10, and MAE 20—
is shown in Table 14 and Table 15. It is observed that
performance under long tail scenario is the same as in new
item cold-start condition.

5.8. Interpretation with traditional k-means

The rationale behind proposing various algorithms is
to provide better recommendations under different con-
ditions (different datasets, matrices, training time, etc).
On experimentation over SML, ML, and FT dataset, we
found that many of our proposed approaches outper-
form traditional k-means in terms of MAE, while Algo-
rithm 13 (i.e. KMeansP lusLogPower) and Algorithm 12
(i.e. KmeansP lusProbPower) perform the best.

For BC and FM datasets we observe that most
of centroid selection approaches perform better than
KMeans but approaches based on data distribution per-
forms better than all others. Meanwhile Algorithm 4
(KMeansDensity) gives comparable result not only for
ML dataset but also for FM dataset.

The % decrease in MAE (for the best identified algo-
rithm) over the baseline approach (Algorithm 1) is found
to be (1) 0.94% in the case of Algorithm 13 with p < 0.1
(p-value in the case of pair-t test) for the SML dataset; (2)
2.14% in the case of Algorithm 13 with p < 0.01 (p-value
in the case of pair-t test) for the FT dataset; (3) 1.21%
in the case of Algorithm 16 with p < 0.05 (p-value in the
case of pair-t test) for the BC dataset; (4)1.27% in the
case of Algorithm 12 with p < 0.05 (p-value in the case
of pair-t test) for the ML dataset; and (4) 10.63% in the
case of Algorithm 20 with p < 0.0001 (p-value in the case
of pair-t test) for the FM dataset. These values show that
the results are statistically significant (using p < 0.05 as
cut-off point), especially for FM, FT, and ML datasets.

In our work various centroid selection approaches signif-
icantly improves cluster quality as shown in Figure 3, 4, 5,
6, and 7. We also observe that the recommendation cover-
age of Algorithm 12 (KMeansP lusProbPower) and Algo-
rithm 13 (KMeansP lusLogPower) is better than all others,

for all five datasets as shown in Figure B.12. Figure B.11
shows that different centroid selection approaches based
on data distributions provide significant improvements in
term of cluster time complexity, so we can use these ap-
proaches where we have less time to train our dataset.

Based on the experimental results, we can highlight the
following key points: (1) The investigated seed selections
approaches exhibit much superior accuracy and perfor-
mance compared to traditional seed selection approach—
random selection. However, the results of various seed
selection methods are dataset dependent and no approach
is a panacea. Depending on the dataset properties (e.g.
distribution, sparsity, etc.) one approach might give
very good results—in terms of MAE and coverage—for
one approach and give average results for other; (2)
KMeansP lusProbPower and KMeansP lusLogPower gave
consistently better results than other approaches. The
reason is these approaches take the concept of leaders and
followers and in addition combine this concept with K-
Means++’s concept; (3) For relatively smaller and very
sparse and imbalanced datasets (sparsity > 99%), com-
bining the concepts of power users and KMeans++ gives
better performance. The reason is the same as discussed
in 3.1 (that most users tend to follow leader’s opinions
in online communities) ; (4) The approaches based on
data distribution can lead to significant saving in time
and gives much better results for larger datasets (e.g. BC
dataset), (5) For binary class datasets (e.g. FM dataset),
the approaches based on data distribution and density
gives better results; (6) Different seed selection approaches
can be selected depending different priorities and circum-
stances and—accuracy requirement, coverage requirement,
and time and frequency of running the off-line computa-
tion.

5.9. Centroid Selection in Fuzzy C-means Clustering
(FCM)

Hard clustering such as k-means assigns each user to
only one cluster though in reality user may have diverse
opinions; FCM is used in literature based on same con-
sideration. FCM algorithm behaves in the same fashion
as k-means because basically it is similar in structure to
k-means algorithm. The additional feature in FCM is that
it allows user to be part of multiple clusters based on their
interest.Therefore, this approach can produce better re-
sults but just multiple assignment is not enough to make
better recommendations for all type of datasets. As cluster
quality in FCM clustering also depends on initial centroid
selection, randomly chosen centroids mostly end up with
inaccurate results. One of the major drawback of FCM is
that it produces inaccurate recommendation especially in
large datasets [62] , because the randomly chosen initial
centroids are not well separated and irrelevant data ele-
ments can be assigned to clusters which may overwhelm
the rating prediction.

We applied the proposed centroid selection approaches
on FCM and calculated the results by keeping rest of the
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(a) MAE over SML dataset (b) MAE over FT dataset

(c) MAE over BC dataset (d) MAE over ML dataset

(e) MAE over FM dataset

Figure 2: Inspecting the performance of different centroid selection approaches by measuring MAE over FT, SML, BC, ML and FM datasets.
The horizontal axis depicts different algorithms while the vertical axis represents the corresponding MAE. The results show that Algorithm 12
(KmeansP lusProbPower) and Algorithm 13 (KMeansP lusLogPower)) give best results for SML, FT, and ML datasets. Results of BC dataset
represent that Algorithm 16,(KMeansPoisson) gives minimum MAE while for FM dataset Algorithm 20 (KmeansLog) provides best results.
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Figure 3: Comparing the cluster similarity of few proposed centroid selection approaches with conventional KMeans over SML dataset.

Figure 4: Comparing the cluster similarity of few proposed centroid selection approaches with conventional KMeans over FT dataset.
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Figure 5: Comparing the cluster similarity of few proposed centroid selection approaches with conventional KMeans over BC dataset.

Figure 6: Comparing the cluster similarity of few proposed centroid selection approaches with conventional KMeans over ML dataset.
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Figure 7: Comparing the cluster similarity of few proposed centroid selection approaches with conventional KMeans over FM dataset.

algorithm intact, and compared the results with tradi-
tional FCM. Table 8 shows that traditional FCM algo-
rithm shows almost the same results as k-means over small
dataset like FM. But its MAE keeps on increasing with in-
crease in the size of dataset. Our proposed approaches im-
proves the performance of FCM in terms of accuracy and
coverage as given in Table 8. The reason is that better
initial centroid selection improves the quality of clusters
which ultimately provide better recommendation. As we
know that FCM assigns a data element to multiple clus-
ters hence its coverage is better than traditional k-means,
and proposed solution improves it even more, as given in
Table 8.

5.10. Centroid Selection in Expectation-maximization
(EM)

We applied the proposed centroid selection approaches
on EM and calculated the results by keeping rest of the
algorithm intact, and compared the results of proposed so-
lution with conventional EM. Table 9 shows the results of
EM algorithm along with all proposed centroid selection
approaches implemented on EM. Table 9 shows that pro-
posed approaches improves the result of traditional EM
and provides almost the same results as FCM presented in
Table 8. The reason is that initial parameter is selected ef-
fectively with proposed centroid selection appraches which
consequently improves the quality of clusters and provide
better recommendation.

6. Conclusion and Future Work

The main claim of this work is that centroids of k-
means clustering algorithms, if effectively selected prior
to partition the recommender system dataset into differ-
ent clusters, can provide potential benefits ranging from
cost saving to performance enhancement. This work,

presents a comparative study of the centroid selection
approaches in k-means-based recommender system and
their subsequent impact upon the accuracy and cost has
been investigated. A second analysis of centroid selec-
tion approaches is performed over Fuzzy C-means and
Expectation-maximization algorithm, to investigate the
performance of proposed solution on related clustering al-
gorithm. The empirical study has shown that rather than
using the traditional approach to select the centroids in
centroid model-based (k-mean/FCM/EM) recommender;
which have heavily been used in the literature, robust and
advanced approaches can give considerable performance
benefits.

A limitation of k-means algorithm is that it highly de-
pends on k number of clusters and k must be predefined.
Developing some statistical methods to compute the value
of k, depending on the data distribution, is suggested for
future research. An alternative approach for seed selec-
tion is to exploit more than one user as the initial cen-
troid, which might accelerate the convergence rate of the
k-means clustering algorithm.

Appendix A. Learning the Optimal System Pa-
rameters

Appendix A.1. Optimal number of clusters

We changed the number of clusters from 1 to 200 for
tuning optimal number of clusters for k-means clustering
of SML and FT datasets, and measured the corresponding
MAE. Figure 8(a) depicts that for SML dataset, the MAE
keeps on decreasing with an increase in number of clusters,
however after 130 clusters, this behavior is not significant.
Similarly when tuned on FT dataset, the MAE shows min-
imum value at 130 and 190 clusters as displayed in Fig-
ure 8(a). We choose 130 clusters to be optimal for both the
datasets to be used for subsequent analysis. Meanwhile to
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Table 8: Inspecting the performance of different centroid selection approaches on Fuzzy C-means (FCM) clustering, in terms of MAE and
coverage, over the test set. In Algorithm notations, KMeans is replaced by FCMeans as proposed approaches are implemented using FCM
clustering. The best results are shown in bold font.

Centroid Selection
MAE Coverage

SML FT BC ML FM SML FT BC ML FM
FCMeans 0.792 1.739 3.199 1.381 0.356 99.815 96.24 98.197 100 99.079
FCMeansP lus 0.776 1.674 3.185 1.375 0.338 99.915 96.21 97.684 100 99.581
FCMeansP lusP lus 0.775 1.668 3.178 1.363 0.321 99.825 96.14 97.444 100 99.982
FCMeansDensity 0.778 1.716 3.163 1.357 0.315 99.827 96.27 97.352 100 99.978
FCMeansV ariance 0.777 1.715 3.189 1.366 0.344 99.825 96.24 97.758 100 99.841
FCMeansV arianceAvgPairWise 0.773 1.717 3.187 1.363 0.346 99.916 96.25 97.846 100 97.921
FCMeansV arianceV ersion 0.780 1.729 3.156 1.366 0.341 99.905 96.23 97.854 100 99.131
FCMeansQuantiles 0.777 1.710 3.167 1.368 0.352 99.905 96.24 97.983 100 98.161
FCMeansOnePass 0.781 1.731 3.109 1.376 0.330 99.831 96.25 96.927 99.99 99.891
FCMeansSortedDistance 0.777 1.710 3.184 1.367 0.341 99.823 96.27 97.798 100 99.656
FCMeansP lusPower 0.773 1.671 3.165 1.357 0.345 99.823 96.29 97.681 100 98.498
FCMeansP lusProbPower 0.772 1.658 3.171 1.353 0.390 99.985 97.45 100 100 100
FCMeansP lusLogPower 0.767 1.662 3.198 1.245 0.361 99.985 97.11 100 100 100
FCMeansNormalUsers 0.781 1.741 3.127 1.303 0.348 99.825 96.21 97.499 99.99 99.718
FCMeansNormalMovies 0.797 1.741 3.128 1.311 0.347 99.804 96.21 97.617 99.99 99.618
FCMeansPoisson 0.791 1.722 3.001 1.289 0.346 99.915 96.23 98.321 100 99.822
FCMeansHyperGeometric 0.786 1.732 3.124 1.279 0.322 99.818 96.23 98.012 99.99 99.918
FCMeansUniform 0.777 1.679 3.115 1.271 0.342 99.915 96.23 98.015 100 99.121
FCMeansUniformV ersion 0.781 1.722 3.119 1.291 0.345 99.815 96.18 98.439 99.99 99.786
FCMeansLog 0.781 1.738 3.121 1.265 0.301 99.812 96.28 97.988 100 99.99

Table 9: Inspecting the performance of different centroid selection approaches on Expectation-maximization (EM) algorithm, in terms of
MAE and coverage, over the test set. In Algorithm notations, KMeans is replaced by EM as proposed approaches are implemented using
EM algorithm. The best results are shown in bold font.

Centroid Selection
MAE Coverage

SML FT BC ML FM SML FT BC ML FM
EM 0.799 1.741 3.189 1.383 0.357 99.75 96.25 98.255 100 99.015
EMPlus 0.774 1.681 3.175 1.377 0.337 99.25 96.15 97.685 100 99.576
EMPlusP lus 0.785 1.672 3.168 1.365 0.331 99.825 96.75 97.454 100 99.895
EMDensity 0.787 1.701 3.158 1.359 0.319 99.755 96.95 97.359 100 99.585
EMV ariance 0.771 1.709 3.179 1.366 0.341 99.675 96.75 97.858 100 99.546
EMV arianceAvgPairWise 0.769 1.699 3.181 1.365 0.345 99.915 96.85 97.546 100 97.895
EMV arianceV ersion 0.783 1.704 3.149 1.366 0.343 99.925 97.25 97.875 100 99.155
EMQuantiles 0.771 1.722 3.158 1.371 0.357 99.925 97.35 97.975 100 98.165
EMOnePass 0.779 1.727 3.121 1.373 0.328 99.85 96.25 96.985 99.95 99.891
EMSortedDistance 0.775 1.713 3.177 1.361 0.345 99.815 96.275 97.795 100 99.575
EMPlusPower 0.778 1.673 3.156 1.363 0.343 99.815 96.295 97.665 100 98.658
EMPlusProbPower 0.763 1.656 3.219 1.356 0.368 99.985 97.75 100 100 100
EMPlusLogPower 0.769 1.668 3.178 1.249 0.368 99.985 97.45 100 100 100
EMNormalUsers 0.779 1.731 3.135 1.308 0.347 99.75 96.75 97.45 99.95 99.875
EMNormalMovies 0.794 1.732 3.119 1.312 0.351 99.815 96.85 97.65 99.95 99.659
EMPoisson 0.793 1.725 3.117 1.291 0.343 99.905 96.85 98.555 100 99.755
EMHyperGeometric 0.781 1.737 3.123 1.282 0.327 99.815 96.25 98.175 99.95 99.918
EMUniform 0.769 1.699 3.114 1.273 0.332 99.925 96.25 98.215 100 99.125
EMUniformV ersion 0.791 1.735 3.121 1.289 0.347 99.825 96.85 98.435 99.95 99.855
EMLog 0.789 1.739 3.118 1.272 0.313 99.825 96.75 97.857 100 99.99
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Table 10: Inspecting the performance of different centroid selection approaches under new-user cold start in terms of MAE, over SML, FT
and BC datasets. The best results are shown in bold font.

Centroid Selection
SML FT BC

MAE2 MAE10 MAE20 MAE2 MAE10 MAE20 MAE2 MAE10 MAE20
KMeans 1.107 0.948 0.892 1.8030 1.756 1.701 3.459 3.339 3.257
KMeansDensity 1.056 0.891 0.852 1.765 1.751 1.675 3.422 3.301 3.211
KMeansSortedDistance 1.045 0.901 0.843 1.754 1.749 1.651 3.432 3.289 3.205
KMeansP lusProbPower 1.021 0.872 0.811 1.721 1.745 1.632 3.401 3.251 3.197
KMeansP lusLogPower 1.011 0.869 0.811 1.729 1.743 1.611 3.411 3.233 3.181

Table 11: Inspecting the performance of different centroid selection approaches under new-user cold start in terms of MAE, over ML and
FM datasets. The best results are shown in bold font.

Centroid Selection
ML FM

MAE2 MAE10 MAE20 MAE2 MAE10 MAE20
KMeans 1.215 1.149 1.085 0.586 0.535 0.521
KMeansDensity 1.149 1.091 1.052 0.545 0.521 0.491
KMeansSortedDistance 1.165 1.101 1.031 0.534 0.517 0.473
KMeansP lusProbPower 1.151 1.085 1.059 0.521 0.505 0.454
KMeansP lusLogPower 1.144 1.093 1.034 0.522 0.511 0.438

Table 12: Inspecting the performance of different centroid selection approaches under new-item cold start in terms of MAE, over SML,
FT and BC datasets. The best results are shown in bold font.

Centroid Selection
SML FT BC

MAE2 MAE10 MAE20 MAE2 MAE10 MAE20 MAE2 MAE10 MAE20
KMeans 0.981 0.911 0.872 1.785 1.721 1.685 3.397 3.365 3.285
KMeansDensity 0.965 0.878 0.842 1.723 1.701 1.645 3.345 3.315 3.254
KMeansSortedDistance 0.941 0.893 0.815 1.712 1.699 1.634 3.321 3.309 3.215
KMeansP lusProbPower 0.912 0.858 0.832 1.732 1.674 1.610 3.319 3.299 3.205
KMeansP lusLogPower 0.921 0.864 0.821 1.722 1.669 1.611 3.305 3.284 3.201

Table 13: Inspecting the performance of different centroid selection approaches under new-item cold start in terms of MAE, over ML and
FM datasets. The best results are shown in bold font.

Centroid Selection
ML FM

MAE2 MAE10 MAE20 MAE2 MAE10 MAE20
KMeans 1.196 1.165 1.088 0.575 0.529 0.481
KMeansDensity 1.151 1.119 1.057 0.545 0.491 0.465
KMeansSortedDistance 1.145 1.104 1.043 0.562 0.487 0.457
KMeansP lusProbPower 1.125 1.087 1.011 0.521 0.475 0.421
KMeansP lusLogPower 1.121 1.091 1.019 0.512 0.476 0.429

Table 14: Inspecting the performance of different centroid selection approaches under long tail in terms of MAE, over SML, FT and BC
datasets. The best results are shown in bold font.

Centroid Selection
SML FT BC

MAE2 MAE10 MAE20 MAE2 MAE10 MAE20 MAE2 MAE10 MAE20
KMeans 0.985 0.927 0.881 1.791 1.725 1.681 3.387 3.375 3.281
KMeansDensity 0.963 0.865 0.845 1.728 1.704 1.643 3.343 3.319 3.261
KMeansSortedDistance 0.942 0.876 0.825 1.715 1.689 1.644 3.311 3.306 3.224
KMeansP lusProbPower 0.919 0.835 0.822 1.722 1.676 1.617 3.316 3.289 3.211
KMeansP lusLogPower 0.924 0.844 0.826 1.725 1.671 1.620 3.309 3.282 3.209

26



Table 15: Inspecting the performance of different centroid selection approaches under long tail in terms of MAE, over ML and FM datasets.
The best results are shown in bold font.

Centroid Selection
ML FM

MAE2 MAE10 MAE20 MAE2 MAE10 MAE20
KMeans 1.198 1.163 1.085 0.577 0.523 0.467
KMeansDensity 1.161 1.127 1.056 0.556 0.471 0.445
KMeansSortedDistance 1.149 1.112 1.063 0.551 0.485 0.432
KMeansP lusProbPower 1.126 1.088 1.024 0.528 0.463 0.413
KMeansP lusLogPower 1.121 1.071 1.018 0.521 0.461 0.429

find the optimal number of clusters for k-means clustering,
to be used for BC and ML datasets, we iterate from 100
to 400 clusters and measures the corresponding MAE. The
MAE shows best results at 150 clusters but after that it
keep on increasing with an increase in number of clusters
for both the datasets, as shown in Figure 8(a). For this
reason we choose 150 clusters, as optimal value for BC and
ML datasets. While tuning optimal number of clusters for
FM dataset, we started from 20 clusters and found that
MAE keep on decreasing till 80 clusters but after that it
increasing. So, we choose 80 clusters to be optimal for FM
dataset, as shown in Figure 8(a).

Appendix A.2. Optimal number of neighbours for the
CCF

To find the optimal number of neighbours to be used in
CCF algorithms, for SML, FT and FM datasets, we iterate
from 10 to 100 neighbours and measured the corresponding
MAE. The MAE decreases significantly till 60 neighbours
when tuned on FT dataset set, as shown in Figure 8(b).
While in the case of SML dataset, the MAE shows best re-
sult at 30 neighbours but after that keeps increasing with
increase in number of neighbours and for FM dataset MAE
keeps decreasing till 50, but shows no variation afterwards,
as shown in Figure 8(b). So we choose 60 neighbours for
SML, 30 for FT, and 50 for FM dataset as optimal values
to be used for subsequent analysis. Also we changed the
number of neighbours from 10 to 160 for tuning optimal
number of neighbours for k-means clustering of BC and
ML dataset, and measured the corresponding MAE. Fig-
ure 8(b) depicts that the MAE keep on decreasing with an
increase in number of neighbours till 100 neighbours, but
after that it increases — for both the dataset. For this rea-
son we choose 100 neighbours, as optimal neighbourhood
size for BC and ML datasets.

Appendix A.3. Optimal number of iterations

To find optimal number of iterations for k-means cluster-
ing, we change the iterations from 1 to 8 (keeping other pa-
rameters fixed). Figure 8(c) shows the variations in MAE
when tuned on SML dataset. Though at iteration = 6,
the MAE shows minimum value but we observe that after
4 iterations, decrease in MAE is insignificant. Therefore
we choose optimal number of iterations to be 4, to keep a
good balance between performance and computational re-
quirements. For FT dataset we observe that MAE shows

significant improvement at iteration = 2, after that MAE
keep on increasing with an increase in number of itera-
tions. So we choose optimal number of iterations to be 2
for FT dataset. Similarly when tuned on BC, ML and FM
datasets, the MAE decreases significantly till 5 iterations
and shows minimum value at 5 iterations as shown in Fig-
ure 8(c). For this reason we choose 5 iterations, as optimal
value for BC, ML, and FM datasets.

Appendix B. Result of Experiments on different
Centroid Selection Approaches

Figures in this section show results of different centroid
selection approaches over optimal parameter tuned for this
work. Brief summary of the results is given in figure de-
scription.
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(c) Finding the optimal numbers of iter-
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Figure A.8: (From left to right, top to bottom) Determining the optimal number of clusters, neighbourhood size in the Cluster-based CF
algorithm (CCF), and number of iterations (itr) in k-means clustering algorithm through the test sets of SML, FT, BC, ML, and FM datasets.
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(a) SML Recommendation Results (b) FT Recommendation Results

(c) BC Recommendation Results (d) ML Recommendation Results

(e) FM Recommendation Results

Figure B.9: Inspecting the performance of different centroid selection approaches by measuring ROC-Sensitivity, precision, recall, and F1
over SML, FT, BC, ML and FM datasets. For both SML and BC datasets, results of Algorithm 4 (KmeansDensity) and Algorithm 18
(KMeansUniform) are comparable, and also better than others, while for FT dataset, results show that Algorithm 9 (KMeansP lusDensity)
outperforms all the rest for all four measures. For ML dataset Algorithm 14 (KMeansNormalUsers) give best results while for FM dataset
results of Algorithm 11 (KMeansP lusPower) and Algorithm 6 (KMeansV arianceAvgPairwise) are comparable as well as better then all
other approaches.
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(a) SML Results (b) FT Results

(c) BC Results

(d) ML Results

(e) FM Results

Figure B.10: How the performance of different centroid selection approaches is affected by Sparsity. Results are shown in terms of MAE,
which shows that convention k-means (Algorithm 1) suffers the most under sparse conditions, over all five datasets.
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(a) SML Cluster Building Time (b) FT Cluster Building Time

(c) BC Cluster Building Time (d) ML Cluster Building Time

(e) FM Cluster Building Time

Figure B.11: Comparing the cluster building time of different centroid selection approaches over SML, FT, BC, ML and FM datasets. Different
algorithms based on data distributions take minimum cluster building time for all five datasets.
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(a) SML Recommendation Coverage (b) FT Recommendation Coverage

(c) BC Recommendation Coverage (d) ML Recommendation Coverage

(e) FM Recommendation Coverage

Figure B.12: Comparing the recommendation coverage of different centroid selection approaches, Figure shows that Algorithm 12
(KMeansP lusProbPower) and Algorithm 13 (KMeansP lusLogPower) give the maximum coverage for all five datasets.
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[21] Ghazanfar, M. A., & Prügel-Bennett, A. (2010). A scalable,
accurate hybrid recommender system. In Proceedings of the
2010 Third International Conference on Knowledge Discovery
and Data Mining WKDD ’10 (pp. 94–98). Washington, DC,
USA: IEEE Computer Society.
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