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Abstract- The aim of this paper is to determine the stability 
of higher-order ∆-Σ modulators using the Describing 
Function Method. The maximum stable input limits for 
third-, fourth- and fifth-order Chebyshev Type II based ∆-Σ 
modulators are established. These results are useful for 
optimising the design of higher-order ∆-Σ modulators. 

 
I. INTRODUCTION 

 
      The stable input amplitude limits for ∆-Σ modulators 
is complicated to predict due to the non-linearity 
introduced by the quantizer in the feedback loop. Various 
approaches have been employed to explain this nonlinear 
behaviour. Using quasilinear modeling, a new 
interpretation of the instability mechanism for ∆-Σ 
modulators based on the noise amplification curve is 
given in [1]. This is restricted for dc inputs and unity 
quantizer gains. The quasilinear method can be extended 
to more than one input with each input represented by a 
separate equivalent gain. This concept forms the basis for 
the Describing Function (DF) method [2]. In this paper, 
the stability analysis based on the noise amplification 
curve is accomplished using the DF method for dc and 
sinusoidal inputs for non-unity quantizer gain values. In 
Section II, the quasilinear stability of ∆-Σ modulators is 
explained based on the noise amplification curve. In 
Section III, the derivation of the noise amplification 
curves for dc and sinusoidal inputs with the DF method is 
shown. The simulation results are illustrated and 
discussed in Section IV concluding with Section V. 

 
II. QUASILINEAR STABILITY ANALYSIS OF ∆-Σ 

MODULATORS 
 

     A generic ∆-Σ modulator having its quantizer replaced 
by a gain factor K followed by additive quantization noise 
q(k) [1] is shown in Figure 1. 

 
Figure 1. Quasilinear ∆-Σ modulator Quantizer Model. 

The output of the modulator in the z-domain is given by  
                   )()()()()( zQzNTFzXzSTFzY +=                (1) 
where, Y(z), X(z) and Q(z) are the z-transforms of the output, 
input and quantizer noise signals respectively. Also, STF(z) 
and NTF(z) are the Signal and Noise Transfer functions of the 
∆-Σ modulator derived from  Figure 1. 
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Equations (2) and (3) show that the poles of the denominator 
(1+KH(z)) determine the stability of the modulator. For a 
given H(z), there will be a certain interval [Kmin, Kmax] for 
which the modulator is stable [3]. Assuming q(k) to be 
Gaussian white stochastic G(0, σq

2) and the transfer function 
between q(k) and y(k) to be known, then the output noise 
variance is given by: 
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where, σq
2 is the variance of q(k) and A(K) is the total output 

noise power amplification factor. Using Parseval’s relation, 
A(K) can be found in the time domain as [1] 
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where ntf(k) is the impulse response corresponding to NTF(z) 
and A(k) is the squared two-norm of NTF(z).  The A(K) curves 
of the loop-filter are crucial for the stability analysis of the ∆-
Σ modulators. Typical curves for Type II Chebyshev 3rd and 
4th order are shown in Figure 2. Chebyshev filters achieve 
better in-band Signal-to-Noise Ratio and Dynamic Range 
compared with Butterworth filters of the same order. 
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Figure 2. A(K) Curves for Type II Chebyshev NTF. 
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      The Amin value is the global minimum of the curve. If K 
increases slightly in the region where A(K) is monotonically 
increasing, it results in a higher A(K) value which leads to 
more quantisation noise transfer into the ∆-Σ modulator. This 
tends to decrease K leading to a stable equilibrium state [1]. 
However, where the A(K) curve is monotonically decreasing, 
even small perturbations can destabilize the modulator. As the 
signal power increases, the values along the A(K) curve 
decrease and approach Amin. The two values of K come close 
together and finally merge at Amin. This characterizes the onset 
of instability. The modulator operating region escapes to the 
left portion of the curve where it is characterized by low 
values of K. Therefore, for stable operation A(k)>Amin.  

 
III. NOISE AMPLIFICATION CURVES – DF METHOD 

 
      The quasilinear quantizer model in Figure 1 can be 
extended using separate gains Kx and Kn for the DF model as 
shown in Figures 3 and 4 [4]. 

 
Figure 3. ∆-Σ modulator Quantizer Signal-Model 

 
Figure 4. ∆-Σ modulator Quantizer Noise-Model 

 
Figure 3 describes the model for the input signal with linear 
gain Kx whereas Figure 4 describes the noise signal model 
with linear gain Kn. The combined output signal is given by: 
 
                                  ( ) ( )kykyky nx +=)( .                          (6) 
A. DC Input 
 
      The linearized gains for a one bit quantizer with an output 
±∆ have been calculated in [4] as shown below:  
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where me is the mean value of the quantizer input in the signal 
model and 2

neσ is the noise variance input to the quantizer in 
the noise model. The variance of the output signal is given by:  

             ( ){ } { } { })(2)(2 kyEkyEkyVar −= .                         (9) 
The output signal in the time-domain can be written as:  
               ( ) ( ) ( ) ( ) xKkxekqnKkneky ++= .                      (10) 
The first term on the right hand side of (9) is the power of the 
output signal which is given by:  
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As the mean values of en(k) and q(k) are equal to zero, then the 
second term on the right hand side of (9) is: 
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The resultant variance of the output signal using (9), (12) and 
(13) becomes: 
                       ( ){ } 222
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n

σσ += .                         (14) 
The noise power amplification factor for a dc input signal 
Adc(K) after using (4), (7) and (14) simplifies to: 
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where λ is a factor defined as: λ=me/σen√2 and σq
2 is the 

quantization noise given by [4] 

              





























∆
−−

−
∆

−∆=

2
122

2122
xmerf

exm
q

π
σ .          (16) 

 
B. Sinusoidal Input 
 
      The linearised gains for a sinusoidal input and random 
Gaussian feedback components have been solved for the case 
of an ideal relay in [5] and are shown below: 
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Here,
ne

a
συ 1

2
∆ , where a is the amplitude of the sinusoidal 

input signal x(k). The expression ( )xF ,,γα  is the confluent 
hypergoemetric function defined by [6]: 
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The variance of the output signal is given by: 
                  ( ){ } ( ){ } ( ){ }kyEkyEkyVar 22 −= .                      (20) 
The power of the output signal is given by: 
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where, σqs
2 is the quantization noise power for a sinusoidal 

input. The second term on the right hand side of (20) is: 
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where the mean values of en(k) and q(k) are zero. Since the 
input signal is a sinusoid modelled as a Random Variable 
(RV) with a certain amplitude and phase having a uniform 
Probability Density Function (PDF). Therefore, E{ex(k)}=0.  
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Given that the frequency of x(k) is small in the baseband 
region, this then results in: 
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The variance of ex(k) is: 
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From (25) and (27), the output signal variance is: 
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The output noise variance is therefore: 
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Substituting (17) in (29), the noise amplification factor for a 
sinusoidal input signal is given by: 
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The values of υ and σqs
2 can be found using the following 

expressions derived in [4]: 
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IV. RESULTS & SIMULATIONS 
 

The variation of the dc and sinusoidal input quantisation 
noise σq

2 and σs
2 with respect to the input signal amplitude 

using (16) and (32) are shown in Figure 5.  As can be seen, σq
2 

decreases and becomes zero as the input signal amplitude 
increases to unity. The quantization noise σs

2 does not 
decrease to zero and remains at 0.3 for an input amplitude of 
1.0. 
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            Figure 5.  Quantization Noise for dc & Sinusoidal Inputs 
 
Equation (31) has been solved for υ up to the 10th power of the 
polynomial using a MATLAB routine. Figure 6 shows the 
variation of λ and υ with respect to the input signal amplitude.  
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                                 Figure 6. Variation of υ & λ. 
 
It has been observed that for amplitudes less than 0.4, the 
quantization noise, λ and υ are almost the same for dc and 
sinusoidal inputs. This coincides with the fact that in nonlinear 
feedback systems, the effective gain of the non-linearity on a 
small signal is independent of the type of signal [2]. The noise 
amplification factors Adc(K) and Asin(K) using (15) and (30) are 
illustrated in Figure 7. It is seen that the values of Adc(k) using 
the DF method are the same as in [1].  
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     Figure 7. Noise Amplification Factor for sinusoidal & dc inputs 
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Using Adc(k) and Asine(k), the maximum stable input 
amplitudes for the 3rd, 4th and 5th order Chebyshev Type II 
based ∆-Σ modulator are demonstrated in Figure 8.  
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   Figure 8. Maximum stable input amplitude for Chebyshev Type II NTF(z). 
 
However, these are true for unity values of K. The variation of 
the stable sinusoidal input amplitude for a 4th-order Chebyshev 
Type II based ∆-Σ modulator in relation to K and the stop-
band attenuation is shown in Figure 9.  
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Figure 9.  Stable amplitude variation with Quantizer Gain & stop band. 

 
The stable input amplitude variation for dc and sinusoidal 
inputs to a 5th order Chebyshev Type II based ∆-Σ modulator 
(stop band attenuation at 67 dB) is shown in Figure 10. 
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       Figure 10.  Stable amplitude variation with Quantizer Gain 

 
Simulations for the 5th-order Chebyshev Type II based ∆-Σ 
modulator implemented in the feed forward topology were 
undertaken for 1638400 time samples with an increase in input 
amplitude in steps of 0.1. The maximum stable amplitude 
limits were observed and the corresponding values of K were 
calculated using (33) [7] 
 

           K=Covariance{e(k),y(k)}/σe
2                      (33) 

 
The predicted values of the maximum stable amplitudes were 
obtained from Figure 10. 
 

Table I. SIMULATION RESULTS. 
Signal K Predicted Stable 

Amplitude 
Stable Amplitude 

As per Simulations 
dc 1.62 0.52 0.63 

sine 1.70 0.69 0.66 
 
The difference in values is attributed to the composition of the 
quantization noise which is not entirely Gaussian [7]. 

 
V. CONCLUSION 

 
      The stability of higher-order ∆-Σ modulators for dc and 
sinusoidal inputs using the Describing Function Method has 
been predicted. The maximum stable input limits for the 3rd-, 
4th- and 5th-order Chebyshev Type II based ∆-Σ modulator 
have been established for a unity quantizer gain. More 
accurate results for the stable amplitude curves can be 
obtained for a range of values of quantizer gain K in which the 
∆-Σ modulators are likely to operate. A future publication 
would include the analysis for multiple sinusoidal inputs.  
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