
1

2

3

4 Q1

5

7

8
9

10
11
12

13
14
15
16
17

1 8

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

Q2

The Journal of Systems and Software xxx (2008) xxx–xxx

JSS 8229 No. of Pages 12, Model 5G

20 November 2008 Disk Used
ARTICLE IN PRESS
Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier .com/ locate/ jss
O
FIdentifying exogenous drivers and evolutionary stages in FLOSS projects

Karl Beecher *, Andrea Capiluppi, Cornelia Boldyreff
Centre of Research on Open Source Software – CROSS, Department of Computing and Informatics, University of Lincoln, UK
19
20
21
22
23
24
25
26
27
28
a r t i c l e i n f o

Article history:
Received 11 January 2008
Received in revised form 22 October 2008
Accepted 24 October 2008
Available online xxxx

Keywords:
Open source software
Software evolution
Software repositories
29
30
31
32
33
34

0164-1212/$ - see front matter � 2008 Published by
doi:10.1016/j.jss.2008.10.026

* Corresponding author. Tel.: +44 01522 886858.
E-mail address: kbeecher@lincoln.ac.uk (K. Beeche

Please cite this article in press as: Beecher
ware (2008), doi:10.1016/j.jss.2008.10.026
T
E
D

P
R

Oa b s t r a c t

The success of a Free/Libre/Open Source Software (FLOSS) project has been evaluated in the past through
the number of commits made to its configuration management system, number of developers and num-
ber of users. Most studies, based on a popular FLOSS repository (SourceForge), have concluded that the
vast majority of projects are failures.

This study’s empirical results confirm and expand conclusions from an earlier and more limited work.
Not only do projects from different repositories display different process and product characteristics, but
a more general pattern can be observed. Projects may be considered as early inceptors in highly visible
repositories, or as established projects within desktop-wide projects, or finally as structured parts of
FLOSS distributions. These three possibilities are formalized into a framework of transitions between
repositories.

The framework developed here provides a wider context in which results from FLOSS repository mining
can be more effectively presented. Researchers can draw different conclusions based on the overall char-
acteristics studied about an Open Source software project’s potential for success, depending on the repos-
itory that they mine. These results also provide guidance to OSS developers when choosing where to host
their project and how to distribute it to maximize its evolutionary success.

� 2008 Published by Elsevier Inc.
35
C
59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81
U
N

C
O

R
R

E1. Introduction

The environment in which software is deployed is known to
have a direct effect on its subsequent evolution. Lehman’s first
law of software evolution anticipates that useful real-world soft-
ware systems (i.e., E-type) must undergo continuing change in
response to various requirements, in other words they must evolve
(Lehman et al., 1997). The LAMP stack (Linux, Apache, MySQL, Perl/
PHP/Python), the Mozilla Foundation and the BSDs family are well-
known examples of open source E-type software systems, and as
such are no exception to this rule.

The successful evolution of such open source software projects
has been made possible (among other factors) also by their attrac-
tion of large communities of both users and developers, two cate-
gories that notably are not mutually exclusive in open source
software. Users initiate the need for change and the developers
implement it (Mockus et al., 2002). The extent to which an open
source project is successful has often been evaluated empirically
by measuring endogenous characteristics, such as the amount of
developer activity, the number of developers, or the size of the pro-
ject (Crowston et al., 2006; Godfrey and Tu, 2000; Robles et al.,
2003). As an example, a thorough study of Sourceforge.net (a pop-
ular repository of more than 200,000 open source projects) con-
82

83

84

Elsevier Inc.

r).

, K. et al., Identifying exogen
cluded that the majority of projects housed there should be
considered ‘‘tragedies” by virtue of their failure to initiate a steady
series of releases (English and Schweik, 2007).

The general success of open source software projects has
accompanied the wider establishment of organized repositories
aiming to facilitate their development and management. In a pre-
vious work Beecher (XXXX) the authors examined a collection of
open source projects, and studied instead the exogenous drivers
acting upon them and established to what extent the repositories
in which a project is located affects its evolutionary characteristics.
By comparing equally sized random samples from two open source
repositories and also tracking the evolution of projects that moved
between them, this earlier study concluded that a repository typi-
cally has statistically significant effects upon characteristics such
as the number of contributing developers as well as the period
and amount of development activity.

This work extends and expands the previous study in two ways.
First, it encompasses a greater number of repositories; instead of
the original two, this paper formulates hypotheses and gathers
empirical evidence from data extracted from six different FLOSS
repositories, and provides further empirical evidence for the earlier
assertions. By making multiple comparisons between them, a
structured body of knowledge has been constructed regarding
the key practical differences between the individual FLOSS reposi-
tories being studied. Secondly, the paper formulates a framework
of evolution for FLOSS projects, based on the repository to which
ous drivers and evolutionary stages in FLOSS projects, J. Syst. Soft-

mailto:kbeecher@lincoln.ac.uk
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss
Original text:
Inserted Text
(2008)

Original text:
Inserted Text
equally-sized 

kbeecher
Cross-Out

kbeecher
Replacement Text
S

kbeecher
Sticky Note
Accepted set by kbeecher

kbeecher
Sticky Note
Accepted set by kbeecher

kbeecher
Sticky Note
Accepted set by kbeecher

kbeecher
Sticky Note
Accepted set by kbeecher

kbeecher
Sticky Note
Accepted set by kbeecher



T

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

1 http://ossmole.sourceforge.net/.

2 K. Beecher et al. / The Journal of Systems and Software xxx (2008) xxx–xxx

JSS 8229 No. of Pages 12, Model 5G

20 November 2008 Disk Used
ARTICLE IN PRESS
U
N

C
O

R
R

E
C

they belong, comprising a typical path of evolution between repos-
itories, which exploits better process and product characteristics of
projects in particular repositories.

The paper is articulated as follows: Section 2 explores previous
work and shows how the findings of this paper extend and expand
upon past literature on the subject. Section 3 tailors the Goal-Ques-
tion-Metric methodology to this specific case study, and introduces
the empirical hypotheses on which this study is based, the null
hypotheses and their alternative counterparts, and discusses how
they have been operationalized. It also describes which reposito-
ries have been selected, how the data has been extracted from
them, and which attributes have been used to characterize their
process and product aspects. Sections 4 and 5 illustrate the results
gathered, and verifies whether the hypotheses have to be rejected.
Section 6 provides the discussion for the empirical findings and
introduces the framework for the evolution of FLOSS projects along
repositories; Section 7 explores the threats to the external and
internal validity of this empirical study, while Section 8 provides
the key findings of this research.

2. Previous work

There are two main types studies found in the FLOSS literature,
one termed external and the other internal to the FLOSS phenome-
non (Beecher, XXXX). Based on the availability of FLOSS data, the
former has traditionally used FLOSS artefacts in order to propose
models (Hindle and German, 2005), test existing or new frame-
works (Canfora et al., 2007; Livieri et al., 2007), or build theories
(Antoniol et al., 2001) to provide advances in software engineering.
The latter includes several other studies that have analyzed the
FLOSS phenomenon per se (Capiluppi, 2003; German, 2004; Herraiz
et al., 2008; Stamelos et al., 2002) with their results aimed at both
building a theory of FLOSS, and characterizing the results and their
validity specifically as inherent to this type of software and style of
development. In this section a selection of works from the latter
category is reviewed.

The success and failure of FLOSS projects has been extensively
studied in the past; some specific repositories have been analyzed,
and metrics have been computed from data extracted from them.
Examples include the use of the vitality and popularity indexes,
computed by the SourceForge maintainers, which have been used
to predict other factors on the same repository (Stewart and
Ammeter, 2002), or to compare the status of the projects between
two different observations (Feller et al., 2002). Also data has been
collected from SourceForge about community size, bug-fixing time
and the popularity of projects, and has been used to review some
popular measures for success in information systems related to
the FLOSS case (Crowston et al., 2003). Popularity of FLOSS projects
has also been assessed using web-search engines (Weiss, 2005).
Other studies have observed projects from SourceForge, and from
their release numbers, their activity or success within a sample
(Crowston et al., 2006) has been inferred; while other research
has sampled the whole SourceForge data space, and has concluded
that the vast majority of FLOSS projects should be considered as
failures (Rainer and Gale, 2005). Finally, other researchers have
created 5 categories for the overall SourceForge site, based on dy-
namic growth attributes, and using the terms ‘‘success” and ‘‘trag-
edy” within the FLOSS development. Again, it has been shown that
some 50% of the FLOSS projects should be considered as tragedies
(English and Schweik, 2007).

This study is intended as an extension of a previous study to
amplify a promising set of findings when comparing the character-
istics of two different FLOSS repositories, Debian and SourceForge
(Beecher, XXXX). It was found that projects in the Debian reposi-
tory consistently achieved larger sizes and more developer activity
Please cite this article in press as: Beecher, K. et al., Identifying exogen
ware (2008), doi:10.1016/j.jss.2008.10.026
E
D

P
R

O
O

F

than their SourceForge counterparts; in addition, it was found that,
within the Debian sample, these increased measures could be ob-
served typically after the projects were included in the Debian
repository. The present study expands the previous data base and
results by considering four other repositories (KDE, GNOME, Ruby-
Forge and Savannah), extracts similar samples from each of the
resulting six repositories (50 projects each from the repository’s
‘‘stable” pool), and studies four product and process characteristics
of the projects in the samples. Based on these experiments, this
study also provides a more general framework for the evolution
of FLOSS projects.

There are several tools and data sources which are used to ana-
lyze FLOSS projects. FLOSSmole1 is a single point of access to data
gathered from a number of FLOSS repositories (e.g., SourceForge,
Freshmeat, Rubyforge). While FLOSSmole provides a simple querying
tool, its main function is to act as a source of data for others to ana-
lyze. CVSAnaly2 is a tool which is used to measure any analyses from
large FLOSS projects (Robles et al., 2004). It is used in this paper to
determine such measures as the number of commits and developers
associated with a particular project.

3. Empirical study definition and planning

The Goal-Question-Metric method (GQM) Basili et al. (1994)
evaluates whether a goal has been reached by associating that goal
with questions that explain it from an operational point of view
and provide the basis for applying metrics to answer these ques-
tions. The aim of the method is to determine the information and
metrics needed to be able to draw conclusions on the achievement
of the goal.

In this study, the GQM method is applied firstly to identify the
overall goals of this research; then to formulate a number of ques-
tions related to FLOSS repositories and their exogenous (or exter-
nal) effects on the underlying process and product characteristics
of the FLOSS projects they comprise; and finally to identify and col-
lect adequate product and process metrics to determine whether
the identified goal has been achieved. In the following, the goal,
questions and metrics used are introduced and commented upon.

(1) Goal: The long-term objective of this research is to evaluate
characteristics and associated metrics to identify successful
FLOSS projects, and to investigate whether different reposi-
tories can be held externally responsible for this success. In
this particular work, the aim is to establish whether (and if
so to what extent) inclusion of a project within a repository
causes a project to increase its ‘‘success”, and hence establish
a cause-effect relationship. As a corollary goal, this work
aims to provide guidelines to FLOSS developers about prac-
tical actions to take in order to foster the successful evolu-
tion of their applications.

(2) Question: The purpose of this study is to establish differ-
ences between samples of FLOSS projects extracted from var-
ious repositories. Two research questions have been
formulated for evaluation; one is thoroughly comparative,
and one is related to a formulated framework of reference
for FLOSS repositories. The first deals with a direct compari-
son; the evolutionary characteristics of the projects have
been compared with projects from other repositories. The
second clusters the repositories in distinct groups and formu-
lates hypotheses based on the effectiveness of each group on
the observed characteristics. As a summary, the two main
questions underlying this study can be formulated as follows:
2 http://cvsanaly.tigris.org/.

ous drivers and evolutionary stages in FLOSS projects, J. Syst. Soft-

http://ossmole.sourceforge.net/
http://cvsanaly.tigris.org/
Original text:
Inserted Text
XXX

Original text:
Inserted Text
XXX

kbeecher
Cross-Out

kbeecher
Replacement Text
2008

kbeecher
Cross-Out

kbeecher
Replacement Text
2008



207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

K. Beecher et al. / The Journal of Systems and Software xxx (2008) xxx–xxx 3

JSS 8229 No. of Pages 12, Model 5G

20 November 2008 Disk Used
ARTICLE IN PRESS

Pleas
ware
(a) Are the various repositories significantly different
from each other, in terms of both process and product
characteristics?

(b) Based on the same characteristics, do repositories
cluster in different groups? Are these groups signifi-
cantly different from each other, when comparing
these characteristics?
279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297
(3) Metrics: This study uses two sources of data to answer the
above questions: the repositories themselves, which have
been mined to select random samples of projects; and each
project’s own repository (either their CVS or SVN) which has
been studied to analyze activity and the outputs recorded by
the configuration management systems. In each case the
metrics have been taken from the project’s source code
repository log (CVS or SVN); exceptions and filtering of noise
in data has also been performed, as detailed in the following
sections. Two types of metrics have been collected through-
out this study, and these are detailed below:

Process metrics number of distinct developers and devel-
opers’ effort (in the form of distinct
touches);

Product metrics size achieved in terms of SLOC (sources
lines of code) and duration of the effort
(number of days of activity observed in
either the CVS or SVN repository).
T

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334
U
N

C
O

R
R

E
C

3.1. Code repositories

This study mines data from six FLOSS repositories (listed below)
to address the above questions. In order to achieve a reasonable
comparison, in all cases, the samples have been drawn from a pool
of ‘‘stable” projects from these repositories described below:

(1) The Debian project (http://www.debian.org/) hosts a large
number of FLOSS projects under a common name. At the
time of writing, more than 20,000 projects are listed under
the ‘‘stable” label of the latest version. Projects analyzed in
this study must have this label.

(2) GNOME (http://gnome.org) is a desktop environment and
development platform for the GNU/Linux operating system.
Its software repository is organized into more than 600 soft-
ware programs. Whilst GNOME has no method of explicitly
designating projects as ‘‘stable”, projects sampled for this
study come only from the main development trunk – other
locations such as branches or incubators are not considered.

(3) KDE (http://kde.org) is another desktop environment and
development platform for the GNU/Linux operating system.
Like GNOME, KDE does not explicitly label the development
status of projects, so samples are drawn from the main
development trunk only.

(4) The RubyForge website (http://rubyforge.org) acts as a
development management system for over 4,500 projects
programmed in the Ruby programming language, 360 of
which are labelled as ‘‘Production/Stable”.

(5) The Savannah project acts as a central point for the develop-
ment of approximately 2850 free software projects (http://
savannah.gnu.org and http://savannah.nongnu.org). The
Savannah sample has been drawn exclusively from the set
of projects marked ‘‘Production/Stable”.

(6) Finally, the SourceForge site (http://sourceforge.net) hosts
more than 150,000 projects. The sample from SourceForge
has been extracted from only the pool of projects whose core
e cite this article in press as: Beecher, K. et al., Identifying exogen
(2008), doi:10.1016/j.jss.2008.10.026
E
D

P
R

O
O

F

developers have labelled the status of the project with the
tag ‘‘Production/Stable”.

Each repository has a sample of 50 individual projects chosen
from it by a randomizer, and a checkout has been performed on
each member project of each sample (from either their CVS or
SVN source control repositories). The list of analyzed projects is
shown in Appendix. Each of these sources has been analyzed to ob-
tain the metrics needed to perform the investigation; the measures
for the study are introduced in the section below.

3.2. Measured characteristics

In order to compare these repositories with their different char-
acteristics, scope and underlying communities, the following, com-
mon characteristics have been measured to build a table of results
for each project. Those noted in bold are the actual attributes used
in the paper to evaluate and test the empirical hypotheses. The rel-
evant definitions and measured characteristics are as follows:

� Commit: the atomic action of a developer checking in one or
more files (being source code or other) into a central repository.

� Committers: this information has been recorded in two ways:
firstly by assigning the activity to the actual developer who
placed the file into the repository, and automatically recorded
it; and secondly by using any further developers who were men-
tioned in the commit, by means of mentioning his/her involve-
ment in the coding or patching. This information has been
used to characterize the involvement of distinct developers in
each project.

� Modules and subsystems: at a fine granular level, both CVS and
SVN repositories record activity on files (here termed as ‘‘mod-
ules”) and their containing folder (termed ‘‘subsystem”).

� Date: CVS/SVN repositories record the time when the module
and its subsystem was modified or created from scratch, typi-
cally in the ISO formatting ‘‘YYYY-MM-DD”. For the purpose of
this work, a date in the form ‘‘YYYY-MM” has been recorded,
hence this work has analyzed the activity and the involvement
of developers on a monthly basis only.

� Size: the size of the project has been detected from the source
code, which is measured in SLOCs. It has been shown in the past
that this metric, when used within a sample of FLOSS projects,
had similar growth patterns to other metrics related to size, spe-
cifically number of files or modules (Herraiz et al., 2006) and
number of folders containing source code (Capiluppi et al.,
2004). Moreover this metric is part of the most widely used
techniques in various research fields, for example cost estima-
tion (Boehm et al., 2000). Although several criticisms were
raised in the past, it is possible to postulate that it is a viable
approach for measuring size of a software system. Alternative
measures to SLOCs such as function points are also affected by
problems and weaknesses, given their strong theoretical support
based on Halstead’s software science (Hamer and Frewin, 1982;
Shen et al., 1983).

� Duration: the age of the project is measured by number of days
over which the project has been developed. This has been eval-
uated using the earliest and the latest available dates in the CVS/
SVN repositories. This measurement shows the time-span over
which FLOSS developers adopted a Software Configuration Man-
agement server in order to enable distributed development to be
properly performed.

� Distinct touches: since many modules and subsystems can be
committed in the repository within the same commit, and the
same module could have been modified by more than one devel-
oper in the same commit, the term ‘‘touch” has been used to iso-
late the atomic information of a unique developer, unique date
ous drivers and evolutionary stages in FLOSS projects, J. Syst. Soft-

http://www.debian.org/
http://gnome.org
http://kde.org
http://rubyforge.org
http://savannah.gnu.org
http://savannah.gnu.org
http://savannah.nongnu.org
http://sourceforge.net
Original text:
Inserted Text
Table 8

Original text:
Inserted Text
time span 

kbeecher
Sticky Note
Accepted set by kbeecher



335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350
351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

4 K. Beecher et al. / The Journal of Systems and Software xxx (2008) xxx–xxx

JSS 8229 No. of Pages 12, Model 5G

20 November 2008 Disk Used
ARTICLE IN PRESS
and unique union on module and subsystem. As an example, if a
project obtains 200 commits in a given month, but those apply
to the unions {subsystemA/moduleA, e.g. 100 commits}, {sub-
systemB/moduleB, e.g. 80 commits} and {subsystemC/moduleC,
e.g. 20 commits}, the activity recorded for that specific month is
only 3. This information is gained automatically by parsing the
CVS/SVN log for the project (see Fig. 1); in this case, the commit-
ter (yakk) is held responsible for the effort together with the
author of the patch (buddy@email.com).

� Distinct developers: information on distinct contributing devel-
opers is obtained by analyzing commit logs (see the sample in
Fig. 1). Every touch has an committer ID attached to it and this
is recorded. The information is then filtered through a ‘‘distinct”
clause: specifically, the number of unique developers per month
is recorded, in order to record the real involvement of develop-
ers and to avoid cumulative effects.
 O
U
N

C
O

R
R

E
C

T

Fig. 1. Excerpt from a sample SVN log file sho

Fig. 2. Boxplots of the four attributes under investigation for (D)ebian

Please cite this article in press as: Beecher, K. et al., Identifying exogen
ware (2008), doi:10.1016/j.jss.2008.10.026
F

3.3. Distribution of data in the repositories

The distributions of the projects within the samples are repre-
sented in boxplots (Tukey, 1977) in Fig. 2. Both the distributions
of SLOCs and Project Duration (top left and top right, respectively)
are composed of one measurement per project per repository: the
SLOCs at the time of extraction (October 2007) and the length (in
days) of the configuration management logs retrieved respectively
for each project. The other two boxplots represent a measure of the
activity, in terms of distinct commits, and the involvement of dis-
tinct developers (bottom left and bottom right, respectively). Since
nearly all the projects in each sample span several months, a single
value in each case (i.e.the median) has been recorded, per project
and per repository, to summarize the evolution of these attributes.

As is visible in Fig. 2, the sample from the Debian repository ap-
pears to achieve the largest sizes in SLOCs, with several outliers
E
D

P
R

O

' '

wing one commit that touches two files.

, (G)NOME, (K)DE, (R)ubyForge, (Sa)vannah and SourceForge (SF).

ous drivers and evolutionary stages in FLOSS projects, J. Syst. Soft-



T

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387 Q3

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

K. Beecher et al. / The Journal of Systems and Software xxx (2008) xxx–xxx 5

JSS 8229 No. of Pages 12, Model 5G

20 November 2008 Disk Used
ARTICLE IN PRESS
skewing its distribution (median: 39,590 SLOCs). The samples from
the other repositories, excluding the outliers, appear comparable
with one another, in terms of medians. In contrast, observing the
three distributions of duration, commits and developers, a first
group (Debian, KDE and GNOME) appears as achieving consistently
larger values than a second group (RubyForge, Savannah and
SourceForge). This is especially true for the number of distinct
developers per month, which is typically capped by at most ‘‘one
developer” in the second group; and for the activity of monthly
commits, which has a larger variance in the first group.

The application domains of the six samples has also been stud-
ied. Table 1 summarizes the domains as collected for every project
composing all the samples, and shows the relative percentage of
each domain of the sample. These domains are those used within
SourceForge site to effectively cluster the FLOSS projects. As visible,
the back-end applications (‘‘System” and ‘‘Software Development”)
together form some 40% of all the topics. Appendix, details the do-
mains for each sample. Several different domains are detected also
in KDE and GNOME, although one would expect that most of their
projects to fall into a ‘‘Desktop Environment” category (see Table 2).

The initial observation of these distributions has led to the for-
mulation of the following research questions:

� Is it true that all the repositories produce similar results in terms
of the process and product characteristics studied?

� Is it possible to group repositories into categories that achieve
statistically different results?

In the following Section 4, the first of these questions will be
analyzed statistically, by comparing each distribution with the oth-
ers on the four presented characteristics.

3.4. Statistical Tests

Each data set is compared to another using the unpaired Wilco-
xon test. The critical information of this test is as follows:
U
N

C
O

R
R

E
C

Table 1
Summary of the application domains. The shortcut is also used in Appendix.

Application domain Shortcut Ratio

Communications A 9%
Database B 3%
Desktop environment C 5%
Education D 1%
Formats and protocols E 2%
Games/entertainment F 8%
Internet G 13%
Multimedia H 8%
Office/business I 1%
Other/nonlisted topic J 1%
Printing K 0
Rails L 1%
Scientific/engineering M 7%
Security N %
Software development O 20%
System P 19%
Terminals Q 0
Text editor R 2%

Table 2
Summary of statistical tests used and their purpose per hypothesis.

Statistical test What the test establishes

Hypothesis 1 Bi-directional unpaired
Wilcoxon

If the two samples are from different
probability distributions

Hypothesis 2 One-directional
unpaired Wilcoxon

If one sample is from a probability
distribution that differs from another in
a specified direction

Please cite this article in press as: Beecher, K. et al., Identifying exogen
ware (2008), doi:10.1016/j.jss.2008.10.026
� Its purpose is to test whether or not the two samples are from
different probability distributions.

� It assumes that the probability distribution is non-parametric,
and that the two samples are independent.

The resultant value (the p-value) informs of the probability that
random sampling of two populations would lead to a difference
between the sample means as large (or larger) than that observed
in the samples. By convention 0.05 or less is the desired p-value.
433

434

435

436

437

438

439

440

441
E
D

P
R

O
O

F4. Results: research question 1 – hypotheses

The further research to answer the first question has been de-
signed as a direct comparison between the six samples of stable
projects extracted from the repositories, and its objective is to
highlight any significant difference based on the chosen character-
istics. Four hypotheses have been formulated and evaluated empir-
ically. Given the null hypothesis and the alternative hypotheses in
the second and third columns of Table 3, a statistical test (Wilco-
xon, 1945) will allow the null hypothesis to be either rejected or
confirmed. The threshold for the significance of the p-values will
be modified with the Bonferroni correction (Cabin and Mitchell,
2000); although this approach has suffered from criticisms in the
past (Perneger, 1998), it is relevant here because multiple tests
are being carried out. The R programming language has been used
to carry out these tests based on evaluation of the data extracted
earlier from the respective repositories Dalgaard, 2002. A summary
of the tests and their results will be provided at the end of this sec-
tion to draw together the relevant conclusions. Each hypothesis is
briefly introduced in the following:

� Hypothesis 1.1 – Size achieved: The first hypothesis postulates
that the typical size of a project differs significantly for each
repository, in terms of SLOC, with the null hypothesis stating
that all the repositories have similar project sizes, to be rejected
if project sizes are shown to be significantly different.

� Hypothesis 1.2 – Activity (touches): The second hypothesis for
question 1 postulates that the amount of observed activity (or
output) differs among repositories. Specifically, the null hypoth-
esis states that, on average, individual projects in one repository
will have a number of distinct touches that does not differ signif-
icantly from that found among the others. This may be rejected
if it is shown that specific repositories tend to have significantly
more active projects than others.
Table 3
Summary of the hypotheses, tests and metrics.

Hypothesis 1.1: distribution of size – Test T1.1
H1.1 (null): Projects from all

repositories have a similar
size

H1.1 (alternative): Projects from
repositories have different sizes

SLOCs

Hypothesis 1.2: overall touches – Test T1.2
H1.2 (null): Projects from all

repositories have a similar
amount of touches

H2.1: Projects from repositories
have significantly more or fewer
touches

Distinct
touches

Hypothesis 1.3: distinct developers – Test T1.3
H1.3 (null): Projects from all

repositories have a similar
amount of developers

H1.3 (alternative): Projects from
repositories have significantly
more or fewer developers

Distinct
committers

Hypothesis 1.4: days of evolution – Test T1.4
H1.4 (null): All projects have

similar time-spans
H1.4 (alternative): Projects from
repositories have significantly
longer or shorter time-spans

Days

Statistical test used: bi-directional unpaired Wilcoxon test, tolerance 5%

ous drivers and evolutionary stages in FLOSS projects, J. Syst. Soft-

Original text:
Inserted Text
), 

Original text:
Inserted Text
category.(See 

Original text:
Inserted Text
p-value) 

Original text:
Inserted Text
p-value.

Original text:
Inserted Text
Research Question 

Original text:
Inserted Text
Hypotheses

Original text:
Inserted Text
p-values 

Original text:
Inserted Text
Achieved:

Original text:
Inserted Text
(Touches):

kbeecher
Sticky Note
Accepted set by kbeecher

kbeecher
Sticky Note
Accepted set by kbeecher

kbeecher
Sticky Note
Accepted set by kbeecher

kbeecher
Sticky Note
Accepted set by kbeecher

kbeecher
Sticky Note
Accepted set by kbeecher

kbeecher
Sticky Note
Accepted set by kbeecher

kbeecher
Sticky Note
Accepted set by kbeecher

kbeecher
Sticky Note
Accepted set by kbeecher

kbeecher
Sticky Note
Accepted set by kbeecher



T

R
O

O
F

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

Table 4
Results – question 1. T1 = SLOCs, T2 = commits, T3 = committers, T4 = days. Underlined entries have a non-significant p-value, but a large Cohen’s Effect Size.

Debian GNOME KDE RubyForge Savannah SourceForge

Debian – T1: p ¼ 0:226� 10�3 T1: p ¼ 2:29� 10�6 T1: p ¼ 0:537� 10�9 T1: p ¼ 2:53� 10�3 T1: p ¼ 0:0149� 10�3

T2: p ¼ 0:464 T2: p ¼ 0:136 T2: p ¼ 0:295 T2: p ¼ 0:0117 T2: p ¼ 0:0235
T3: p ¼ 0:279 T3: p ¼ 0:0246 T3: p ¼ 4:45� 10�3 T3: p ¼ 0:0121 T3: p ¼ 4:80� 10�3

T4: p ¼ 0:0553 T4: p ¼ 0:986 T4: p ¼ 0:185� 10�9 T4: p ¼ 0:0180 T4:p ¼ 14:0� 10�6

GNOME – T1: p ¼ 0:830 T1: p ¼ 0:404� 10�6 T1: p ¼ 0:491 T1: p ¼ 0:216
T2: p ¼ 0:130 T2: p ¼ 0:7636 T2: p ¼ 0:0248 T2: p ¼ 0:0512
T3: p ¼ 0:176 T3: p ¼ 2:14� 10�6 T3: p ¼ 3:90� 10�5 T3: p ¼ 1:04� 10�5

T4: p ¼ 0:0343 T4: p ¼ 92:1� 10�9 T4: p ¼ 0:537 T4: p ¼ 0:0106

KDE – T1: p ¼ 5:64� 10� 3 T1: p ¼ 0:0150 T1: p ¼ 0:0390
T2: p ¼ 0:417 T2: p ¼ 0:258 T2: p ¼ 0:253
T3: p ¼ 2:12� 10�10 T3: p ¼ 2:64� 10�8 T3: p ¼ 6:94� 10�9

T4: p ¼ 0:691� 10�12 T4: p ¼ 6:33� 10�3 T4: p ¼ 1:58� 10�6

RubyForge – T1: p ¼ 1:24� 10�6 T1: p ¼ 2:94� 10�5

T2: p ¼ 0:175 T2: p ¼ 0:144
T3: p ¼ 0:928 T3: p ¼ 0:652
T4: p ¼ 3:04� 10�6 T4: p ¼ 3:07� 10�5

Savannah – T1: p ¼ 0:850
T2: p ¼ 0:946
T3: p ¼ 0:639
T4: p ¼ 0:0983

SourceForge –

6 K. Beecher et al. / The Journal of Systems and Software xxx (2008) xxx–xxx

JSS 8229 No. of Pages 12, Model 5G

20 November 2008 Disk Used
ARTICLE IN PRESS
N
C

O
R

R
E
C

� Hypothesis 1.3 – Developers: This hypothesis posits that the num-
ber of distinct developers that work on a project monthly is, on
average, significantly different for each repository, measured
according to the number of distinct developers who have con-
tributed source code. The null hypothesis states that all the pro-
jects have approximately an equal number of contributing
developers, to be rejected if this is not the case.

� Hypothesis 1.4 – Period of activity: The final hypothesis posits
that the duration of time that projects from each repository have
been evolved over differs significantly, measured by the number
of days for which activity could be observed on a project’s repos-
itory. In statistical terms, the null hypothesis underlies the pre-
sumption that FLOSS projects come from different populations;
based on their original repository, they have a different time-
span. The null hypothesis should be rejected if the sample pro-
jects display significant differences between repositories.

4.1. Results of the tests – research question 1

The empirical evaluation of the first research question has led to
a total of 15 direct comparisons among the 6 repositories, and has
been based on the 4 hypotheses expounded above. The results of
the tests are reported in Table 4 where each comparison between
two repositories is displayed along with the test name (T1–T4) and
a report of the p-value from the Unpaired Wilcoxon Test Wilcoxon,
1945. Since the stringent difference between two repositories is
being tested, a two-sided test has been performed in all cases;
the Bonferroni correction has been applied giving a significance
threshold of p-value 6 0:01. Bold figures denote p-values that are
U

Table 5
Summary of Cohen’s effect size – (SLOCs; commits; committers; days)

Debian GNOME KDE

Debian – (0.59; 0.41; 0.06; 0.37) (0.65; 0.08; 0; 0.52)
GNOME – (0.24; 0.34; 0.07; 0.29)
KDE –
RubyForge
Savanah
SourceForge

Please cite this article in press as: Beecher, K. et al., Identifying exogen
ware (2008), doi:10.1016/j.jss.2008.10.026
E
D

P
lower than (or extremely close to) this threshold; underlined fig-
ures denote p-values that are higher than this threshold, but corre-
spond with a large Cohen’s Effect Size (see Table 5).

The following observations have been made, based on the direct
comparisons among repositories: (see Table 6)

(1) Size achieved: Table 4 clearly shows significant differences
between repositories based on their project sizes. Observa-
tions are as follows:
RubyF

(0.71;
(0.56;
(0.34;
–

ous dr
� Debian differs significantly from all other repositories;
� GNOME and KDE do not differ – both repositories’ results

are mixed when compared to others;
� Savannah does not differ from SourceForge, whereas

RubyForge differs from them both.
(2) Commits: After performing corrections on the p-values, no
repositories indicate significantly different levels of activity
from each other. The results also suggest that RubyForge
activity is comparable to that of all other repositories (with
the exception of KDE). However it can be seen in Fig. 2 that
RubyForge projects have a significantly shorter life than
those found in all other repositories, which increases their
perceived rate of activity. Hence the perceived rate of activ-
ity of RubyForge projects should be treated with suspicion.

(3) Committers: Table 4 allows the following observations to be
made about the number of contributing developers to each
repository:

� Debian does not differ significantly from GNOME and

KDE, but the p-values are borderline when compared to
RubyForge and SourceForge;
orge Savanah SourceForge

1.82; 0.85; 0.43) (0.25; 0.43; 0.77; 0.04) (0.49; 1.12; 0.59; 0.55)
1.36; 1.05; 0.07) (0.25; 0.04; 0.92; 0.18) (0.24; 0.66; 0.65; 0.33)
1.82; 1.24; 0.26) (0.32; 0.37; 1.09; 0.26) (0.46; 1.08; 0.77; 0.02)

(0.38; 1.21; 0.14; 0.2) (0.71; 0.84; 0.19; 0.3)
– (0.2; 0.88; 0.72; 0.1)

–

ivers and evolutionary stages in FLOSS projects, J. Syst. Soft-

Original text:
Inserted Text
Activity:

Original text:
Inserted Text
Tests 

Original text:
Inserted Text
Research Question 

Original text:
Inserted Text
(T1 to T4) 

Original text:
Inserted Text
p-value 

Original text:
Inserted Text
p-values 

Original text:
Inserted Text
p-values 

Original text:
Inserted Text
[see 

Original text:
Inserted Text
].

Original text:
Inserted Text
repositories:(See 

Original text:
Inserted Text
p-values, 

Original text:
Inserted Text
p-values 

kbeecher
Sticky Note
Accepted set by kbeecher

kbeecher
Sticky Note
Accepted set by kbeecher

kbeecher
Sticky Note
Accepted set by kbeecher

kbeecher
Sticky Note
Accepted set by kbeecher

kbeecher
Sticky Note
Accepted set by kbeecher

kbeecher
Sticky Note
Accepted set by kbeecher

kbeecher
Sticky Note
Accepted set by kbeecher

kbeecher
Sticky Note
Accepted set by kbeecher

kbeecher
Sticky Note
Accepted set by kbeecher

kbeecher
Sticky Note
Accepted set by kbeecher

kbeecher
Sticky Note
Accepted set by kbeecher

kbeecher
Sticky Note
Accepted set by kbeecher



F

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

Table 6
Summary of the hypotheses, tests and metrics

Hypothesis 2.1: distribution of size – Test T2.1
H2.1 (null): Projects from the two groups have similar size H2.1 (alternative): Projects from the first group have larger sizes SLOCs

Hypothesis 2.2: overall touches – Test T2.2
H2.2 (null): Projects from the two groups have a similar amount of

touches
H2.2: Projects from the first group have significantly more touches Distinct touches

Hypothesis 2.3: distinct developers – Test T2.3
H2.3 (null): Projects from all the two groups have a similar amount of

developers
H2.3 (alternative): Projects from the first group have significantly more
developers

Distinct
committers

Hypothesis 2.4: days of evolution – Test T2.4
H2.4 (null): Projects from the two groups have similar time-spans H2.4 (alternative): Projects from the first group have significantly longer

time-spans
Days

Statistical test used: one-directional unpaired Wilcoxon test, tolerance 5%

Table 7
Results

Debian

GNOME

KDE

K. Beecher et al. / The Journal of Systems and Software xxx (2008) xxx–xxx 7

JSS 8229 No. of Pages 12, Model 5G

20 November 2008 Disk Used
ARTICLE IN PRESS

Pleas
ware
� GNOME and KDE do not differ significantly from each
other, but they both show a significant difference from
RubyForge, Savannah and SourceForge;

� RubyForge, Savannah and SourceForge do not differ from
one another.
533

534
(4) Duration: In Table 4 the absence of significant differences
between repositories suggests:
T
535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557
O
R

R
E
C

� Debian and KDE have a significantly different average
project age from RubyForge and SourceForge;

� GNOME has a significantly different project age from
RubyForge;

� Savannah does not differ from SourceForge.

In summary, a significant difference has been identified be-
tween the characteristics of the repositories, dividing them firmly
into two groups:

� Group 1: Debian, GNOME and KDE (with GNOME and KDE dis-
playing very notable similarities);

� Group 2: RubyForge, Savannah and SourceForge (with Savannah
and SourceForge displaying very notable similarities).

5. Results: research question 2 – hypotheses

The first research question has been designed as a comparison
between all repositories, and its objective is to highlight any signif-
icant differences between them. Having established these differ-
ences the second question is designed to establish their direction
U
N

C

– question 2. T1 = SLOCs, T2 = commits, T3 = committers, T4 = days

RubyForge Savannah

T1: W ¼ 2101, p ¼ 0:447� 10�9 T1: W ¼ 1626, p ¼ 1:27�
T2: W ¼ 1402, p ¼ 0:1472 T2: W ¼ 1561, p ¼ 0:0088
T3: W ¼ 1626, p ¼ 2:22� 10�3 T3: W ¼ 1596, p ¼ 6:08�
T4: W ¼ 2174, p ¼ 92:4� 10�12 T4: W ¼ 1594, p ¼ 9:02�

T1: W ¼ 1846, p ¼ 2:02� 10�5 T1: W ¼ 1126, p ¼ 0:805
T2: W ¼ 1294, p ¼ 0:382 T2: W ¼ 1545, p ¼ 0:0124
T3: W ¼ 1876, p ¼ 1:07� 10�6 T3: W ¼ 1819, p ¼ 1:95�
T4: W ¼ 2024, p ¼ 46:1� 10�9 T4: W ¼ 1340, p ¼ 0:269

T1: W ¼ 1652, p ¼ 2:82� 10�3 T1: W ¼ 877, p ¼ 0:995
T2: W ¼ 1132, p ¼ 0:794 T2: W ¼ 1413, p ¼ 0:130
T3: W ¼ 2102, p ¼ 1:06� 10�10 T3: W ¼ 2026, p ¼ 1:32�
T4: W ¼ 2292, p ¼ 0:0345� 10�12 T4: W ¼ 1646, p ¼ 3:17�

e cite this article in press as: Beecher, K. et al., Identifying exogen
(2008), doi:10.1016/j.jss.2008.10.026
E
D

P
R

O
O

and hence the supremacy of one repository over any other with re-
gards to the characteristics under study.

In each hypothesis it has been posited that the repositories in
group 1 (labelled in Section 4.1) have a superior value to those of
group 2.

� Hypothesis 2.1 – Period of activity: This hypothesis posits that
projects from group 1 (Debian, GNOME and KDE) have been
developed for greater periods of time than group 2 (RubyForge,
Savannah and SourceForge), and hence possess a significantly
longer duration of activity.

� Hypothesis 2.2 – Size achieved: This hypothesis postulates that
the group 1 projects are typically larger than their group 2 coun-
terparts and hence have significantly larger SLOCs.

� Hypothesis 2.3 – Developers: This hypothesis posits that the pro-
jects from Debian, GNOME and KDE are more successful at
attracting developers than projects from RubyForge, Savannah
and SourceForge. They should therefore show evidence of a sig-
nificantly greater number of developers.

� Hypothesis 2.4 – Activity (touches): The final hypothesis postu-
lates that group 1 projects typically receive more development
effort than those of group 2, evidenced by a significantly larger
rate of touches.

Each repository has been compared to each counterpart repository
of the opposing group. With three repositories in each group this
has resulted in nine such comparisons. In each such comparison
it has been hypothesized that there is a significant difference in a
specified direction, which has been estimated by inspecting the
boxplot for the relevant attribute (Fig. 2). The results of the tests
are summarized in Table 7. As in Section 4.1, each comparison is
displayed by test name (T1–T4) showing the resulting p-value
SourceForge.net

10�3 T1: W ¼ 1365, p ¼ 7:50� 10�3

5 T2: W ¼ 1575, p ¼ 0:0118
10�3 T3: W ¼ 1637, p ¼ 2:40� 10�3

10�3 T4: W ¼ 1881, p ¼ 7:02� 10�6

T1: W ¼ 914, p ¼ 0:738
T2: W ¼ 1532, p ¼ 0:0256

10�5 T3: W ¼ 1858, p ¼ 0:520� 10�5

T4: W ¼ 1621, p ¼ 0:00532� 10�3

T1: W ¼ 950, p ¼ 0:981
T2: W ¼ 1416, p ¼ 0:127

10�8 T3: W ¼ 2056, p ¼ 3:47� 10�9

10�3 T4: W ¼ 1947, p ¼ 0:787� 10�6

ous drivers and evolutionary stages in FLOSS projects, J. Syst. Soft-

Original text:
Inserted Text
Research Question 

Original text:
Inserted Text
Hypotheses

Original text:
Inserted Text
Activity:

Original text:
Inserted Text
Achieved:

Original text:
Inserted Text
(Touches):

Original text:
Inserted Text
(T1 to T4) 

Original text:
Inserted Text
p-value 

kbeecher
Sticky Note
Accepted set by kbeecher

kbeecher
Sticky Note
Accepted set by kbeecher

kbeecher
Sticky Note
Accepted set by kbeecher

kbeecher
Sticky Note
Accepted set by kbeecher

kbeecher
Sticky Note
Accepted set by kbeecher

kbeecher
Sticky Note
Accepted set by kbeecher

kbeecher
Sticky Note
Accepted set by kbeecher



T

O
O

F

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584
585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

Fig. 3. Framework of progression for FLOSS projects through various types of repositories.

8 K. Beecher et al. / The Journal of Systems and Software xxx (2008) xxx–xxx

JSS 8229 No. of Pages 12, Model 5G

20 November 2008 Disk Used
ARTICLE IN PRESS
C
O

R
R

E
C

obtained from a one-sided unpaired Wilcoxon test; the Bonferroni
correction has been applied giving a significance threshold of
p 6 0:0083.

5.1. Results of the tests – research question 2

The following observations can be made in this case:

� Activity: the directional Wilcoxon tests (Table 7) show that the
median commits per month is the only indicator that does not
display any significant differences, although on average Debian,
GNOME and KDE all have greater average commit rates
(between 5 and 18) than Savannah and SourceForge (around 4
commits per month each). Recall that RubyForge commit rates
are suspected of being artificially high.

� Size achieved: the directional Wilcoxon test (see Table 7) con-
firms that KDE and GNOME projects are smaller on average than
Savannah and SourceForge projects. Debian contains the largest
projects of all repositories under study.

� Number of developers: the directional Wilcoxon tests (Table 7)
show that there is a divide between Debian, GNOME and KDE
as one group, and RubyForge, Savannah and SourceForge as
another. The former group have between 20 and 32 projects with
a number of contributors exceeding one, whereas the Source-
forge sample (the best performing for this indicator in the latter
group) had only 6 projects with more than one contributor.

� Project duration: the directional Wilcoxon tests again shows a
clear divide between Debian, GNOME and KDE which consis-
tently have older projects and RubyForge, Savannah and Source-
Forge (which consistently have younger projects).
624

625

626

627

628

629

630

631

632

633

634

635

636

637
U
N

6. Discussion – a framework for transitions of FLOSS projects

The empirical evidence gathered by analyzing data to answer
the two research questions above shows a significant divide be-
tween one group (Debian, KDE and GNOME) and a second group
of repositories (RubyForge, Savannah and SourceForge). In previous
works, those of the first group have already been characterized.
The Debian repository has been extensively studied, and its inter-
nal product and process characteristics have been described in
terms of a successful product Michlmayr and Senyard, 2006,
2007. Also KDE and GNOME have been evaluated as successful
repositories, based on the characterization of their development
Please cite this article in press as: Beecher, K. et al., Identifying exogen
ware (2008), doi:10.1016/j.jss.2008.10.026
E
D

P
R

processes and recruitment rates Hemetsberger and Reinhardt
(2004) and Koch et al. (2002) respectively.

As already reported above, an earlier work highlighted the dif-
ferences between SourceForge and Debian (Beecher, XXXX). These
were not only statistically significant, but also directional (Debian
achieves better results than SourceForge). Investigating further, it
was also found that a subset of projects had transited from Source-
Forge to Debian. In these cases, the projects being incorporated
into Debian from SourceForge achieved, from that point in time
on, an improvement in the overall activity and an increased num-
ber of developers.
6.1. Transition framework – types of repositories

The earlier results and the differences between the two groups
outlined in this work are here contextualized by a wider frame-
work of evolution developed as part of this research, visualized
here in Fig. 3. The terms used within the framework formulation
are as follows:

(a) Open Forge – the term is applied to those FLOSS repositories
with a low barrier to entry: RubyForge, Savannah and
SourceForge all guarantee any FLOSS developer the availabil-
ity of web-space and management tools (e.g. CVS, forums) to
host a software project (see lower part of Fig. 3).

(b) Controlled Forge – this term is instead used for those repos-
itories which apply various filters and guidelines to newly
joining projects (top part of Fig. 3). Debian, KDE and GNOME
clearly have underlying rules, standards and specific tools
for developers to adhere to or to adopt when joining. Debian
accepts a new project only after an advocate from within
Debian issues a request to include it (Laat and Paul, 2007).
KDE requests new developers to adhere to programming
standards, and to comply with an existing C++ code-base
(Kuniavsky and Raghavan, 2005). Finally, GNOME requests
the knowledge of the basic GTK graphical platform, and its
Application Programming Interfaces (API) (German, 2004).
Within this group, the nature of the repository and the
empirical results showed the following distinction between
two subgroups:
ous dr
(b.1) Distributions: Debian should be considered a distribu-
tion, since the FLOSS projects it hosts are all part of a
larger Linux operating system. From the point of view
ivers and evolutionary stages in FLOSS projects, J. Syst. Soft-

Original text:
Inserted Text
Tests 

Original text:
Inserted Text
Research Question 

Original text:
Inserted Text
Achieved:

Original text:
Inserted Text
Developers:

Original text:
Inserted Text
Duration:

Original text:
Inserted Text
projects) 

Original text:
Inserted Text
A Framework 

Original text:
Inserted Text
Transitions 

Original text:
Inserted Text
Projects

Original text:
Inserted Text
respectively).

Original text:
Inserted Text
XXX

Original text:
Inserted Text
Framework 

Original text:
Inserted Text
Types 

Original text:
Inserted Text
Repositories

kbeecher
Sticky Note
Accepted set by kbeecher

kbeecher
Sticky Note
Accepted set by kbeecher

kbeecher
Sticky Note
Accepted set by kbeecher

kbeecher
Sticky Note
Accepted set by kbeecher

kbeecher
Sticky Note
Accepted set by kbeecher

kbeecher
Inserted Text
(

kbeecher
Inserted Text
)

kbeecher
Sticky Note
Accepted set by kbeecher

kbeecher
Sticky Note
Accepted set by kbeecher

kbeecher
Sticky Note
Accepted set by kbeecher

kbeecher
Inserted Text
(

kbeecher
Inserted Text
)

kbeecher
Cross-Out

kbeecher
Replacement Text
2008

kbeecher
Sticky Note
Accepted set by kbeecher

kbeecher
Sticky Note
Accepted set by kbeecher

kbeecher
Sticky Note
Accepted set by kbeecher



638

639

640

641

642

643

644

645

646

647

648

649
650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

3 The
project
debian-

K. Beecher et al. / The Journal of Systems and Software xxx (2008) xxx–xxx 9

JSS 8229 No. of Pages 12, Model 5G

20 November 2008 Disk Used
ARTICLE IN PRESS

Pleas
ware
of the process, Debian developers are not typically
programming for other Debian projects.

(b.2) Meta-Projects: KDE and GNOME should be instead
considered as meta-projects because the projects they
contain are subsystems of a wider system (the KDE
and GNOME desktop environments, respectively),
and developers work on several glue projects.
703

704

705

706

707
The main difference between distributions and meta-projects is
in the higher acceptance threshold of the former. As already men-
tioned, a software project becomes part of a distribution only
under specific conditions, such as, for instance, the Debian advo-
cates with new FLOSS projects (Laat and Paul, 2007).
T

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756
U
N

C
O

R
R

E
C

6.2. Transition framework – types of transitions

The transitions among the repositories are noted with two types
of arrows:

– As per the bold arrow of Fig. 3, the study reported above (Bee-
cher, XXXX) empirically showed not only how a subset of pro-
jects transited from an Open Forge (SourceForge) into a
Controlled Forge (Debian). It also showed that this transition
had an effect on the two selected aspects of product and process;
the transited projects were shown to have benefited from more
developers and displayed an increased activity. FLOSS projects
within the KDE and GNOME repositories have an easier entry
point within Debian, since the distribution typically ships both
the two meta-projects; for this reason, also this transition is
depicted as a bold line. Projects belonging to ‘‘open repositories”
have a less straight-forward entry-level into major distributions;
at least one Debian developer has to act as an ‘‘advocate”, or
‘‘sponsor” for its introduction within the distribution, otherwise
it will be considered as ‘‘non-interesting”.3

– The dashed lines depicted in Fig. 3 represent instead proposed
transitions between repositories; projects have been observed
to migrate along the dashed lines, but no empirical study on
the benefits of these transitions has been performed in this
research. Among the sample from SourceForge, for instance, it
is possible already to detect projects which transited to a
meta-project (e.g., the kpictorial project is also included in the
KDE repository, Appendix). A transition from a meta-project to
a distribution has also been observed; a subset of projects have
been observed transiting between the KDE meta-project to the
Debian distribution (e.g., the ark from the KDE repository,
Appendix). As also stated in (Michlmayr, 2007), one of the
advantages of being part of a larger distribution consist of hav-
ing a more pressing schedule due to the release management.
Open Forges do not use a formal way of imposing schedule con-
straints and deadlines; controlled Forges typically do, thus plac-
ing an heavier burden on the developers and requiring higher
productivity within the contained projects.

6.3. Transition Framework – discussion

Regarding the general goal stated in Section 3, this research
shows that a general framework relating different types of FLOSS
repositories provides a better context to describe the variety of re-
sults (in terms of success) of the average FLOSS project. This frame-
work establishes the possible routes that may be taken to achieve
these results and their relative benefits and challenges.
specific Debian process to become a developer, or how to include a new
within the distribution is detailed under http://people.debian.org/mpalmer/
mentors_FAQ.html.

e cite this article in press as: Beecher, K. et al., Identifying exogen
(2008), doi:10.1016/j.jss.2008.10.026
E
D

P
R

O
O

F

The corollary of this objective, also stated above, is that useful
findings and practical actions could be extrapolated for the use of
developers and practitioners. As shown in (Capiluppi and Michlm-
ayr, 2007) both of the so-called ‘‘cathedral” and ‘‘bazaar” modes of
operation can co-exist within FLOSS; projects begin in a cathedral
mode and may, if they wish, change later to a bazaar mode and
thereby increase visibility, activity and size. Fig. 4, taken from
(Capiluppi and Michlmayr, 2007), summarizes that FLOSS projects
can just achieve one state (the ‘‘cathedral”, left part of figure),
while in the life cycle of other projects, the ‘‘bazaar” state can fol-
low the cathedral phase, thus achieving an increased effort and
greater output. Building on this earlier result, we can claim that
some forges (SourceForge, RubyForge, Savannah) on average host
projects mostly in their cathedral phase; if developers wish to up-
grade the status of their project, and exploit the advantages of the
wider FLOSS communities, they should consider being included
into a meta-project or a distribution repository. This, however, is
not a mandatory move; and making such a transition may require
the project to alter their working practices and follow a more man-
aged release strategy.

7. Threats to the validity of this study

The following aspects have been identified which could lead to
threats to validity of the present empirical study; they have been
grouped into threats to construct, internal and external validity
as follows.

� Construct validity (relationship between theory and observa-
tion)Missing historical data – the study has been able to make
use only of available data. It is possible, for example, that the
project initialization pre-dates the first measurable piece of his-
torical data and is therefore beyond the reach of our analysis.

� Internal validity (confounding factors can influence the findings)
(1) Status of the projects – as indicated, all projects studied

are chosen for being ‘‘stable”, in order to counter the prob-
lems of comparing projects at differing stages of evolu-
tion. However the lesser threat remains that the projects
studied are at differing stages of evolution because the
definition of ‘‘stable” varies across the repositories and
is somewhat subjective.

(2) Outliers – a very small number of outliers were discov-
ered within the data, and were subsequently excluded
from the analysis. Specifically the following have been
excluded:
ous dr
� Size: a single extreme outlier was identified in each of
the Debian and Savannah samples.

� Activity: a single outlier was identified in the Savannah
sample. Upon investigation, it appeared that an exist-
ing project with a long history had been imported all
at once and was then never worked upon again. Since
the addition of each file constitutes a commit, the aver-
age of commits per month was artificially large.
� External validity (how results can be generalized)
(1) Union of sets – the permissive nature of FLOSS development
757

758

759

760
means that it is possible, even encouraged, for individual
projects, or parts of them, to be included in more than one
repository. Hence, when randomly sampling projects from
individual repositories, it is possible that a sampled project
may be found in another location and that its evolution is
also influenced by this unknown repository. The assumption
is therefore made that any such confounding effect, if pres-
ent, is negligible.
ivers and evolutionary stages in FLOSS projects, J. Syst. Soft-

http://people.debian.org/mpalmer/debian-mentors_FAQ.html
http://people.debian.org/mpalmer/debian-mentors_FAQ.html
Original text:
Inserted Text
Framework 

Original text:
Inserted Text
Types 

Original text:
Inserted Text
Transitions

Original text:
Inserted Text
as 

Original text:
Inserted Text
XXX

Original text:
Inserted Text
“non-interesting”

Original text:
Inserted Text
.

Original text:
Inserted Text
Table 8

Original text:
Inserted Text
Discussion

Original text:
Inserted Text
Validity 

Original text:
Inserted Text
The 

Original text:
Inserted Text
As 

Original text:
Inserted Text
A 

Original text:
Inserted Text
·

Original text:
Inserted Text
A 

Original text:
Inserted Text
The 

kbeecher
Sticky Note
Accepted set by kbeecher

kbeecher
Sticky Note
Accepted set by kbeecher

kbeecher
Sticky Note
Accepted set by kbeecher

kbeecher
Sticky Note
Accepted set by kbeecher

kbeecher
Cross-Out

kbeecher
Replacement Text
2008

kbeecher
Sticky Note
Accepted set by kbeecher

kbeecher
Sticky Note
Accepted set by kbeecher

kbeecher
Sticky Note
Accepted set by kbeecher

kbeecher
Sticky Note
Accepted set by kbeecher

kbeecher
Sticky Note
Accepted set by kbeecher

kbeecher
Sticky Note
Accepted set by kbeecher

kbeecher
Sticky Note
Accepted set by kbeecher

kbeecher
Sticky Note
Accepted set by kbeecher

kbeecher
Sticky Note
Accepted set by kbeecher



T

F

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

Fig. 4. Transition between Cathedral and Bazaar, taken from (Capiluppi and Michlmayr, 2007).

4 http://www.tigris.org.
5 http://freshmeat.net.
6 http://objectweb.org.

10 K. Beecher et al. / The Journal of Systems and Software xxx (2008) xxx–xxx

JSS 8229 No. of Pages 12, Model 5G

20 November 2008 Disk Used
ARTICLE IN PRESS
U
N

C
O

R
R

E
C

(2) Size of the populations – perhaps the most variable charac-
teristic of the repositories was the number of available pro-
jects. To promote the fairness with which projects could be
compared we endeavoured to select ones considered ‘‘sta-
ble”. Consequently the number of projects available ranged
from approximately 400 (in the case of RubyForge) up to
the order of 20,000 (for SourceForge). The static sample size
of 50 resulted in each sample being not necessarily propor-
tionate to all others.

(3) Further generalization – for each repository type proposed
within this work, it has been represented by a small number
of repositories (between one and three). This approach holds
the risk that results may be biased by any peculiarities of
individual repositories. However, this study is relative easily
replicable on other repositories of the types identified. For
example, other meta-projects exist with development
emphasis on other domains not covered in this study, such
as Mozilla or Apache.

8. Conclusions and future works

This study has been carried out as an extension of previous re-
search (Beecher, XXXX), aiming to amplify a promising set of find-
ings obtained when comparing the characteristics of two different
FLOSS repositories, Debian and SourceForge. The present study ex-
panded the previous data base with four other repositories, ex-
tracted similar samples from each of the resulting six
repositories (50 projects each from the repository’s ‘‘stable” pool),
and studied four product and process characteristics of the projects
in the samples.

Testing whether similar results can be obtained by researchers
when studying any FLOSS repository, it was found that not only do
repositories differ from each other in terms of product or process
characteristics (or both); but also that two groups showed signifi-
cant differences between them. A first group (Debian, KDE and De-
bian) showed consistently different characteristics in comparison
with a second group (RubyForge, Savannah and SourceForge). La-
ter, it was also shown that two repositories (Debian and KDE) in
the first group achieve significantly better results than those in
the second group.

Combining the two above findings, a framework for the evolu-
tion of FLOSS repositories has been proposed. RubyForge, Source-
Forge and Savannah do not pose any barriers to entry to software
projects (although RubyForge projects are generally expected to
be related to the Ruby programming language) and named ‘‘open
forges”. On the other hand, repositories such as Debian (‘‘controlled
forges”) set up a higher threshold to admittance, typically by intro-
ducing new projects in a stricter, controlled way. Among these,
both full distributions such as Debian, and meta-projects, such as
Please cite this article in press as: Beecher, K. et al., Identifying exogen
ware (2008), doi:10.1016/j.jss.2008.10.026
E
D

P
R

O
OKDE or GNOME, offer the potential of a wider spectrum of develop-

ers and increased activity.
Transitions were also studied: FLOSS projects transiting from an

‘‘open forge” to a ‘‘controlled forge”, will be able to exploit the ben-
efits of a larger audience of users and developers, and become, on
average, also larger projects. The transition between a ‘‘meta-pro-
ject” to a ‘‘distribution” has also been postulated as a further ad-
vance in the evolution of a FLOSS project; however, from the KDE
and GNOME samples, it was not possible to observe any cases
where a project was introduced in the Debian distribution, in order
to evaluate the effects of the Debian treatment.

The presented work has two main research strands which we
propose to consider further in our future work. The first is to
introduce other repositories (or forges) into the quantitative
study, in order to achieve an improved understanding of the dis-
tribution of FLOSS projects within repositories. Major repositories
such as Tigris4 or FreshMeat5 could be analyzed, following the
same approach, characteristics and hypotheses used above. Given
their policies, which make these two more similar to SourceForge
than Debian, the framework as proposed in Section 6 would place
them into the ‘‘Open Forges” category. A research hypothesis would
then be used to test whether these two repositories achieve (on
average) worse results than KDE, GNOME or Debian. Other, special-
ized forges such as OW26 could be also analyzed; given its policy of
semi-openness, our framework would place it under the ‘‘Controlled
Forges”, hence (in theory) achieving better results than an open
forge.

The second research strand yet to be pursued is a closer, quan-
titative, investigation of the transitions as proposed in the frame-
work; we propose to conduct an observational study where a
known subset of projects from either KDE or GNOME, which have
been introduced at some stage in the Debian distribution, is stud-
ied both before and after their introduction. This will give a stron-
ger, empirical foundation to the framework, and allow the dashed
(i.e., proposed) transitions to be replaced with continuous (i.e., ob-
served) lines.

Overall, additional metrics could provide even more insights
into FLOSS quality and support for understanding better how pro-
jects from the various forges perform on quality aspects (apart
from their already studied productivity). We plan to introduce
metrics related to software complexity (such as the cyclomatic
number of methods and functions, or the coupling among meth-
ods, files and packages), and a better characterisation of the touch
metric, by considering the amount of code modified in each touch
(i.e. with the ratio SLOCs/touch) in our future studies.
ous drivers and evolutionary stages in FLOSS projects, J. Syst. Soft-

http://www.tigris.org
http://freshmeat.net
http://objectweb.org
Original text:
Inserted Text
Perhaps 

Original text:
Inserted Text
For 

Original text:
Inserted Text
Future Works

Original text:
Inserted Text
XXX

kbeecher
Sticky Note
Accepted set by kbeecher

kbeecher
Sticky Note
Accepted set by kbeecher

kbeecher
Sticky Note
Accepted set by kbeecher

kbeecher
Cross-Out

kbeecher
Replacement Text
2008



854

855

856
857
858
859
860
861
862
863
864 Q4
865
866
867
868
869
870
871
872
873
874
875

K. Beecher et al. / The Journal of Systems and Software xxx (2008) xxx–xxx 11

JSS 8229 No. of Pages 12, Model 5G

20 November 2008 Disk Used
ARTICLE IN PRESS
Appendix A. List of projects and application domains
O
R

R
E
C

T
E
D

P
R

O
O

F

876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898

DEBIAN GNOME KDE RF SAV SF

acpidump P alacarte C ark P actsasfo-rmatted O a2ps H Aquila G
apmud P anjuta R dolphin P classifier O acct P audiobo-okcutter H
boson F astrolabe P fifteen-applet F cmdctrl P alive P Beobach-ter P
cdpara-noia H atspi O kaddress-book A debug-print P autoconf O cdlite H
cherokee G bakery O kamera H explain-pmt A avrdude P cotvnc P
clamav P cheese H kate R family-connect G bubble-mon P cpia G
dia M criawips I kback-gammon F forkma-nager G carbon-kernel M criticalcare F
enigmail A damnedlies P kbattle-ship F geokit L cdump P csUnit O
EtoileWi-ldMenus O daybook G kcron P gewee F cflow O eas3pkg M
fig2ps H esound H kdebug-dialog O hatena-graphup G clustersim M edict J
flac H evolutionjescs A kfeed A inifile G codeeditor F expreval M
fte O evolutionsharp A kfileplugins P iowa G fluxus P fitnesse O
geomview M garnome P kfind P jabber4r A freehoo F fnjavabot A
gosa G gdm P kgamma P matlabruby M freepooma H formproc G
grass6 M geadow R khangman F mechanize G gcl O fourever E
grub P gfloppy P khtml P mms2r A gfo M freemind H
gwenview H gimphelp2 H kioclient G morse A ghome-mover P galeon C
jToolkit R glibjava O kjsembed O netnetrc G gnumed A genromfs P
kdegames F gnomebuild O kjs E object-graph O gtktalog P gvision O
kdenet-work G gnomefileselector P klink-status G pseudo-cursors P gvpe H hge F
kmouth H gnomereset P kmag H qwik A hitweb R icsDrone F
kphoneSI A gnometestspecs P kmailcvt A railshasflags B libmath-eval M interme-zzo P
libax25 O gnomewebwml G kmoon F randomdata M mcron O jtrac O
liboil O gob O kmouse-tool C rapt L mp3tag H juel O
libsoup O gopersist C kmouth H rateable-plugin L myspwi-zard B kpictorial F
mimede-code P greg P knetwalk F roxml O oroborus C modaspdotnet G
modauthkerb F gthumb H knetwork-conf P rparsec O osip O moses A
myphp-money M gtkmmroot O knewsti-cker A rriki B phpcom-pta G nbcheck-style O
noteedit R guikachu O kpat F rssfwd A phpgroup-ware G neocrypt N
octaveforge G imperl A kppp G rtplan I ply A netstrain A
openafs G libbonobojava O krfb P rubyamf G psg P ogce G
Pike O libglass O kross-python O rubyexiv2 H radius G oliver G
prcs1 H libgnomeui O ksim P rubyibm B radius-plugin G ozone B
preludemanager G libpreview I ksquares F rubypytst O ratpoison C perpojo A
ProofGene-ral M libwnck C kstart C ruport B sather P pf P
rlplot H libxmlpp O kteatime F sahara O sdcdc O Qpolymer M
ruby O narwhal B ktnef A s7eep O sins F seagull O
scid F nautilusmozilla G kuiserver P simplesi-debar C stow P simple-soap D
shorewall P nautilusrc G kxmlrpc-client A snmplib A texi2html E simplexml O
skel P nautilussendto P kxsconfig C soks G texinfo R source G
sylpheed A oaf O liloconfig P sstruct J tiger P swtjaspe-rviewer K
syncekde C present C lskat F stdlibdoc O tong F toolchest C
tcl O pygtk O marble F timcha-rper G twinlisp O txt2xml O
tdb P pygtksou-rceview O nntp A trie M vihmauss F uniportio P
tiobench P rhythmbox H qtruby O ttt2db I wasp P ustl O
txt2html E SashCom-ponents O shell P utilrb O webpu-blish G whiteboard D
vlc H sawfish C solid O verhoeff M xmakemol M winssh-askpass Q
wxWidgets O silkywww G sonnet O voruby M xmod O wxactivex G
xmakemol M viciousbuildscripts O strigianalyzer P watchcat G xsltxt E xmlnuke G
yaml4r M vte P umbrello O xspf O yafsplash C xqilla B
U
N

CReferences

Antoniol, G., Casazza, G., Penta, M.D., Merlo, E., 2001. Modeling clones evolution
through time series. In: Proceedings of the IEEE International Conference on
Software Maintenance 2001 (ICSM 2001), Fiorence, Italy, pp. 273–280.

Basili, V.R., Caldiera, G., Rombach, D.H., 1994. The goal question metric approach. In:
Encyclopedia of Software Engineering, John Wiley & Sons, pp. 528–532, see also
<http://sdqweb.ipd.uka.de/wiki/GQM>.

Beecher, K., Boldyreff, C., Capiluppi, A., Rank, S. Evolutionary success of open source
software: An investigation into exogenous drivers, Electronic Communications
of the EASST 8.

Boehm, B.W., Clark, Horowitz, Brown, Reifer, Chulani, Madachy, R., Steece, B., 2000.
Software Cost Estimation with Cocomo II with Cdrom. Prentice Hall PTR, Upper
Saddle River, NJ, USA.

Cabin, R.J., Mitchell, R.J., 2000. To bonferroni or not to bonferroni: when and how are
the questions. Bulletin of the Ecological Society of America, 246–248.

Canfora, G., Cerulo, L., Penta, M.D., 2007. Identifying changed source code lines from
version repositories. Mining Software Repositories 0, 14.

Capiluppi, A., 2003. Models for the evolution of OS projects. In: Proceedings of ICSM
2003 2003 IEEE, Amsterdam, The Netherlands.

Capiluppi, A., Michlmayr, M., 2007. From the cathedral to the bazaar: an empirical
study of the lifecycle of volunteer community projects. In: Feller, J., Fitzgerald,
Please cite this article in press as: Beecher, K. et al., Identifying exogen
ware (2008), doi:10.1016/j.jss.2008.10.026
B., Scacchi, W., Silitti, A. (Eds.), Open Source Development, Adoption and
Innovation, International Federation for Information Processing. Springer, pp.
31–44.

Capiluppi, A., Morisio, M., Ramil, J.F., 2004. Structural evolution of an open source
system: a case study. IWPC, 172–182.

Crowston, K., Annabi, H., Howison, J., 2003. Defining open source software project
success. In: Proceedings of ICIS 2003, Seattle, Washington, USA.

Crowston, K., Howison, J., Annabi, H., 2006. Information systems success in free and
open source software development: theory and measures. Software Process
Improvement and Practice, 123–148.

Dalgaard, P., 2002. Introductory Statistics with R. Springer.
English, R., Schweik, C., 2007. Identifying success and tragedy of floss commons: A

preliminary classification of sourceforge.net projects. In: Proceedings of the 1st
International Workshop on Emerging Trends in FLOSS Research and
Development, ICSE, Minneapolis, MN.

Feller, J., Fitzgerald, B., Hecker, F., Hissam, S., Lakhani, K., van der Hoek, A. (Eds.),
. Characterizing the OSS Process. ACM.

German, D.M., 2004. The gnome project: a case study of open source, global
software development, software process: improvement and Practice 8 (4) 201–
215 <URL http://dx.doi.org/10.1002/spip.189>.

German, D.M., 2004. Using software trails to reconstruct the evolution of software.
Journal of Software Maintenance and Evolution: Research and Practice 16 (6),
367–384.
ous drivers and evolutionary stages in FLOSS projects, J. Syst. Soft-

http://sdqweb.ipd.uka.de/wiki/GQM
http://dx.doi.org/10.1002/spip.189
kbeecher
Inserted Text
, 2008



899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938

939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976

977

12 K. Beecher et al. / The Journal of Systems and Software xxx (2008) xxx–xxx

JSS 8229 No. of Pages 12, Model 5G

20 November 2008 Disk Used
ARTICLE IN PRESS
Godfrey, M.W., Tu, Q., 2000. Eovlution in open source software: a case study. In:
Proceedings of 16th IEEE International Conference on Software Maintenance.

Hamer, P.G., Frewin, G.D., 1982. M.h. halstead’s software science – a critical
examination. In: ICSE’82: Proceedings of the Sixth International Conference on
Software Engineering, IEEE Computer Society Press, Los Alamitos, CA, USA, pp.
197–206.

Hemetsberger, A., Reinhardt, C., 2004. Sharing and creating knowledge in open-
source communities: the case of kde. In: Proceedings of the Fifth European
Conference on Organizational Knowledge, Learning and Capabilities (OKLC),
Insbruck University.

Herraiz, I., Gonzlez-Barahona, J.M., Robles, G., 2008. Determinism and evolution. In:
Hassan, A.E., Lanza, M., Godfrey, M.W. (Eds.), Mining Software Repositories.
ACM, pp. 1–10.

Herraiz, I., Robles, G., González-Barahona, J.M., 2006. Comparison between slocs and
number of files as size metrics for software evolution analysis. CSMR, 206–213.

Hindle, A., German, D.M., 2005. Scql: a formal model and a query language for
source control repositories. SIGSOFT Software Engineering Notes 30 (4), 1–5.

Koch, S., Schneider, G., 2002. Effort cooperation and coordination in an open source
software project: Gnome. Information Systems Journal 12 (1), 27–42.

Kuniavsky, M., Raghavan, S., 2005. Guidelines are a tool: building a design
knowledge management system for programmers. In: DUX’05: Proceedings of
the 2005 Conference on Designing for User Experience. AIGA: American
Institute of Graphic Arts New York, NY, USA.

Laat, Paul, 2007. Governance of open source software: state of the art, Journal of
Management &#38; Governance 11 (2), 165–177 URL <http://dx.doi.org/
10.1007/s10997-007-9022-9>.

Lehman, M.M., Ramil, J.F., Wernick, P.D., Perry, D.E., Turski, W.M., 1997. Metrics and
laws of software evolution – The nineties view. In: El Eman, K., Madhavji, N.H.
(Eds.), Elements of Software Process Assessment and Improvement. IEEE CS
Press, Albuquerque, New Mexico, pp. 20–32.

Livieri, S., Higo, Y., Matushita, M., Inoue, K., 2007. Very-large scale code clone
analysis and visualization of open source programs using distributed ccfinder:
D-ccfinder. In: ICSE’07: Proceedings of the 29th International Conference on
Software Engineering, IEEE Computer Society, Washington, DC, USA.

Michlmayr, M., 2007. Quality improvement in volunteer free and open source
software projects: exploring the impact of release management. Ph.D. Thesis,
University of Cambridge, Cambridge, UK. URL <http://www.cyrius.com/
publications/michlmayr-phd.pdf>.

Michlmayr, M., Senyard, A., 2006. A statistical analysis of defects in Debian and
strategies for improving quality in free software projects. In: Bitzer, J., Schrder,
U
N

C
O

R
R

E
C

T

Please cite this article in press as: Beecher, K. et al., Identifying exogen
ware (2008), doi:10.1016/j.jss.2008.10.026
D
P
R

O
O

F

P.J.H. (Eds.), The Economics of Open Source Software Development. Elsevier,
Amsterdam, The Netherlands, pp. 131–148.

Mockus, A., Fielding, R.T., Herbsleb, J., 2002. Two case studies of open source
software development: apache and mozilla. ACM Transactions on Software
Engineering and Methodology 11 (3), 309–346.

Perneger, T.V., 1998. What’s wrong with Bonferroni adjustments, vol. 316, <URL
http://bmj.bmjjournals.com/cgi/content/full/316/7139/1236>.

Rainer, A., Gale, S., 2005. Evaluating the quality and quantity of data on open source
software projects. In: Feller, J., Fitzgerald, B., Scacchi, W., Silitti, A. (Eds.), First
International Conference on Open Source Systems.

Robles, G., Dueñas, S., González-Barahona, J.M., 2007. Corporate involvement of
libre software: study of presence in debian code over time. In: Feller, J.,
Fitzgerald, B., Scacchi, W., Sillitti, A. (Eds.), OSS of IFIP, vol. 234. Springer, pp.
121–132.

Robles, G., Gonzlez-Barahona, J.M., Centeno-Gonzalez, J., Matellan-Olivera, V.,
Rodero-Merino, L., 2003. Studying the evolution of libre software projects
using publicly available data. In: Proceedings of the Third Workshop on Open
Source Software Engineering, pp. 111–115.

Robles, G., Koch, S., González-Barahona, J.M., 2004. Remote analysis and
measurement of libre software systems by means of the CVSAnalY tool. In:
Proceedings of the Second ICSE Workshop on Remote Analysis and
Measurement of Software Systems (RAMSS’04), 26th International Conference
on Software Engineering, Edinburgh, UK.

Shen, V.Y., Conte, S.D., Dunsmore, H.E., 1983. Software science revisited: a critical
analysis of the theory and its empirical support. IEEE Transactions of Software
Engineering 9 (2), 155–165.

Stamelos, I., Angelis, L., Oikonomou, A., Bleris, G.L., 2002. Code quality analysis in
open-source software development. Information Systems Journal 12 (1), 43–60.

Stewart, K.J., Ammeter, T., 2002. An exploratory study of factors influencing the
level of vitality and popularity of open source projects. In: ICIS 2002,
Proceedings of International Conference on Information Systems 2002.

Tukey, J.W., 1977. Exploratory Data Analysis, Addison-Wesley Series in Behavioral
Science: Quantitative Methods, Reading, Mass. Addison-Wesley.

Weiss, D., 2005. Measuring success of open source projects using web search
engines. In: Scotto, M., Succi, G. (Eds.), Proceedings of The First International
Conference on Open Source Systems (OSS 2005), Genova, Italy, pp. 93–99.

Wilcoxon, F., 1945. Individual comparisons by ranking methods. Biometrics Bulletin
1 (6), 80–83.
E

ous drivers and evolutionary stages in FLOSS projects, J. Syst. Soft-

http://dx.doi.org/10.1007/s10997-007-9022-9
http://dx.doi.org/10.1007/s10997-007-9022-9
http://www.cyrius.com/publications/michlmayr-phd.pdf
http://www.cyrius.com/publications/michlmayr-phd.pdf
http://bmj.bmjjournals.com/cgi/content/full/316/7139/1236

	Identifying exogenous drivers and evolutionary stages in FLOSS projects
	Introduction
	Previous work
	Empirical study definition and planning
	Code repositories
	Measured characteristics
	Distribution of data in the repositories
	Statistical Tests

	Results: Research Question research question 1 – Hypotheseshypotheses
	Results of the Tests tests – Research Question research question 1

	Results: Research Question research question 2 – Hypotheseshypotheses
	Results of the Tests tests – Research Question research question 2

	Discussion – A Framework a framework for Transitions transitions of FLOSS Projectsprojects
	Transition Framework framework – Types types of Repositoriesrepositories
	Transition Framework framework – Types types of Transitionstransitions
	Transition Framework – Discussiondiscussion

	Threats to the Validity validity of this study
	Conclusions and Future Worksfuture works
	 List of projects and application domains
	References




