

University of East London Institutional Repository: http://roar.uel.ac.uk

This paper is made available online in accordance with publisher policies. Please
scroll down to view the document itself. Please refer to the repository record for this
item and our policy information available from the repository home page for further
information.

To see the final version of this paper please visit the publisher’s website.
Access to the published version may require a subscription.

Author(s): Falcarin, Paolo; Lago, Patricia; Morisio, Maurizio.
Article title: Dynamic Architectural Changes for Distributed Services
Year of publication: 2003
Citation: Falcarin, P., Lago, P., Morisio, M. (2003) “Dynamic architectural changes
for distributed services”, 8th International Workshop on Component-Oriented
Programming, Darmstadt, Germany, July 2003.
Link to published version:
http://research.microsoft.com/en-us/um/people/cszypers/events/wcop2003/05-
falcarin.pdf

http://roar.uel.ac.uk/
http://research.microsoft.com/en-us/um/people/cszypers/events/wcop2003/05-falcarin.pdf
http://research.microsoft.com/en-us/um/people/cszypers/events/wcop2003/05-falcarin.pdf

Dynamic Architectural Changes for Distributed Services

Paolo Falcar in, Patr icia Lago, M aur izio M or isio
Dipartimento di Automatica e Informatica

Politecnico di Torino, Italy
c.so Duca degli Abruzzi 24, I-10129

{Paolo.Falcarin, Patricia.Lago, Maurizio.Morisio}@polito.it

Abstract
The design of complex software architectures for distributed systems always faced
different problems in both development and maintenance. Design decisions like the kind
of architectural style, the middleware to use, and the interaction styles among distributed
components are variants often chosen in the early design phases. Hence, when some
changes are needed, rollback is difficult and expensive. Moreover, when a developer
team implements the system, it is difficult to maintain coherence in source code with the
architectural specification; this implies a longer phase of debugging and re-designing. A
different strategy can be based on delaying as much as possible these design decisions, to
be able to choose the best architecture and middleware during prototyping. This approach
permits a more agile development process that allows choosing among possible
alternatives before deployment, or even after deployment, and changing these variants at
runtime. This paper describes JADDA (Java Adaptive component for Dynamic
Distributed Architectures), a software component we developed to cope with these issues
with a minimal impact for developers.

1. Introduction

Recent trends in software development show an increasing request for variability, i.e.
software locations where behavior and structure can be configured. Handling variability
implies the need of delaying design decisions in order to decrease the number of
decisions that could be irreversible or very expensive to rollback. Software variability is
the ability of a software system to be changed, customized or configured in order to be
easily adapted to different contexts. This implies that software is more reusable, that it is
designed to support evolution, and that it can be easily used in an agile software
development process [5].
Starting from these open problems, in this paper we focus on distributed software
architectures, and try to give an answer to these related questions:

- How can we delay design decisions like the architectural style, the middleware,
and the interaction style (e.g. synchronous or asynchronous) of components?

- How can we write source code that is independent from the kind of middleware
used?

- How can we check if our source code adheres to the architectural specification?
- How can we apply fast design changes, when development shows design errors?
- How can we check if a certain architectural constraint holds in the

implementation?

- How can we evaluate alternative implementations, in early prototyping?
To find an answer to the questions above, we developed JADDA [2], a software
component supporting dynamic management of variability.

2. JADDA

JADDA is a software component that relies on an architectural specification defined in
xADL (XML-based Architecture Description Language, [1]). Among the various ADLs
focused on dynamic software architectures, we chose xADL because of its
characteristics:

- It is designed to be a standard way to express architectural specifications.
- It is extensible and adaptable to the kind of ADL one is used to work with: it

allows architects to apply extensions by defining new XML-Schemas that can be
referenced in a xADL file.

- It is based on XML, which makes it easier to parse by JADDA source code than
other ADLs.

We have reused the xADL basic schema to define the architecture topology and we have
extended xADL with new XML-schemas to specify information specific to distributed
systems. Some of these schemas are used to provide information about different
middleware protocols, while others define information typical for distributed systems.
Another important characteristic of xADL is the ability to generate Java code from
different schemas; This is possible by means of the APIGEN tool available at the xADL
website [4]. Generated source code can be used by applications (in our case by JADDA)
to handle XML-schemas data inserted in a xADL file.
Our XML-schemas are based on the definition of Component, Connector, and Link as
given by xADL:

- A Component is an object that makes some computation and offers a set of
interfaces.

- A Connector is an object that focuses on data communication among components.
- Links are semantic-free connections between interfaces on components and

connectors that indicate the topology of architecture: each link represents a
directed connection showing that a component needs to call a method on an
interface of another component.

Starting from these definitions, we have extended the characteristics of Connectors and
Links(defined by xADL in its own XML-schemas). We specified these extensions in two
corresponding new schemas: Distributed-Connector and Distributed-Link: these contain
additional data defining remote interactions among distributed components. Distributed-
Connector is the basic schema that is specialized by other XML-schemas related to
middleware protocol standards, like CORBA-Connector for CORBA-IIOP [6], and
SOAP-Connector for SOAP [7]. For example, the CORBA schema defines tags like:

- NameServer: it includes all the information needed for binding and retrieving
CORBA references with a certain implementation of the CORBA Naming
Service;

- Location: specifies the runtime information to connect to the Naming Service
(e.g. hostname and port);

- Stub, skeleton, objectAdapter: contain prefixes and suffixes added by a certain
CORBA implementation to the client stubs, server skeletons and object adapter,
for JADDA to make remote invocations with Java reflection.

A standard protocol like CORBA-IIOP can be implemented by different middleware
platforms, offering slightly different APIs to applications. Therefore, including in the
same architecture different kinds of CORBA implementations, means having different
instances of CORBA-connectors in a xADL file: each CORBA connector defines tag
values (in the CORBA-connector schema) to qualify its own specializations.
The kind of middleware used by a component interface is defined in the extended-
Interface XML-schema. This schema extends the xADL’s Interface schema. It contains
the reference to the connector instance used by a component interface and other
information needed to check architectural constraints. For example, it is possible to
define the sequence of method invocations allowed on an interface; this specification can
be used by JADDA to check if an application is using a remote interface in the right way.
A Distributed-Link schema represents a direct relationship between a component and the
interface of another component. This schema also specifies the interaction style
(synchronous, or asynchronous) used by this link, and the list of interface methods that
are invoked with a different style. This approach also allows in the future defining new
interaction styles. Before making a remote invocation, JADDA checks in the xADL file
the links that exist and the style to use: if the searched link is not defined, it means that
the remote invocation is not allowed by the architectural specification, and hence it does
not occur. This event is reported to the developer and to the designer, who can react in
two different ways: either the system architect changes the specification, or the developer
changes the implementation.
In order to support dynamic architectural changes, each application must include an
instance of JADDA and use it to make remote invocations using the JADDA API.
During initialization JADDA registers in the JADDA System administrator console in
order to receive through the network the current xADL architectural specification file.
Next, the remote interface references are stored by the CORBA Name server or by the
UDDI registry (depending on the information contained in the xADL file).
Application independence from the middleware in use is achieved in JADDA by
wrapping the different middleware protocols for remote method invocation, like
CORBA-IIOP, and SOAP. An example of typical usage looks as follows:

Jadda j adda = new Jadda() ;
St r i ng component Name = “ Chat Ser ver ” ;
St r i ng i nt er f aceName = “ Chat Manager ” ;
St r i ng met hodName = “ accessRoom” ;
St r i ng par amet er = “ Joe” ;
j adda. cal l (component Name, i nt er f aceName, met hodName, par amet er) ;

The method “cal l ” is overloaded in order to offer different versions able to call methods
with different parameters; in the different “cal l ” method signature, the first three strings
identify the requested method, and the fourth parameter carries Java “Object” types: they
all refer to the main “cal l ” method implementation with the following signature:

Obj ect cal l (St r i ng component , St r i ng i nt er f ace, St r i ng met hod,
Obj ect [] par am) ;

The method “cal l ” searches in the xADL file the information about the middleware
needed to communicate with the requested interface method, and it uses Java reflection to
make the remote method invocation.
Using this approach, we provide a more abstract view of different interactions, allowing
programmers to use different libraries implementing connectors, i.e. different APIs to
make remote method invocations, depending on the middleware implementation. This
implementation strategy reduces significant problems in the development and
maintenance of software systems, and the connector source code is well separated from
the component source code. In this way, the source code of software services is more
portable and independent from the underlying middleware. In addition, the service source
code can be easily reused or upgraded. Abstracting remote invocations with local
methods is an approach used in the container architecture of JBoss [8] application server:
the developer has to implement the “Cont ai ner Remot e” interface to implement
adaptations for the desired middleware, in addition to the default implementation of RMI.
Instead in JADDA these adaptations for CORBA and SOAP are already implemented and
architectural specification is also checked out before every remote invocation.

3. Dynamic architectural changes

An XML-based specification can be easily parsed from source code. This means that an
application can check at runtime if its own behavior is compliant with the current
architectural specification. As we do not want to assign this task to the developer, this
work can be delegated to JADDA, which monitors every remote invocation, checking if
the architectural specification is maintained and if constraints hold.
In order to support dynamic architectural changes, JADDA implements a separate thread
listening to the network for a new version of the architectural specification: in this way,
the system designer using the JADDA System Administrator console, can change the
xADL file and send it on the network to the involved services, which are immediately
adapted to the new architecture. This allows trying different possible values for variants
like architectural styles, middleware and interaction styles in a later phase of design, just
before testing and deployment. Changes to these variants can be also applied at runtime,
without rewriting or adapting any code in the different services.
Changing the xADL specification file during prototyping reduces the amount of
development effort and returns quick results early in the process: try alternative
implementations, it is possible to decide which architectural styles, standards, interfaces,
middleware or even components to use in the final deployment. This approach makes
development more agile, as promoted by extreme Programming. If later in the process, a
chosen architecture or interface turns out to be inadequate, with JADDA, changes in the
requirements lead to shorter delay in the development than with traditional software
development. Moreover, during development, the adding or removal of constraints set on
the methods of an interface can be used to help the developers in maintaining source code
coherent to the specification.
On the other hand, changing the specification at runtime allows:

- Substituting a new version of the middleware
- Substituting the middleware used in a link, whenever the server-side component

of the link changed the middleware used to publish its own interfaces;
- Notifying all the components dependent on a particular component X, that a new

version of X has been deployed: this allows using hot-swappable components
without changing other dependent components.

4. Conclusions

This paper describes JADDA, a component used to check architectural specification of
distributed systems at runtime. JADDA reduces the effort and time needed in developing
services based on different middleware: applications can use the same abstract API
hiding the details of different middleware implementations, and a different kind of
middleware can be used on each link to a remote interface. This cost reduction is
obtained thanks to the three main features of JADDA:

1. An XML architectural specification based on xADL, and extensible with new
XML-schemas that add middleware information;

2. Middleware abstraction in the application source code, bringing service
portability and the ability to change middleware and interaction styles without
modifying the application code;

3. Support for dynamic change of the architectural specification to adapt the
application at runtime to new architectural requirements.

JADDA adaptability can be improved by allowing the dynamic downloading of new
middleware components when a new version is available. Current work focuses on the
extension of JADDA to rely on PROSE [3], a dynamic aspect-oriented platform able to
insert and withdraw aspects at runtime. With this extension we expect to totally decouple
the application code from middleware and architectural concerns.

Acknowledgements
The authors want to thank Eric M. Dashofy (from the Institute for Software Research of
University of California, Irvine) and Isabella Vespa (from the Politecnico di Torino,
Italy) for the help given with xADL.

References
[1] E.M. Dashofy, A. van der Hoek, and R.N. Taylor. An Infrastructure for the Rapid

Development of XML-based Architecture Description Languages. In Proceedings of
the 24th International Conference on Software Engineering (ICSE2002), Orlando,
Florida.

[2] JADDA website. URL: http://softeng.polito.it/jadda/
[3] PROSE (PROgrammable Service Extension). URL: http://prose.ethz.ch/
[4] xADL 2.0 website. URL: http://www.isr.uci.edu/projects/xarchuci/
[5] Agile development website. URL: http://www.agilealliance.org/
[6] CORBA standard. URL: http://www.CORBA.org
[7] SOAP protocol. URL: http://www.w3.org/TR/soap12-part1/
[8] JBoss website. URL: http://www.jboss.org/

	WCOP 03 cover sheet
	05-falcarin

