
A Meta-model for
Software Protections and Reverse Engineering Attacks : an

instance of the meta-model

C. Basilea, D. Canavesea, L. Reganoa, P. Falcarinb,∗, B. De Sutterc

aDipartimento di Automatica e Informatica, Politecnico di Torino, Italy
bDepartment of Computing and Engineering, University of East London, United Kingdom

cComputer Systems Lab, Department of Electronics and Information Systems, Ghent University, Belgium

Abstract

This supplementary document presents an additional use case analysis on top of the
paper titled “A Meta-model for Software Protections and Reverse Engineering Attacks”
by the same authors, in the form of an instance of the meta-model filled in with the data
from the risk analysis and mitigation of an open source software application.

1. Introduction

Identifying the threats against a software application is an indispensable task to
mitigate the risk that attackers are able to compromise the assets therein. Automating
this task would have an tremendous impact in helping software developers, who usually
have limited or no competence in software protection, to achieve a reasonable level of
protection of their assets. However, such an automation is impossible without a proper
formalization of the knowledge needed to perform this activity.

We have proposed a meta-model able to describe all the entities involved in the
risk analysis and mitigation. The meta-model allows describing all the relevant parts
of an application (data, functions, pieces of code), the assets, the attacks against each
application part and the protections that mitigate these attacks [1]. The meta-model also
describes solutions, which describe how a combination of protections can be applied on
each application part that deserves to be protected. This meta-model has been designed
to be the foundation of a knowledge base that allows reasoning about the risk analysis
and mitigation process.

The following sections present an instance of the meta-model built on data from the
risk analysis and mitigation of Sumatra1. This document presents the data that can be

∗Corresponding author: Paolo Falcarin
Email addresses: cataldo.basile@polito.it (C. Basile),

daniele.canavese@polito.it (D. Canavese), leonardo.regano@polito.it (L. Regano),
falcarin@uel.ac.uk (P. Falcarin), bjorn.desutter@ugent.be (B. De Sutter)

1This example has been based Sumatra version 1.0.31, available here https://git.
metabarcoding.org/obitools/sumatra/wikis/home

Preprint submitted to Journal of Systems and Software October 5, 2018

represented by the meta-model and serves as validation of the meta-model effectiveness
in representing the data needed for risk analysis and mitigation.

This document is structured as follows. Section 2 presents more information about
the application we have protected and how we have selected it. Section 2 presents the
risk analysis and mitigation work flow we have executed to instantiate the meta-model.
Section 4 describes the application parts in the Sumatra application and the assets we
have selected. Section 5 presents the attacks that threaten the selected assets. Section 6
illustrates the protections that can be used to mitigate the risks against the assets and
block/delay the identified attacks. Finally, Section 7 draws conclusions.

2. The use case

In the following sections we are going to present an instance of the meta-model
for the protection of the Sumatra application, a C console application used to compare
DNA sequences. Sumatra can be used either to compare all the sequences contained
in a single dataset, or to perform a pairwise comparison of sequences contained in two
datasets. While Sumatra is an open-source application, we have simulated its protection
like it was a commercial software, whose comparison algorithm must be safeguarded
against reverse engineering.

The DNA comparison is performed in four consecutive phases. First, the applica-
tion parses the command line arguments, and depending on them calls the appropriate
functions to compare the given DNA sequences. Then, the latter are parsed and stored
in various data structures. These data structures are then used by the core algorithms to
perform the actual comparison of the sequences. Finally, the results of the comparison
are returned to the user.

We have identified in total 25 functions as assets. Table 1 lists them per phase.
To show how the meta-model can be useful in protecting the application, we aim to
safeguard all the assets from attacks against their confidentiality and integrity.

Full details about the meta-model instantiation we are going to present in the fol-
lowing sections is available as an ontology file2, written in the Web Ontology Language
2 (OWL2).

2https://github.com/SPDSS/Software-Protection-Meta-Model/blob/master/
sumatra-model.owl

2

Sumatra phase Asset names # assets

1 main 1
2 seq readAllSeq2, cleanDB, addCounts, 9

seq fillHeader, seq fillSeqOnlyATGC,
seq fillSeq, seq fillDigitSeq,
seq readNextFromFilebyLine, uniqSeqsVector

3 compare1, calculateMaxAndMinLen, 4
compare2, calculateMaxAndMinLenDB

4 seq findSeqByAccId, seq printSeqs 11
printOnlySeqFromFastaSeqPtr,
sortSeqsWithCounts, seq getNext,
reverseSortSeqsWithCounts,
printHeaderAndSeqFromFastaSeqPtr,
printOnlySeqFromChar, printResults,
printOnlyHeaderFromFastaSeqPtr,
printOnlyHeaderFromTable

Table 1: Functions marked as assets, grouped by Sumatra phases.

3. Work flow for risk analysis and mitigation of software application

The meta-model instance we will analyse in the following sections has been pop-
ulated in a semi-automated way, by using a tool chain and corresponding work flow
developed to assist a software developer in protecting their applications. In particular,
the tools used include:

1. a parser of the application source code;

2. an automatic attack discovery tool;

3. an automatic protection discovery tool;

4. an tool that estimates of software metrics after the application of protections to
the source code;

5. a tool to hide the protected assets.

First, the application source code is parsed with a tool based on the Eclipse C
Development Toolkit (CDT)3, in order to add to the meta-model instance information
about the application source code structure, such as the functions and their parameters,
the call graph, the local and global variables.

The user can manually annotate the source code to select the functions (or parts of
their code bodies) and variables that constitute the assets that must be protected, and the
related security requirements, such as confidentiality and integrity. These annotations
are automatically parsed by the tool and to fill in the meta-model instance.

Then, an automatic attack discovery tool [2, 3], written in Java, uses the informa-
tion added to the instance by the parser in order to infer the possible attacks able to

3https://www.eclipse.org/cdt/

3

endanger the user-defined security requirements of the application’s assets. The at-
tacks are inferred via an automated reasoning based on a knowledge base of Prolog
rules, obtaining for each security requirement of each asset the set of attack paths able
to endanger that requirement.

For each attack path, a set of inference rules is used to the find the protections that
can be applied to the endangered asset in order to block the attack. Also, for each
proposed application of a protection to an asset, the software metrics of the latter after
deploying the protection is estimated using a set of neural networks [4]. In this way,
the user may evaluate the protection effectiveness in defending the asset, e.g., by using
the potency proposed by Collberg [5].

Then, the user can select some of the proposed protections and combine them into
a single solution. Also, a tool can automatically refine the latter by adding additional
protections on code areas not sensitive from a security point of view but nonetheless
good candidates for undergoing protective transformations in order to hide the applica-
tion’s assets [6]. Otherwise the difference in structure between transformed and non-
transformed code fragments would reveal the location of the assets in the whole pro-
gram to an attacker. The additional protections are inferred by automatically generating
and solving (using the IBM ILOG CPLEX4 solver) a mixed-integer linear problem, in
order to maximize the amount of code that must be analysed by an attacker to find the
application’s assets [6].

In the following sections, we will show how running this work flow on Sumatra
is able to infer all the information needed to protect the application. For the sake of
brevity, we are going to concentrate on one specific asset, the function compare1 in the
sumatra.c source code file, containing one of Sumatra’s core algorithms, specifically the
one responsible for the comparison between all the DNA sequences in a single dataset.
As already said before, we want to preserve the confidentiality and integrity of such
asset.

It is worth noting that the ontology reports full information about all the assets we
have annotated in the Sumatra application.

4. The application meta-model

In this section, we describe the application’s instantiation of the application meta-
model of Section 3.2 of the meta-model paper [1]. In this and later sections, numbered
instances are taken directly from the ontology file mentioned in Section 2.

The automatic parser is able to automatically add the information about the source
code structure of the application in the meta-model instance. We have manually anno-
tated the assets listed in Table 1: such annotations are automatically parsed, resulting in
instances of the Asset class. Classes instantiated by the parser are reported in Table 2.

Looking at the compare1 function in sumatra.c, since we have annotated its body as
an asset in the source code, from the parsing we obtain in the ontology file:

4https://www.ibm.com/analytics/data-science/prescriptive-analytics/
cplex-optimizer

4

Class name File ApplicationPart Asset Datum Code Call DatumItem

instances 12 1159 25 909 225 708 1551

Table 2: Classes automatically instantiated by the parser.

DatumType parameter genericVariable integerArrayDatum integerDatum

Datum instances 6 9 2 6

Table 3: Datum instances representing parameters and local variables of compare1.

1. a File instance, with the source path of sumatra.c as an attribute;

2. an ApplicationPart instance named applicationPart.714, with the function name as an
attribute;

3. an Asset instance named applicationPart.738, contained in applicationPart.714, with
two hasRequirement relationships with respectively the confidentiality and integrity
elements of the SecurityRequirement enumeration.

Furthermore, applicationPart.714 contains Datum instances representing its parame-
ters (from applicationPart.715 to applicationPart.720) and local variables (from application-
Part.721 to applicationPart.737). Information about variables’ type is modelled using an
hasType association with the appropriate DatumType enumeration element, as shown in
Table 3.

The meta-model represents functions calls, such as the one made by the main func-
tion in sumatra.c to compare1 in the same file. The applicationPart.946 instance repre-
senting the main function has a hasCall association with the call.2930 instance of the Call
class. The latter has a hasCallee association with applicationPart.714 representing com-
pare1. Furthermore, we can look at the first parameter of this call: the main function
passes to compare1 as first parameter the variable named db1, represented in the on-
tology with the applicationPart.959 instance, obviously contained in applicationPart.946.
Consequently, call.2930 has a startsWith association with the DatumItem instance datu-
mItem.2930.0, which in turn has a refersTo association with the applicationPart.959 instance
representing the passed db1 variable.

5. The attack meta-model

In this section, we describe the instantiation of the attack meta-model of Section
3.4 of the meta-model paper [1] for the Sumatra application.

By running the automatic attack discovery tool, we are able to find the possible
attacks against the security requirements of the manually annotated assets. The attacks
are modelled as AttackPath instances, each made of a sequence of AttackStep instances.
Each of the latter is related to a specific AttackStepType, which is in turn related to the
minimum AttackerExpertise needed by the attacker to perform an attack of such type.

5

Required
AttackStepType Implementing AttackToolType AttackerExpertise

dynamicStructureAndDataAnalysis debugger geek
dynamicTampering debugger geek
staticStructuralCodeAndDataRecovery disassembler, procedureMatchingTool, decompiler amateur
staticTampering staticTamperingTool amateur

Table 4: Instances of class AttackStepType in the ontology.

Minimum required
AttackToolType # AttackTool instances Examples of AttackTool AttackerExpertise

debugger 7 gdb, ollyDbg amateur
decompiler 3 boomerang, smartDec geek
disassembler 7 hopperv3, viviset amateur
procedureMatchingTool 4 peiD, unstrip amateur
staticTamperingTool 5 peTools, metasm amateur

Table 5: Instances of class AttackTool in the ontology.

Furthermore, an AttackStepType can be performed by an attacker by using an AttackTool
of the appropriate AttackToolType, if the attacker has the required AttackerExpertise. For
example, even a non-professional attacker may be able to attach a debugger to the ap-
plication and do some dynamic tampering, such as modifying the value of a variable at
runtime: therefore, the AttackStepType dynamicTampering has a requireExpertise relation-
ship with the geek element of the AttackerExpertise enumeration. The dynamicTampering
AttackStepType is related with the debugger AttackToolType: however, some debugger are
really easy to use while some requires a great expertise from the attacker. For example,
the armDSTREAM AttackerTool has a requireExpertise relationship with the expert Attacker-
Expertise, since Arm DSTREAM5 is an expensive, professional hardware debugger for
Arm System-on-Chips that can be very difficult to use for a non-professional attacker.
Attack step types in the ontology, with the implementing attack tool types are summa-
rized in Table 4, while information about attack tools in the ontology is available in
Table 5.

We have run the automatic attack discovery tool on Sumatra, in order to automati-
cally instantiate all the classes needed to represent the possible attacks against the man-
ually annotated assets in Sumatra source code. General statistics about the instances of
the aforementioned classes are available in Table 6.

For example, an attacker may breach the integrity of the compare1 asset by exe-
cuting the application with a debugger attached and running a comparison between
DNA sequences in the same dataset in order to run the compare1, in order to locate and
change the latter using the debugger. In the ontology, this attack is modelled by the
attackPath.18 instance of the AttackPath class. Such instance has a startsWith with the At-
tackStepItem attackStepItem18.0, which in turn has a refersTo association with attackStep.23,

5https://developer.arm.com/products/software-development-tools/debug-probes-and-adapters/dstream

6

Class AttackPath AttackStepItem AttackStep AttackTarget

instances 162 353 150 50

Table 6: Instances of automatically instantiated classes in the ontology representing
attacks to the application.

representing the first attack step of the path, i.e. the execution of the compare1 function.
This AttackStep instance has a hasTarget relationship with the attackTarget.4 AttackTarget
instance of the AttackTarget class that has a threatens relationship with the asset applica-
tionPart.738. The same instance has no affects relationships with any SecurityRequirement
instance, since executing the function does not breach any security requirement and
is only a preliminary step for the attack. Furthermore, the attackStepItem18.0 has a is-
FollowedBy relationship with attackStepItem18.1, the second step in the attack, which in
has a isFollowedBy relationship with attackStepItem18.2, the last step in the attack. Tak-
ing a closer look to the final step, we may see as the relative AttackStepItem instance
has no isFollowedBy association since it is the last step in the attack path; also, it has
a refersTo association with the attackStep.25, representing the alteration of the compare1
function logic by means of a debugger. Therefore, the attackStep.25 has a hasTarget rela-
tionship with the attackTarget.5, which in turn has a threatens relationship with the asset
applicationPart.738 and a affects relationship with the integrity SecurityRequirement element.
Furthermore, the attackStep.25 is related to its type with a hasType relationship with the
dynamicTampering element of the AttackStepType enumeration. From the latter, generic
information about the attack (possible attack tool used, required attacker expertise, po-
tential mitigations of the attack) can be taken into account when analysing a specific
attack step. For example, we can infer that attackStep.25 can be executed even by a
non-professional attacker, since the attack step is related to its type dynamicTampering
which in turn has a requiresExpertise association with the geek AttackerExpertise.

6. The protection meta-model

In this section, we describe the instantiation of the protection meta-model of Sec-
tion 3.3 of the meta-model paper [1] for the Sumatra application.

Information about available protections is independent from the analysed applica-
tion. The Protection class instances describe general protection types, while application
of such protections with specific tools are modelled by using the ProtectionInstance class.
More precisely, ProtectionInstance instances describe a protection applied by means of
the tool X executed with a precise set of tool-specific parameters that drive its deploy-
ments. Available protections in the ontology are summarized in Table 7. Furthermore,
protections are able to mitigate various AttackStepType instances with different efficacy
levels, expressed with Level enumeration. This concept is expressed in the meta-model
by using the Mitigation class, and instances of the latter in the ontology are reported in
Table 8.

If we restrict the usage of AppliedProtectionInstance objects related to Protection in-
stances with a medium or high Level against at least one of the AttackStep individuals

7

Protection # ProtectionInstance

antiDebugging 1
binaryCodeControlFlowObfuscation 9
callStackChecks 1
codeMobility 1
dataObfuscation 3
staticRemoteAttestation 1
whiteBoxCryptography 1

Table 7: Instances of class ProtectionInstance in the ontology.

dynamicStructure- dynamic- staticStructural- static-
AndDataAnalysis Tampering CodeAndDataRecovery Tampering

antiDebugging medium high medium medium
binaryCodeControlFlowObfuscation high medium

callStackChecks low
codeMobility low low
dataObfuscation medium medium medium
staticRemoteAttestation high low high
whiteBoxCryptography medium medium

Table 8: Instances of class Mitigation in the ontology, with related Level.

found with the automatic attack discovery tool, we obtain 299 instances of the Applied-
ProtectionInstance class. The protection discovery tool found at least one AppliedProtec-
tionInstance able to harden each AttackPath, i.e., able to block or make harder at least
one AttackStep constituting the AttackPath. For example, to mitigate the aforementioned
attackPath.18, the tool suggests two protections that can be applied to the asset compare1,
anti-debugging (appliedProtectionInstance.47) and/or static remote attestation (appliedPro-
tectionInstance.64), since the relative Protection are both related to a Mitigation with a high
Level against the dynamicTampering AttackStepType, which is the type of the last AttackStep
in the examined attack path.

We have then manually combined a selection of the suggested AppliedProtectionIn-
stance into a Solution instance (solution.1 in the ontology). Based on our experience,
the protection in that solution are able to safeguard the security requirements of the
application’s asset effectively. Note that the model is able to represent different pro-
tection applied to the same asset: for example, in our solution the compare1.r17 asset
is protected with 3 different protections: static remote attestation (appliedProtection-
Instance.104), anti-debugging (appliedProtectionInstance.47) and code mobility (ap-
pliedProtectionInstance.102).

The Solution instance is described in Table 9, and consists of 27 AppliedProtection-
Instance (one per asset). Furthermore, we automatically refined this solution with the
asset hiding tool: the resulting solution (solution.2 in the ontology), reported in Table 10,
contains the 27 AppliedProtectionInstance of the input solution, and also additional 45 Ap-
pliedProtectionInstance on non-assets application parts.

8

ProtectionInstance name Asset name # mitigated AttackPath

Anti-Debugging cleanDB.r9 8
Code Mobility printResults.r16 2
Anti-Debugging printOnlySeqFromFastaSeqPtr.r20 8
Code Mobility seq readAllSeq2.r6 2
Anti-Debugging calculateMaxAndMinLenDB.r13 6
Anti-Debugging reverseSortSeqsWithCounts.r15 4
Anti-Debugging seq printSeqs.r8 2
Anti-Debugging seq fillSeqOnlyATGC.r4 4
Anti-Debugging seq readNextFromFilebyLine.r1 2
Anti-Debugging addCounts.r10 2
Anti-Debugging sortSeqsWithCounts.r14 4
Anti-Debugging printOnlySeqFromChar.r21 2
Binary Obfuscation main.r19 2
Anti-Debugging seq getNext.r0 4
Anti-Debugging calculateMaxAndMinLen.r12 4
Code Mobility compare2.r18 2
Static Remote Attestation compare1.r17 3
Anti-Debugging compare1.r17 6
Code Mobility compare1.r17 2
Anti-Debugging printHeaderAndSeqFromFastaSeqPtr.r24 2
Code Mobility seq fillDigitSeq.r5 2
Anti-Debugging printOnlyHeaderFromTable.r23 2
Anti-Debugging seq fillSeq.r3 4
Anti-Debugging seq findSeqByAccId.r7 2
Code Mobility seq fillHeader.r2 2
Anti-Debugging uniqSeqsVector.r11 6
Anti-Debugging printOnlyHeaderFromFastaSeqPtr.r22 2

Table 9: AppliedProtectionInstance constituting our manually generated solution.

original Applied- # additional Applied- # Applied-
ProtectionInstance name ProtectionInstance ProtectionInstance # ProtectionInstance

Anti-Debugging 19 20 39
Binary Obfuscation 1 25 26
Code Mobility 6 0 6
Remote Attestation 1 0 1

Total 27 45 72

Table 10: AppliedProtectionInstance constituting our manually generated solution.

9

7. Conclusions

This data in brief paper has illustrated, with precise examples from the risk analysis
and mitigation of a single asset in the Sumatra application, the descriptive abilities
of the meta-model developed to represent information about identifying threats and
protecting assets in software applications.

Acknowledgements

This research is supported by the European Union Seventh Framework Programme
(FP7/2007-2013), project ASPIRE (Advanced Software Protection: Integration, Re-
search, and Exploitation), under grant agreement no. 609734.

References

[1] C. Basile, D. Cavanese, L. Regano, P. Falcarin, B. De Sutter, A meta-model for
software protections and reverse engineering attacks, Journal of Systems and Soft-
wareUnder submission.

[2] C. Basile, D. Canavese, J. D’Annoville, B. De Sutter, F. Valenza, Automatic
discovery of software attacks via backward reasoning, in: Software Protection
(SPRO), 2015 IEEE/ACM 1st International Workshop on, 2015, pp. 52–58.

[3] L. Regano, D. Canavese, C. Basile, A. Viticchié, A. Lioy, Towards automatic risk
analysis and mitigation of software applications, in: Information Security Theory
and Practice, Springer International Publishing, 2016, pp. 120–135.

[4] D. Canavese, L. Regano, C. Basile, A. Viticchié, Estimating software obfusca-
tion potency with artificial neural networks, in: Security and Trust Management,
Springer International Publishing, 2017, pp. 193–202.

[5] C. Collberg, C. Thomborson, D. Low, A taxonomy of obfuscating transformations,
Tech. rep., Department of Computer Science, The University of Auckland, New
Zealand (1997).

[6] L. Regano, D. Canavese, C. Basile, A. Lioy, Towards optimally hiding protected
assets in software applications, in: 2017 IEEE International Conference on Soft-
ware Quality, Reliability and Security (QRS), 2017, pp. 374–385.

10

