Noname manuscript No.
(will be inserted by the editor)

Effort Estimation of FLOSS Projects: A Study of the Linux
Kernel

Andrea Capiluppi - Daniel Izquierdo-Cortazar

Received: date / Accepted: date

Abstract Empirical research on Free/Libre/Open Source Softwar©%8) has shown
that developers tend to cluster around two main roles: “aaatributors differ from
“peripheral” developers in terms of a larger number of resuilities and a higher
productivity pattern. A further, cross-cutting charaization of developers could be
achievd by associating developers with “time slots”, arftedgnt patterns of activ-
ity and effort could be associated to such slots. Such aisaifseplicated, could be
used not only to compare different FLOSS communities, arevaduate their stabil-
ity and maturity, but also to determine within projects, hitw effort is distributed in
a given period, and to estimate future needs with respeeit@gints in the software
life-cycle (e.g., major releases).

This study analyses the activity patterns within the Linexriel project, at first
focusing on the overall distribution of effort and activityithin weeks and days;
then, dividing each day into three 8-hour time slots, andi$otg on effort and ac-
tivity around major releases. Such analyses have the ogeat evaluating effort,
productivity and types of activity globally and around nrajeleases. They enable
a comparison of these releases and patterns of effort aitiastwith traditional
software products and processes, and in turn, the idemitficaf company-driven
projects (i.e., working mainly during office hours) among@&S endeavors.

The results of this research show that, overall, the effatinthe Linux kernel
community is constant (albeit at different levels) throoghthe week, signalling the
need of updated estimation models, different from thosd irsgaditional 9am-5pm,
Monday to Friday commercial companies. It also becomeseevithat the activity
beforea release is vastly different froafter a release, and that the changes show an

Dr A. Capiluppi
University of East London, UK
E-mail: a.capiluppi@uel.ac.uk

D. Izquierdo-Coréazar
Universidad Rey Juan Carlos, Spain
E-mail: dizquierdo@gsyc.es

2 Andrea Capiluppi, Daniel Izquierdo-Céagtar

increase in code complexity in specific time slots (notahlyhe late night hours),
which will later require additional maintenance efforts.

1 Introduction

Software development productivity measurement and coishason has been a re-
search topic for more than 3 decades [1], [2], [3]. So farMit majority of empiri-
cal studies have involved data from proprietary softwacgguts [4]. Even though an
increasing number of governments, non-governmental (agéons and companies
seem interested in using, evaluating and contributing t®©&8, effort estimation
models or other measurement-based models are not genesalllywithin FLOSS
communities [4]. Indeed, such exploration and quantificatf productivity, specif-
ically the determination of how a FLOSS community managek alocates effort
around a major release, may help in comparing FLOSS proptts with propri-
etary software projects, and also be useful when making edsgns between large
FLOSS communities. Furthermore, such productivity madgtian also help to iden-
tify a baseline to measure the possible impact of changdsriexample, processes,
methods and tools used by FLOSS communities.

The analysis of FLOSS productivity so far has shown thattlean increase in
productivity as long as FLOSS developers progress in th&iuses within a project.
A good approximation of such observed practice has beemhsgad along the clus-
ters of the so called “onion model” [5], [6]. The external dayof this representation
consists olusers strictly speaking not representing developers, but rieless form-
ing a valuable community for both the diffusion of FLOSS proté and the testing
of their functionalities. Theontributors less numerous than the users, represent the
next layer, producing source code and fixes, as well as grayfdedback and discus-
sion. Finally, thecore developergepresenting the centre of the onion, provide most
of the work needed both in the creation, and in the maintemasfcnew or existing
content, and their productivity is an order of magnitudehkigthan the contributors.
It has been also argued that the core team must be small [Tjnber, in order to
keep a tight control over the core system. It has also beemdfthat the coordina-
tion issues of traditional software systems (e.g., Brotds’ [8]) still apply within
FLOSS core teams, while such issues are much less relevattien layers of the
onion model [9].

The objective of this research is to develop a framework 10DES effort es-
timation based on clustering developers around diffetiem slots and by consid-
ering “days of the week” or “hours in a day” as cross-cuttitigilzutes for effort
and productivity models. The rationale for doing this desifrom both a lack of
such differentiation in the current literature, and theuhssobtained in a previous
work [10] analysing the effort produced by a UK-based sofendevelopment com-
pany. A Source Code Management system (SCM) is kept by th@aayh so daily
and weekly analyses are possible: among other resultssifouamd that the pattern

1 All the developers are co-located, so no further adjustmemateeeded in terms of the time of the day
of each commit

Effort Estimation of FLOSS Projects: A Study of the Linux Kefn 3

of activity could be described by a traditional 9am-to-5pvignday to Friday com-
mitment. Most days experience comparable effort levelsitdpm Thursdays, when
most of the “user stories” get completed, and Fridays, whestintesting is done.

Performing a similar analysis for FLOSS projects could ledgetter understand-
ing of how the FLOSS development works, and whether its dtariatic activity and
effort distributions are so different as to render “traatil” effort estimation software
cost models unusable. On the one hand, the analysis coutighigproductivity pat-
terns around specific dates (e.g., when a major release is pdadic). On the other
hand, its results could be used to determine whether spénikcslots are more pro-
ductive, or are more prone to modifications that increasetite complexity, than
others.

In both cases, the wealth of data coming from FLOSS projextkithelp produce
and replicate ad-hoc estimation models, eventually difféatingcompany-driven

projects fromcommunity-driverendeavors. FLOSS projects backed by large compa-

nies (i.e., company-driven) should reflect developers withore traditional, 9am-
5pm activity patterns, commit policies and so forth. Tdoenmunity-driverFLOSS
projects should instead follow more continuous workinggrats, since developers
are working in their spare time, and outside normal “officeiist. If identified and
confirmed, such emerging patterns would present new, spebiillenges:

— how to differentiate the effort estimation models basedhengeriods of activity,
by means of weights and triggers of model-switching; and

— the effective utilization of monitoring tools in specifierie intervals, or parts of
the day, in order to properly monitor the diverse produttiet certain times of
the day, or in specific days of the week.

So far, this research has achieved four main contributions:

1. Itdemonstrates that the patterns of work within the setécase study (the Linux
kernel) are different from those found in a traditional safte development team.

2. It presents the analysis of the development of the Linurédealong specific pe-
riods of the day (e.gtime slot3, and in specific periods (around major releases),
with the aim of investigating the changes in productivitydaoode complexity
during such periods.

3. It performes the analysis using the “Git” SCM repositavigich offers additional
information on the development processes, not offered lhgratpositories, and
not used in previous studies on FLOSS systems. In companigbmther config-
uration management systems (such as CVS or SVN), a Git teppsétains the
information about both the authors and their local subroissiates, rather than
aggregating the latter into the central server’s time [With this information,
it is possible to group the developers’ effort based on tliecéfe time of the
day when such actions were performed. This provides vadiafdrmation when
a distributed, trans-national development approach isidened (as the FLOSS
model requires).

4. Finally, this research provides the raw data, the intdiate steps and all the
scripts to allow the replicability of this study on other FES projects to further
enhance the knowledge on FLOSS systems.

4 Andrea Capiluppi, Daniel Izquierdo-Céagtar

2 Empirical Approach

This section details the various steps of the empirical ggedo extract the met-
rics and the results from raw data, given a number of reseguelstions, for the
purpose of allowing other researchers to replicate thesstepother FLOSS (but
not only) systems. One of the contributions of this papeniterms of the method
and a baseline that can be used for comparison with othezragstThe section is
articulated as follows: subsection 2.1 introduces thedsasminology and the def-
initions used throughout this study; subsection 2.2 ithtsis the research goal and
guestions, together with the metrics used to accomplish goal, using the GQM
framework [12]; subsection 2.3 details the process usedbtairothe selected met-
rics, using the history logs contained within the Git repmsi of the Linux kernel;
subsection 2.4 finally illustrates the process and toold tsextract the complexity
metric of the single source files, and of all the revisions #zech file underwent.

2.1 Definitions

The definitions used in the following study are as follows:

— Commit (or revisiort) change on the source code submitted to the source code

management system. This updates the current version aktheirectory with a
new set of changes. Those changes are generally summariagdtchwhich is
a set of lines with specific information about the affecteekfilbut also about the
affected lines. In this paper, the link between amount ofmitsiand developers’
effort is established from previous literature [13].

— Committer any person with rights to commit a change into the source cod

— Author. At times, a commit is committed by a given committer, but stesy not
be the real (or only) author. Some SCMs offers this infororgtand the Git SCM
provides a specific field for this.

— Major release this research will focus on specific points when highervégti
is detected, namely the releases of the Linux were madegbylblailable. The
releases studied in this research are the ones containetidaated) within the
Git repository during the 2.6 branch of development, stgrfrom release 2.6.12
and including release 2.6.34. In total, an overall of 23asés were analysed,
spanning some 5 years of development under the Git repgsitor

— Timezonesin this research any day is divided into three 8-hour sastiavith
“office hours” (OH) defined as the period from 9:00 to 17:00nEtn Mondays
and Fridays; similarly “after office” (AO) is the period froftv:00 to 1:00, and
“late night” (LN) runs from 1:00 to 9:00. As mentioned aboamd differently
from other systems (e.g., CVS, Subversion), the Git condiim management
system records and permanently stores the times local tndhedual commit-
ter, which makes the definition of timezones feasible, ardstiady of working
patterns along different hours of the day possible.

— Complexity since the Linux kernel is developed mainly using the C paogr
ming language, the definition of complexity used in this papd¢aken from the
McCabe cyclomatic index [14], [15].

Effort Estimation of FLOSS Projects: A Study of the Linux Kefn 5

2.2 Goal-Question-Metric Approach and Research Questions

This section presents the general objective of this worll,iadoes that in the for-
mal way proposed by th@oal-Question-Metri¢GQM) framework [12]. The GQM
approach evaluates whether a goal has been reached, byatingoihat goal with
guestions that explain it from an operational point of viewd providing the basis
for applying metrics to answer these questions. This stotlgvis this approach by
developing, from the wider goal of this research, the neggsguestions to address
the goal and then determining the metrics necessary forexirsgvthe questions.

Goal: the long term goal of this research is to define, validate quuhte produc-
tivity models for FLOSS projects, and to differentiate thfsom existing proprietary
software models.

Question: In this research, and considering the Linux Kernel as a dasky,she
following research questions have been evaluated:

Q1 - Is the effort towards the Linux kernel development everdyributed?
Rationale: the aim of this question is to compare the distitn of changes in
the source code with those provided by the company studidd@h This will
also provide a first impression of the general distributidrtiee changes and a
first determination of the main differences between fullygany-driven project
and a partially community-driven and company-driven peoguch as the Linux
Kernel.

Q2 - Do Linux developers work specifically during some days efiileek, or some
hours of the day?

Rationale: the aim of this question is to check how the dgwaémt activity car-
ried out by the developers of the project is distribited eswthe different days
of the week.

Q3 —Is there a statistically significant difference in thedttiduring various parts

of the day?
Rationale: the division of a day in time slots could help tpiave the knowledge
about the different activities carried out by developerkisTis also helpful to
develop an estimation model based on which time slots theneocial companies
usually work in (termed in this paper, Office Hours - OH) antkax such model
to FLOSS projects by adding information from the other titoésgAO and LN).

Q4 — Is there a statistically significant difference in the tyibefore and after a
major release in the Linux kernel?

Rationale: The aim of this question is to show how developétsn the Linux
Kernel work around deadlines and release dates. It is kndvah some FLOSS
communities deal with deadlines similarly to software canigs, imposing hard
dates and “feature-freeze” periods before a deadline [1H]7]. Thus, this ques-
tion aims to quantify the pre-release effort and post-reteafforts, and it pro-
vides an oversight of how the Linux Kernel community dedtls thiese dates of
high-load commitment.

Q5 — Are some parts of the day more prone than others to changemtnease the
complexity?

Rationale: the aim of this question is to check whether and bbanges in-
crease or decrease the complexity of a file, depending onirtie glots when

6 Andrea Capiluppi, Daniel Izquierdo-Céagtar

such changes were submitted. From an intuitive point of véedeveloper who
is performing time-consuming and highly intellectual wsudch as programming
will not be likely work at the same level of concentrationidgrall of the different
time slots being studied.

Q6 — What is the relevance of the factor “time slot” for an estioaimodel?
Rationale: this final question aims to create a first appraadion model for the
estimation of the effort in FLOSS communities based on thdtseprovided by
the Linux Kernel community.

Metrics: For the purpose of this research, it is worth emphasizingnatieat,
within the Git system, the association of commit times toetistot uses théocal
time of the developer, not some central timestamp provided bentral repository
(asinthe CVS and Subsversion systems). Two empiricalesudive been carried out
in this research, one related to the characterization oftkeall activity of commits
by committers during the whole development log of the Linexrel; and the other
focused only on the major releases between (and includiftg)2 and 2.6.34, and
analysing the development activity both one week before care week after a major
release. For each of the addressed questions a set of nteviedeen defined and
the empirical approach and method followed as explaineddtian 2.3 and 2.4:

1. Q1, Q2, Q3 In order to answer these questions, a weekly and hourly dtsnm
activity is proposed in the study. In addition, a small stahout a randomly
selected week has been carried out to study — at the gramwéiines — the dif-
ferent types of activity carried out by the developers (addeodified or removed
lines).

2. Q4: For this question, the metrics extracted are at first theadhvactivity in num-
ber of commits for each of the pre- and post-release permus,secondly the
activity before- and after-releases in each of the diffetieme slots. Each of these
series of data was compared before- and after-release trappropriate hy-
pothesis testing (i.e., the Student’s t-test was used)dttitian, differentiating
between authors and committers, a study about the numbeopieoworking in
each of the time slots is carried out. These people are dibgeunique contrib-
utors in the different time slots, intersection of conttims among the different
time slots and finally, an intersection with all of the authand committers that
have contributed in the three time slots during their afstiperiod in the commu-
nity.

3. Q5: The aim of this question is to look for significant complgxihanges in the
different time slots, but it is also focused on the differgrd- and post-release pe-
riods. For this purpose an increase or decrease of the Matatglexity metrics
for each of the files that have been handled in each of thegmes&nd time slots
is calculated and analysised.

4. Q6: the metrics used for this question come from those preiyocasiculated
in questions Q1, Q2 and Q3 basing the results on the numbesrofits per
time slot and also from the results obtained in the questiams the complexity
approach.

Effort Estimation of FLOSS Projects: A Study of the Linux Kefn 7

2.

3 Empirical Approach — Overall Activity

The first part of the paper is devoted to the characterizatfatevelopment activity

W

ithin the Linux kernel: the following empirical approachas/followed in this first

part:

1.

Git clone: at first, the Linux Git reposito/was cloned and stored locally. As
reported above, this repository spans the late life-cytlbeLinux Kernel (since
April 2005), when the project was moved to the Git repository

. Data pre-parsing: the information contained in the log of such repository was
parsed into commonly used results: the CVSAnalY toolsetwsasl for this pur-
pose. CVSAnalY has been developed at one of the authorguitieh, and it can
be found at the Libresoft tools Git repositatyIn terms of functionality, it of-
fers more advanced features than other freely availabs {@8], [19]; in terms
of testing, it has been extensively used as the core tooisetarge EU projeét
In this research, the toolset was used to save each comménidthe relevant
data along that commit, including the time, the authors &edcommitter, and
the rationale of such commits.

. Time and full-path parsing: further to the pre-parsing by the CVSAnalY tool,
the time attribute of each commit was clustered in one of three sloiffice
hours”, “after office” or “late hours”, depending on the hafisuch commit.

. Major release dates:from the overall activity log of the Linux kernel (obtained
by issuing the “git log” command), the dates of each of theaafeentioned re-
leases were clearly identified by a “release announcem#t®raent, and cross-
validated, for each release, with the upload date to re#oligion websites (e.g.,
htt p: // www. ker nel . or g/ pub/1i nux/ kernel / v2.6/).

. ldentify commits before and after a releasein order to identify the list of com-

mits performed during the seven days before a major reldageskcluding the

actual day of release), the database produced by CVSAnadjueried starting
from the midnight of the first day, till the 23:59 of the seveday.

6. Added, Deleted and Modified lines:each commit is parsed with the ‘diffs-

tat’ utility, which uses the more common ‘diff’ program to folee summaries
of added, deleted and modified lines within a large, compét»of changes. In
particular, for each commit, the switch “-m” is used to sumiaea large chunk
of modifications in a readable format.

. Authors and Committers: in order to identify the number of committers and au-
thors working in each of the aforementioned timeframes amthg a pre-release
or post-release time, queries on the CVSAnalY database pegfermed to iden-
tify committers and authors working in specific time perio8lathors and com-
mitters were first identified for pre-release and post-ssgeeriods, and then were
further subdivided into those working in specific timefranfe.g., OH, AO, LN).

2 As found in git://git.kernel.org/pub/scn|inux/kernel/git/torvalds/
nux-2.6.git

Sgit.libresoft.es

4 FLOSSMetrics projectsww. f | ossmet ri cs. or g/

5 In a SQL statementyhere date> '2005-06-09 00:00:00’ and date& '2005-06-15 23:59:59

Andrea Capiluppi, Daniel Izquierdo-Céagtar

2.4 Empirical Approach — Complexity

The second part of this research is devoted to studying whetfe of the (or more
than one) timezones are more prone to changes that add catyi@n other parts
of the day. In contrast with the first part of the paper, thisosel analysis has not
produced an overall view of how the complexity is charagtdiin the whole life-
cycle, but it only focuses on the seven days before and tlenster a major release,
as defined above.

The following steps were followed to determine how the caxijty was intro-

duced, increased or reduced along various commits or oagsi

1.

Fig.

Identify files affected in a commit: based on the list of commits executed either
before (pre-) or after (post-) a major release, a Git reposiives the opportunity
to display all such changes through the “git show” commarned dutput of such
command is used to display a summary of files affected by simvisay, 'c’),
asin‘git show c | diffstat -nf.Asacross-validation of such results,
we used the information stored by CVSAnalY in the table ‘@esi’.

. Extracting the full path of files: Since the basic CVSAnalY only extracts file

names, a patched version of such tool was developed in ardsdtitact the full
path of the files affected in a specific commit. As a crossdadion of such re-
sults, the Git command issued for extracting the full pathithe files affected in
acommit‘c’,is‘git show c | diffstat -pl -wr0"

. Evaluating the previous revision of a file:any file in the Git repository, after

being added, will go through a series of revisions, ordesethé date when each
was performed. If, say, the three files A, B and C were modifig@visionrev(t)
(Figure 1), each will have a previous revision where theyewrodified or firstly
added (in the example, B irev(t-1) C in rev(t-2) and A inrev(t-3)). Given a
revision ‘r’ of the file ‘f’, the Git repository will show howtte file ‘f’ was in that
specific revision ‘r’, by issuing the commamd t show r: f. In this way, it
is possible to compare two revisions of the same file, and ¢zlclwhether the
changes inputed by a developer affected its structure.

* ¢ A
rev(t-3)
— ¢ B
rev(t-1)
* o C
rev(t-2) rev(t)

1 Evaluating previous revisions of files

. Evaluation of the change in complexity:having the two subsequent revisions

of the same file, it is possible to evaluate both the complendtits functions
(since the vast majority of the Linux kernel is implementadhe C program-
ming language), and the overall complexity of the same filehe two subse-
guent revisions. The UNIX tool used to evaluate the compfeisi pntcabe,

Effort Estimation of FLOSS Projects: A Study of the Linux Kefn 9

so given a revision ‘r’ of the file ‘f’, the formulated commaim&“gi t show
r:f | pnccabe - F". By cross-cutting this analysis with the information on
the time of each revision, it is possible to conclude whethany of the time
slots developers added or removed complexity, or whetherctiange left the
same complexity unmodified.

3 Results — Development Activity

As mentioned above, the case study is the Linux Kernel whashbdeen previously
studied several times and from several points of view ([E2], [22], [23]). Two
aspects are presented below: the first considers the whaoligtien log of the Linux
Kernel (since April 2005, when the overall data has been mhtw¢he Git repository)
and it displays the patterns of activity in terms of weekslagd hours worked on by
the Linux developers (irrespective of them being “core” pefipheral” developers).
The second focuses on specific weeks of the Linux kernel dement, justifying
this choice with the observed bias in the distribution obgffand attributed to the
presence of major releases.

3.1 Results — Weekly and Hourly Activity

In order to compare and contrast the findings of the activétiygons during working
hours and throughout a week of traditionally developedvwsante, the following sec-
tion presents the analysis of the Linux kernel developmendeua similar perspec-
tive. As mentioned above, it is possible to reliably extrihe “weekly” and (more
importantly) the “hourly” activity because of how the Gitrger stores the informa-
tion on the developers activity: the commit date and tinragtaf Git uses the local
time of the developer, hence recording the time of her dgfiv@ther than imposing
the timestamp from a central, shared repository.

Figure 2 (top) shows the analysis of the overall activityhivitthe Linux Ker-
nel during the day, as recorded within the Git log. The firsdesbation is that the
work/no-work distinction, found within the commercial gaarpart [10], is not eas-
ily applicable to the Linux kernel development. The actiyperformed between 9am
and 5pm (corresponding to the “office hours”) accounts fones5% of the overall
amount of commits; som&1% of the overall activity is produced during the “after
work” interval, or between 5pm and lam; finally, som&% of the activity is per-
formed during the “late hours”, or between 1am and 9am. Therskand third slots
of activity therefore represent a consistent departuma ffee commercial counterpart
studied in [10], reflecting a traditional pattern of activ#ince most of the commits
appear during the “office hours” (Figure 2, left). On the cany, in the Linux kernel,
the most active time slot is found between 2pm and 4pm. Spatltjfiat 3 pm we can
see a peak of activity which gradually decreases duringftee-affice hours.

Figure 2 (bottom) shows a complementary picture. The blepldetween a company-
driven community (which tends to work ioffice tim@, and a community-driven
project (where developers tend to work mostly on their sfiare) is evident in the

10 Andrea Capiluppi, Daniel Izquierdo-Céagtar

distribution of activity throughout the week. In this figuree divide the week in the
weekdays and calculate the aggregated number of commitsdawhole life of the
project. This figure shows how people in the Linux Kernel témavork during the
weekdays: the first, clearly defined period is the intervabtiday - Friday”, where
the number of commits is daily more than 30,000. The secoridgef activity ap-

pears specifically during the Saturdays and Sundays, whereumber of commits
jointly reaches some 30,000 commits (i.e., the same amducwramits achieved
in any other day of the week). In summary, the comparison wittaditional com-
mercial system shows that the Linux Kernel benefits overatihfone “extra” day
of development per week (6 days with similar productivityt ofi 7), whereas the
observed commercial system benefits from 5 (unequally tovh) days per week.

20000

15000

10000

Number of Commits

5000

40000

35000 - —— e

30000

25000 -

20000

15000

Number of Commits

10000 +

5000 +

0 T T T T T T
Monday Tuesday Wednesday Thursday Friday Saturday Sunday

Days of the Week

Fig. 2 Aggregated commits divided by hour of the day (top), and by thieity during the week (bottom)

Effort Estimation of FLOSS Projects: A Study of the Linux Kefn 11

The observed patterns, in the Linux kernel and in the comialeroampany, pose
an issue of how to quantitatively describe the observedtetind how to formulate
an effort estimation model. Since the distribution of effigrpredefined throughout
the office hours in a commercial environment, the effort ity @pplied in that slot:
therefore, when expressing the effort as a function of théopmed activity (e.g.,
amount of commits, lines added, modified or deleted; filegddehodified or deleted;
etc.) the modeled commercial system would need to be motiglad equation such
as

Ec(t) = flactivityon(t)) 1)

whereE¢(t) is the development effort in a “commercial” setting duringeaiod
t (daily, weekly, monthly, etc), whilg (activityor(t)) is a function of the amount
of commits, during the same period, but only within the officeirs boundaries (i.e.,
9am to 5pm).

On the other hand, when modeling the overall activity seethénLinux kernel
(and most likely other FLOSS systems), and taking into actthe three time slots
(Office Hours, OH; After Office, AO; Late Hours, LH), one shdudlso take into
account the other time slots, and weigh them appropriately:

Er(t) = wop*f(activityo i (t))+wao* f (activity ao (t))+wrn* f (activityr g (t))

2)

where whereE - (t) is the development effort in a FLOSS project during a period

t (daily, weekly, monthly, etc)wo g is the weight given to the activity observed
within the Office Hour slotw 40 the weight to the After Office slot; and; y the
weight to the Late Night slot. In the case of the reported kikarnel, the overall
activity observed in this project, based on the number ofradmdetected, produce
the following weightswoy = 0.55, wao = 0.31 andwyy = 0.14.

3.2 Results — Types of Activity

The overall activity shown above has the advantage of pingdke global picture
of the development within the Linux kernel, without revegliwhether some parts
of the day were more prone to specific types of activity (edditions, deletions or
modifications). In order to perform a more focused analy§ithe type of activity
occurring in the various parts of the day, a number of “rantiaeeks were selected
to analyse whether the division of a day in three parts cad fimther insights on
how work is performed within the Linux kernel.

The analysis reported below refers to the week between FABi2009” (Mon-
day) and “April 19, 2009” (Sunday), where all the 838 perfechtommits have been
analysed for the purpose. Figure 3 reports how the changdgeaduring such week.
These changes are divided into six different groups: thesthmain groups are given
by the three defined time slots and for each of them, we hagealesétd the number of
added and removed lines. In general, this distribution efutierk follows the initial

12 Andrea Capiluppi, Daniel Izquierdo-Céagtar

distribution shown in the previous figures, except for thedWésday. This seems to
be an outlier that does not follow the general tendency inuarhof work.

For the mentioned figure, we can observe how the number affimadled during
the weekend (even when we select the whole day and not diligdiine slots) is
really low, being developed the main activity in this specifieek during the week
days.

12,000

& Added (OH)
[Deleted (OH)
B3 Modified (OH)
Added (AO)
Deleted (AO)
= Modified (AO)
B Added(LN)

[] Deleted (LN)
H Modified (LN)

10,000 —

3
2 8,000
£
bS]
~ 6,000
(V]
Ko}
€
S 4,000
=z

2,000 +

0 N - sl B o N3 fult E ‘l—rtZSN
Monday Tuesday Wednesday Thursday Friday Saturday Sunday
Days of the Week
Fig. 3 Size of Changes for the week April 13 - April 19, 2009

In the specific case of the week days, we observe how the ¢yanhlines (added
or removed) in a given day is really high compared to the résthe day, reaching
some days almost the 100% of the total modificatfoi®n the other hand, we can
see how in the weekends, the activity developed by the pgepés out of the office
time /) is really low, but developed out of the office time. In thiseathe activity
developed during the weekend reaches up to an 80% on Satandya 40% on
Sunday.

Table 1 finally displays, for the aforementioned week, thengfes observed, and
divides them in three categories: added, deleted and cHdimgs. As also observed
in Figure 3, half of the activity is achieved during the daythe time slot 9am-5pm,
with an overall count of 482 commits.

The standard deviation in each slot, the size of the largeatwit, and the skew-
ness values show that the changes in each time slot have a [sowdistribution,
with up to two changes larger than 1,000 lines per slot. Thesithe distribution of
changes (see Figures 4) confirms that some 60-70% of the ebdadded, deleted
or modified lines) always fall in the size cluster of [0-10jds. Also in any time slot,
and for any type of change (added, deleted or modified limes)e than 95% of such

6 A partial explanation for the low values of activity on Apiif*” could be that the Federal Income
Taxes are due in the United States on that day

7 We provide the results for the office time during the weekendbtp observe if there is a continuous
activity during the mornings. However, it has not happenadesmost of the activity, for instance, during
the Saturday, is developed during the afternoon and in ti@nmg.

Effort Estimation of FLOSS Projects: A Study of the Linux Kefn 13

OH :9am — 5pm AO : 5pm — lam LN : lam — 9am
ADD DEL MOD | ADD DEL MOD | ADD DEL MOD
AVG 36.10 | 1580 | 537 | 4094 | 1945 | 496 | 95.15 | 90.32 | 9.02
STDEV | 261.18 | 208.89 | 24.97 | 181.92 | 154.66 | 10.77 | 849.97 | 848.16 | 23.03
MAX 3,404 | 4,542 469 2,244 | 2,243 95 9,443 | 9,443 154
SKEW 1438 | 15.61 | 11.82 | 9.11 13.34 | 5.00 | 10.99 | 11.08 | 4.32

Table 1 Average size of changes, differentiated by time slots ane tffrhange

changes are within a [0-100[lines boundary, while very févarges are over and
above 1,000 lines per change, and those are usually coupleathange of oppo-
site sign (e.g., a very large commit of added lines coupleal\tery large commit of

deleted lines). Although highly skewed, the use of averémeammarise such distri-
butions could be considered acceptable, even considérnapttliers over and above
1,000 lines.

Office Hours After Office

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

100%

B0<=x<=10 N 10<x<=100 O100<=x<1000 & x>=1000

Late Night

B 0<=x<=10 §10<x<=100 O 100<=x<1000 Bx>=1000

Fig. 4 Density distribution of changes for the week April 13 - A, 2009 — differentiated by time slot

These preliminary results were tested and compared witlr cimdomly selected
weeks, but the findings reported above were not thoroughtfirtoed in the other
sampled weeks. Investigating further, it was found thatshguence of major and
minor releases within the development plays a distorting irorecording effort by
committers towards a specific deadline. Figure 5 shows hevathount of commits
vary when considering seven days before and seven daydtadtgpeak” of activity
represented by the actual day when the 2.6.14 release was poétic. Therefore
it was decided that a study for characterizing the types tigcobserved in the
Linux kernel should take into account such sequence of sefeahe next section

14 Andrea Capiluppi, Daniel Izquierdo-Céagtar

details and analyses the activity observed seven daysebafad seven days after
the date of a major release (while excluding the peak of ttease day), for the
purpose of producing estimation models based on the typastimis observed in
the development.

600

500 “Y//ﬂ
400

300 f

200

J’ﬁ \

Commits
| m—

4

10-20
10-22
10-23 ﬁ
\
10-24
10-25
10-26
10-27
10-28
10-29
10-30
11-01
11-02
11-03
11-04
11-05

10-21
10-31

Fig. 5 Activity one week before and one week after the 2.6.14 releas

3.3 Results — Before and After a Major Release

The history logs of the Linux kernel contained within the @ipository cover 23
major, from 2.6.12 (inclusive) to 2.6.34 (the latest onal&td). Each was analysed
with respect to the amount egbmmits authorsandcommitters added deletedand
modifiedlines as recorded both seven days before, and seven daythaftdate of
each public release.

The results of such analysis are reported, as longitudieats in the amount of
commits per release in Figure 6, and in the tabular form ofelapdetailing for each
studied characteristic, its mean and variance value, bethek before and a week
after a major release.

The following findings have been observed:

— The average amount of commits-per-release is somewhdasitiring the OH
and AO slots, and both pre- and post- major releases;

— The average amount of commits-per-release during slot Ld\early lower than
the OH and AO, both pre- and post- major releases, signallogrer activity in
such slot;

— The similarity between the OH and AO slots is consistent fidha studied met-
rics (authors; added, deleted and modified lines). The LNmsdtead consistently
presents a lower level of activity;

Effort Estimation of FLOSS Projects: A Study of the Linux Kefn 15

Number of commits before major releases
1,200

1,000
800 /
600

400

vV v
0
ro) ro) © © ~ ~ © o o o o
14 14 4 < IS4 <4 14 4 1S = =
3 > < - I S = ~ I =
o) =) - o - S o S o o

- Office Hour @ After Office V Late Night

Number of commits after major releases
3,000

2,500

2,000

1,500 /

“\
/
e\
/
1,000
@ /F,\w d vV
500 / R
v / ¥
v v Vv

”

a

. v v v v v

=4 v v vV v
0o vV

w0 w0 © © ~ ~ © fo2} fo2} o o
4 4 < < S <4 4 4 < = =
(52 (o2 < -~ wn] © -~ N~ N [
(=} (=} o -~ o -~ o o o o o

& Office Hour @ After Office V Late Night

Fig. 6 Aggregated commits divided by hour of the day, before (abovedter (below) the major releases
in the Linux kernel

— Despite the lower amount of activity, the Linux kernel hadrareasing number
of people working during the LN slot, in both the pre- and pestk periods. The
pre-2.6.12 week only had 2 authors active during the LN slbile the pre-2.6.34
week had some 311 authors in charge of commits; the post2\éek benefited
from 84 authors, and the post-2.6.34 week from 640 authossa Aummary,
figure 7 describes the intersections (for all the releaskg)l ahe authors and
committers working on the OH, AO and LN slots. The differemcenumbers
between the number of both authors and committers is evidieah considering
that the number of authors doubles the amount of committegigy time slots.

16 Andrea Capiluppi, Daniel Izquierdo-Céagtar

— The distributions of all the measured characteristics i@rad to be statistically
different, when considering the pre- and post-weeks: fangxe, the distribution
of commits in the OH slot before releases (51, 94, 121, 24, 741103, 88,
152, 191, 94, 149, 196, 179, 682, 399, 435, 417, 530, 403, 452, 959) is
statistically different from the distribution of commit§ter releases (258, 269,
824, 797, 739, 484, 963, 722, 766, 631, 884, 1891, 2571, I{BR,1062, 845,
1287, 1498, 1288, 1048, 1272, 1361) when applying the tftast column of
Table 2,t = 8.73e — 07).

Attribute Mean Mean Variance Variance t — test
(pre-) (post-) (pre-) (post-) (pre- vs

post-)
Commits 271 964 50,954.8 264,659 8.73e-07
Authors 541 1,954 1.89e+05 1.34e+06 3.77e-06

Office Hours | Added lines 17,715 98,608 3.29e+08 6.86e+09 6e-05
Deleted lines | 8,845 44,856 9.08e+07 3.37e+09 0.00368
Modified lines | 4,704 14,857 2.73e+07 9.25e+07 4.4e-05
Commits 200 786 2.53e+04 1.33e+05 3.57e-08
Authors 391 1,621 9.41e+04 5.90e+05 3.88e-08
After Office | Added lines 10,621 65,393 1.30e+08 2.19e+09 6.03e-06
Deleted lines | 6,931 36,519 1.33e+08 1.35e+09 0.00052
Modified lines | 2,822 13,147 1.09e+07 5.63e+07 6.04e-07

Commits 59 295 2.90e+03 4.08e+04 6.25e-06
Authors 122 699 1.41e+04 3.71e+05 8.30e-05
Late Night | Added lines 3,433 18,500 2.10e+07 2.42e+08 7.22e-05
Deleted lines | 1408 9,936 5.46e+06 7.84e+07 7.41e-05
Modified lines | 704 4,766 5.92e+05 1.57e+07 3.36e-05

Table 2 Activity one week before and one week after major releasasteled by time-slots

Based on such findings, the effort estimation equation ina2yl specifically the
termactivity(t) should be tailored to reflect such differentiation in both time slots,
and depending on whether the activity is monitored and eséichin the weeks be-
fore or after a major release. A list of equations for thewvitgticould be obtained
as follows, and based on the assumption that the actiongldfrig”, “deleting” and
“modifying” lines (or files) are exhaustive of the type ofiacis perfomed by devel-

opers during the period t (say, hourly, daily, weekly, etc):

activityé(t) = w; * f(Add;(t), Del; (1), Modé(t)) 3

where: the index indicates whether the activity is observed eithefore” or
“after” a release; thg index instead can be used to differentiate between theitgctiv
as seen in the OH, AO and LN slots. Thx% terms then become the weights of the
actions performed in a specific week and during a given tiroe $hey could be
evaluated for instance by running a multi-variate corfefaainalysis with the added,
deleted and modified lines as response factors, and the muwhlbemmits as the
independent factor.

Effort Estimation of FLOSS Projects: A Study of the Linux Kefn

17

OFFICE HOURS
1,077

AFTER OFFICE
HOURS

725

LATE HOURS
307

OFFICE HOURS
2,117

AFTER OFFICE
HOURS

1,501

LATE HOURS
685

Fig. 7 Intersections of committers (top) and authors (bottom) grdugpetime slots

4 Results — Complexity in Time Slots

The third part of this research focuses on the presence oplesity (measured by
the McCabe cyclomatic index), and its changes within the®liles of the Linux

kernel. As reported above, this further study examined thigity:

— of the 23 releases found between April 2005 and June 2010, and

— differentiating the results in “one week before” a releamenf those “one week

after”, and finally

— clustering each day of activity in the three time-zones: @8,and LN.

The analysis was performed only on the “.c” source files ahtitieader that

underwent changes during the pre- and post-release weaksa€h of the commits

8 This was done to properly evaluate the McCabe cyclomatic cexitglfor source files developed in

the C “procedural” language

18 Andrea Capiluppi, Daniel Izquierdo-Céagtar

performed in such weeks, it was studied whether the changgsepd by committers
did alter the overall complexity of the affected files. Orthe t‘modified” files were
considered in such evaluation, therefore leaving asidedht#ion of new files (which
adds new source code, let aside new complexity). To the bestr&knowledge, this
is the first time that an analysis of how single source filesigkd within subsequent
commits is performed in a large case study.

The results are reported in Table 3: they are clustered drthethree time slots
(OH, AO and LN) and summarized in relative terms. Each tino¢ gtesents two
series of data, the first (2nd, 4th and 6th columns) depittiagamount of files which
underwent an increase of complexity, the second series $8ndand 7th columns)
the amount of files which had a decrease of their overall MeQaislomatic number
instead: both series are relative numbers, and divideddgttount of files handled
in the same week. The following observations were made:

1. During the pre-release weeks, the activity during lagdnihours has been, so far,
the most likely to increase the complexity when modifying gource files. In
other words, changes increased file complexity more oftéhdrLN slot than in
the OH slot (6 releases out of 280%)). This is also shown in the distribution of
such ratios in Figure 8.

2. On the contrary, during thafter-releaseweeks, the Office Hour slot initially
seeded more complexity into the source files. In more reed¢edses, instead both
the After Office and the Late Night slots have started to ins&re complexity
into files, as compared to the Office Hour slot, signaling mgfa¢ importance of
such slots in seeding more complexity within modified files.

3. Thedistributions of source files undergoing increaseswiplexity is statistically
different in each time slot, when performing a t-test corigmar: for instance, the
global amount of files undergoing increases of complexithéOH slot presents
statistically relevant differences when comparing thekusefore and the week
after'® a release, when applying the two-tail t-test (1.174E-007).

4. The patterns in thdecreaseof complexity show instead a different perspective:
during the weeks before a release, no major differentidtetwveen the various
time slots is visible, each presenting a fluctuating andnsiient behavior. On
the other hand, the after-release weeks show either anlover@ase of com-
plexity, or a decrease, but not both (as seen in the befteage weeks).

Considering the relation for effort estimation in Equati@), it is possible to
discriminate, within the “activity” term, the portion of sh activity devoted to the
increase of complexity, the portion that increases the d¢exity, and the portion that
does not affect the complexity. Each of the temm&vityom (t), activityao(t) and
activityr g (t) can be further expanded in the following:

activityp g (t) = why xalChp (t) +whiy xaDCop (8) + wg " xaW ChC i (t)
4)
9 Number of source files where complexity increases, during teklvefore a release: 13, 33, 28, 1,
48, 33, 30, 48, 54, 87, 36, 37, 72, 56, 190, 149, 129, 128, 23,177, 146, 314

10 Number of source files where complexity increases, during tekafter a release: 100, 102, 256,
343, 245, 172, 409, 255, 254, 273, 346, 712, 771, 360, 271,349 428, 523, 349, 471, 399, 493

Effort Estimation of FLOSS Projects: A Study of the Linux Kefn 19

OH AO LN
INCR [DECR || INCR [DECR || INCR | DECR

2.6.12-pre 0.24 0.15 0.11 | 0.30 0.00 0.00
2.6.13-pre 0.21 | 0.13 0.16 0.05 0.23 0.12
2.6.14-pre 0.16 | 0.22 0.22 0.09 0.18 | 0.21
2.6.15-pre 0.07 | 0.20 0.21 0.12 0.40 0.13
2.6.16-pre 0.28 0.11 0.16 0.08 0.13 | 0.13
2.6.17-pre 0.21 | 0.16 0.17 0.03 0.38 0.00
2.6.18-pre 0.10 0.03 0.16 | 0.13 0.20 | 0.16
2.6.19-pre 0.13 0.12 0.17 0.03 0.22 | 0.22
2.6.20-pre 0.26 0.13 0.15 0.15 0.42 | 0.16
2.6.21-pre 0.38 | 0.13 0.28 0.10 0.13 0.04
2.6.22-pre 0.39 0.07 0.08 | 0.10 0.15 | 0.07
2.6.23-pre 0.27 0.14 0.37 | 0.19 0.38 | 0.15
2.6.24-pre 0.26 0.14 0.27 0.08 0.27 | 0.20
2.6.25-pre 0.17 0.08 0.18 | 0.10 0.22 | 0.10
2.6.26-pre 0.28 | 0.13 0.26 0.11 0.40 0.07
2.6.27-pre 0.17 | 0.09 0.26 0.07 0.24 0.08
2.6.28-pre 0.28 0.11 0.18 | 0.12 0.29 0.06
2.6.29-pre 0.30 0.13 0.21 0.13 0.38 | 0.14
2.6.30-pre 0.33 0.13 0.30 | 0.15 0.16 0.05
2.6.31-pre 0.39 | 0.16 0.34 0.08 0.15 0.14
2.6.32-pre 025 | 0.11 0.19 0.08 0.29 0.10
2.6.33-pre 0.25 0.19 0.22 | 0.23 0.27 | 0.21
2.6.34-pre 0.24 | 0.11 0.15 0.09 0.12 0.06

[INCR | DECR [[INCR | DECR || INCR | DECR |

2.6.12-post| 0.25 | 0.13 0.24 0.13 0.05 0.04
2.6.13-post| 0.25 0.06 0.16 | 0.13 0.22 0.05
2.6.14-post| 0.16 | 0.14 0.13 0.09 0.27 0.05
2.6.15-post| 0.17 0.08 0.18 | 0.26 0.20 0.14
2.6.16-post| 0.21 0.12 0.24 | 0.17 0.16 | 0.14
2.6.17-post| 0.24 0.09 0.25 | 0.14 0.17 | 0.13
2.6.18-post| 0.28 | 0.14 0.29 0.12 0.22 0.12
2.6.19-post| 0.22 0.14 0.17 0.14 0.10 | 0.18
2.6.20-post| 0.20 0.12 0.14 0.09 0.13 | 0.15
2.6.21-post| 0.26 0.14 0.24 | 0.18 0.16 0.13
2.6.22-post| 0.24 0.12 0.20 0.12 0.23 | 0.13
2.6.23-post| 0.21 0.15 0.16 | 0.22 0.16 | 0.20
2.6.24-post| 0.27 0.13 0.19 | 0.13 0.24 0.09
2.6.25-post| 0.25 0.12 0.19 0.10 0.18 | 0.12
2.6.26-post| 0.25 0.15 0.20 0.12 0.20 | 0.22
2.6.27-post| 0.27 0.15 0.21 | 0.15 0.25 0.06
2.6.28-post| 0.29 0.13 0.22 | 0.15 0.18 0.10
2.6.29-post| 0.22 0.14 0.28 | 0.14 0.24 0.10
2.6.30-post| 0.28 | 0.14 0.33 0.12 0.20 0.12
2.6.31-post| 0.18 | 0.16 0.16 0.15 0.23 0.09
2.6.32-post| 0.29 0.13 0.31 | 0.19 0.29 0.10
2.6.33-post| 0.23 | 0.12 0.22 0.11 0.30 0.10
2.6.34-post| 0.27 0.10 0.22 | 0.14 0.27 | 0.12

Table 3 Percentages of files increasing (i.e., “INCR”) or decregdire., “DECR”) their complexity,
clustered in time slots

20 Andrea Capiluppi, Daniel Izquierdo-Céagtar

Increases in complexity -- Before major releases

0.45

0.4 4
0.35
0.3
0.25 B OH
0.2 ZLH
0.15
0.1
0.05
0 g

N egeenroeg gy

i A A A I

N N N N o o o o o o o o

Increases in complexity -- After major releases

0.35
0.3
0.25
0.2 B OH
0.15 aLH

0.1
0.05

ASSSSSSSSNNY
ASSSSSSSSNSY

- v - = = o~ o~

2624

2 625

2 626

2 628

2629

2 630

2 631

2632

2.6_33

2 634

~
o~
©
N

2.6 23

Fig. 8 Portion of files increasing their overall complexity durinffi€e Time (OT) and at Late Night (LN)
divided by time slots

activitylyo (t) = who *al Clo(t) +wiS *aDClo (1) +wis " xaW ChClyo (1)

®)

activity® ; (t) = wiS *aICL (1) +wPG xaDCL \ (8) + WM « aW ChCE (1)
(6)

wherew!®, wP“ andw}"“"“ are the weights of the activities for increasing
(IC), decreasing (DC) or without changes (WChC) in the coxipleof the source
files during the time sloj. The termsu/C’(t), aICi(t) andaICj(t) represent the
observed activities of increasing, reducing or not affegthe overall complexity of
files during during the time slgt, with ¢ representing either the week before or after
a major release.

Any FLOSS system needs to be individually evaluated to priede the appro-
priate weights to evaluate the three above activities. érstidy of the Linux kernel,
the extrapolated weights were evaluated by averaging theesahroughout all the
weeks before and after a release, and are summarised, tdnthekernel, in Table 4.

Effort Estimation of FLOSS Projects: A Study of the Linux Kefn 21

alC | abC | awChC
OH || 0.24 | 0.13 0.63
Pre-week activity | AO 0.21 | 0.11 0.68
LN 0.24 | 0.11 0.64
OH || 0.24| 0.13 0.64
Post-week activity| AO 0.21 | 0.14 0.64
LN 0.20 | 0.12 0.68

Table 4 Weights to complexity, grouped in time slots and clusteredgfére” and “after” a major release

5 Issues of Repeatability

Mining software repositories is a complex task in time, Haban tools and datasets
used for retrieving information. Some authors have dedt tie question of repli-
cability in software engineering [24], [25]. In additionpBles [26] has specifically
pointed out a number of issues when mining software repisitdield. In order to
make it possible for other researchers to repeat our asalys necessary to provide
availability to raw data, the processed dataset and théahl&itools or scripts). The
overall extraction process has been explained in deta#dtian 2.3 and 2.4. Thus,
this section mostly aims to fill the gaps among the differéeps followed in those
sections, and to illustrate the results and the scriptsads tased to retrieved them.

— Is the “raw” data publicly available? — The raw data used in this paper is pub-
licly available in the data sources from the Linux Kernel ecoumity, and more
specifically from the SCM system that can be found at the Gibséory. The
dates used for this data are the commits available betweetette2005-04-16
15:20:36 and 2010-06-29 10:42:54and consisting of 200,633 commits). The
repository can be easily downloaded by means ofjihelonecommand liné.

— Is the processed dataset publicly available? All the processed data can be
found in a MySQL database format and publicly availaleThis dataset has
been obtained using the tools and scripts described in ndhetd All the tables
were retrieved by the CVSAnalY tool exceptleasecommits releasedates
compareandchangesWith respect to the tables releadates and releassommits
they were both manually introduced to make the analysisefitita easier, and
they were based on data obtained from the distribution websWhile the other
two tables contain information automatically retrievedthy use of some scripts
specifically created for this purpose.

— Are tools and scripts used in the study publicly available? The tools and the
scripts used to perform this study are made available, &sifsi

— CVSAnalY: This tool can be found at the Libresoft tools Gipository 14
and it can be downloaded using the clonecommand. The version used in

1 git clone git://git.kernel.org/pub/scmlinux/kernel/git/torvalds/
linux-2.6.git

12 http:// mast odon. uel . ac. uk/ EMSE2011/ cvsanal y_kernel 26_gi t. nysql . zip

13 http: // ww. kernel . or g/ pub/ | i nux/ kernel / v2. 6/

M git.libresoft.es

22 Andrea Capiluppi, Daniel Izquierdo-Céagtar

this paper comes from the version found at the master bram¢heodate of
2010-08-27

— Scripts: Some scripts have been used to retrieved specificfdaeach of
the bullets specified at the subsections 2.3 and 2.4. HowewBr for those
bullets where a script was created will be covered in thisi@ecFor the rest
of them, an explanation is provided in the respective sastio

e Data pre-parsing:the data pre-parsing information was retrieved by a
modified version of the CVSAnalY tool that is publicly acdess from
the webt!®

e Added, deleted and modified lineSor this purpose, two tables were
manually createdréleasedatesand releasecommitsstoring informa-
tion about each of the pre-release and post-release coramitslates
involved. For the given week the data is available from the e

e Authors and committersn this case two script$’ were necessary to
calculate the different number of authors and committergeézh of the
releases in the pre and post release periods.

e Extracting the full path of filesas detailed above, a patched version of
the CVSAnalY tool was used for this purpose, and as a cro&gatian,
the “‘git show c | diffstat -pl -w70” command was used,
in order to evaluate the full path of the files affected in t&xsion 'c’.

e Evaluating the previous revision of a filas also detailed above, any file
will undergo one or more modifications, after being addece Tit of
such revisions is contained in the “actions” table extraeta the CVS-
AnalY tool, and extracted by an SQL statemi&nThe immediately pre-
vious commit on the same file is obtained by another SQL stition
the same tablé& The wrapper scripts to do so are also made avaif&ble

e Evaluation of the change in complexitgiven the current (r) and pre-
vious (r’) revision of a file, as detailed above the pmccalm b was
used on each to evaluate the changes in complexiyt(“ show r: f
| pnccabe - F”, with the -F switch to illustrate only the overall com-
plexity of a file). All the files affected by commits in the wexkefore
and after a major release were analysed in the same way, anedghlts
stored in the table “compare”. A summary script to evaluhtesum of

15 http:// mast odon. uel . ac. uk/ EMSE2011/ pat ched_cvsanal y/

16 http:// mast odon. uel . ac. uk/ EMSE2011/ st udy_gi ven_week/

17 http:// mast odon. uel . ac. uk/ EMSE2011/ set _conmi tters_aut hors/

18 Given a commit, the SQL statement isel ect files.fil e.name, actions.file.d,
actions.commt.id, actions.type fromscnlog, actions,files
where scmog.rev = ¢ and scmog.id = actions.comit_.id and
files.id=actions.file.d

19 Given a commit on file f, the SQL statement isiel ect scm og.rev, scmog.id from
scnl og, actions where actions.filelid = f and actions.commit.id < c and
actions.comit_id=scmog.id order by actions.commt_.d desc limt 1

20 http:// mast odon. uel . ac. uk/ EMSE2011/ previ ous_conmi t s/

2L \ersion 2.6

Effort Estimation of FLOSS Projects: A Study of the Linux Kefn 23

all such changes in complexity was also produced and ther ranzall-
able??

6 Related Work — Effort Estimation

As mentioned above, effort estimation models or other nreasent-based models
are not generally used within FLOSS communities [4]. Brgaitile problem of soft-

ware effort estimation has been studied for more than 4Gy@asurvey of software

development cost estimation studies [27] found 304 studidsis area (and the sur-
vey doesn'’t include conference proceedings and conclud2804). Reported meth-
ods of estimation include: regression, analogy, expejueht, work break-down,

function points, classification and regression trees, kitimn, neural networks, the-
ory and Bayesian [27].

The measurement and modelling of software productivityaiglifficult and con-
troversial topic” [28]. Some authors have argued in favdiuoction points [29] as
a measure of work over lines of code [30]. Function pointsiem@ementation de-
pendent (e.g. it is not influenced by the type of programmamguiage, high or low
level). However, it is not always possible to derive funotjmoint counts for long-
lived software under continual evolution. Over the yeausyasys have confirmed that
the largest portion of human resources applied over thintieeof a software system
is generally devoted to evolution, not initial developmi@if]. In spite of this, the ma-
jority of estimation approaches address development@i({e.g., SLIM [32], [33];
COCOMO 11 [34]). Furthermore, many approaches that addresatenance cost es-
timation have been, in one way or another, extrapolated a&ipproaches conceived
with initial development in mind, e.g. [35], [36], [37], [38

Although effort estimation models specifically orientedraintenance activities
have been proposed, e.g. [39], [40], [41], [42], [43], [44B], [46], none of these
appear to have been widely taken up by industry. Most appesaare based on mea-
sures of lines of code (LOC), such as LOC added, changed etediefiuring mainte-
nance tasks. In the two case studies presented in this pepesed measures based
on file counts, since in the first system the LOC-based messugee not available.
However, the metrics we used and the approach could alsogtedfor measures
based on other granularity levels such as LOC, functioassels and even to function
point counts, if these were available.

Research suggests that estimation models should reflectetropment con-
tinuum as “it is more realistic to think of software engiriegras an evolutionary
process where software is continually changed over it8rlifein response to chang-
ing requirements and customer needs” [47]. Estimation iisadest be continually
refined during the length of a project [48], [49], [50]. Hoveeycurrent estimation
approaches fail to provide precise mechanisms for suchm@itrefinement. Cost
estimation in the evolution context remains an unsolvedlera ([51]).

22 http:// mast odon. uel . ac. uk/ EMSE2011/ conpl exi ty/

24 Andrea Capiluppi, Daniel Izquierdo-Céagtar

7 Threats to Validity

This paper has analyzed the Git repository offered by thentikernel community.
One of the main reasons for doing so is because this soureencadagement system
offers extra information about the local date when the deiuthor?® and the com-
mitter submitted the changes. Like any other empiricalsttite validity of ours is
subject to several threats. In the following, threats terimal validity (whether con-
founding factors can influence your findings), externaldigi (whether results can
be generalized), and construct validity (relationshipieetn theory and observation)
are illustrated.

1. Internal Validity — the following threats have been détdc

— In a common working day, there are main differences amongldpers.
Some of them could work in office, but some others could workesdime
during the mornings, and some more time during the evenings.

— Our methodology can not (yet) be applied in SCM'’s such as CvSubver-
sion: in their current status, these systems only allowdreghe time when a
change is committed to the central server. If these CMSkheilable (in the
future) to store the time when a change in the source codeovasldcally by
the author, the same approach described could be extentleas®SCM'’s.

— In order to follow the movement or the renaming of files withiit reposi-
tory, the committers have to issue a specific commagdt(* conmit --fol | ow’),
otherwise the information on where the file was move (or resdjnirom
is lost. In the Linux kernel, most of the renamings and movesiare de-
tectable, but many have lost such information.

— Occasionally we detected that people were traveling, bdinad changed the
time zone in their computer. This contributed some noisééaiata.

2. External Validity — the following threats have been detdc

— We have focused our analysis in the Linux Kernel communitje®small
to medium systems might show diverse behaviours both witheret to com-
plexity handling, and in proximity of public releases;

— In general, the complexity of a software artifact is mustcéted. In this study,
we focused on the complexity of source code, as measured lyabtes
cyclomatic complexity of C language functions. The resoliscomplexity
should not be generalised to other aspects of complexiga(ozational com-
plexity, architectural complexity, etc);

— The weights found in the formulas above are only specificéststem under
investigation: the method and the empirical approach tluat@such weights
can be replicated for other systems. The actual model anghtgeterived
cannot be applied outside of this study.

3. Construct Validity — the following threats have been dttd:

— The results of this paper assume that people in differenttci@s work fol-
lowing the same patterns: of course this assumption shauttidgzounted in
several ways, for instance considering that the holidayesys in different

23 Using the option-pretty=fuller

Effort Estimation of FLOSS Projects: A Study of the Linux Kefn 25

European countries and in North America are vastly differand both are
culturally very different from the holiday schemes in otleeuntries in Asia
or Africa. This could, in somehow, distort the results, &lbethe case of the
Linux Kernel community, they seem to show a comnafiicepatterns, which
facilitate the analysis of the data.

— Also, we have not taken into account if the changes were maefeioe source
code or were not. A deeper analysis could show more acc@suiéts with this
respect. Since we are measuring activity in the source cegldave studied
the SCM system used by the Linux Kernel community, but it dazdntain
specific files such as text files which are modified, but are oatce code.

— One of the assumptions made for the commits is that any commsiimnilar to
others during the life-cyle. This is clearly a simplificaticommits could deal
with only one, or with many different files and dealing with myathousands
lines of code. The approach of developers to commits and nndts in a
distributed SCM as Git is very diverse: someone could fratjyecommit
small modifications, someone else could produce very langeirrequent
commits. This paper does not take into account the diffeapproaches to
commits, but this nonetheless represents an importantiaspdirect future
studies.

8 Conclusion and Further Work

Although a model has been proposed, discussed and acceptedstering FLOSS
developers into the so called “onion model”, this paper @ @ached the issue of
characterizing the FLOSS development from the point of vadwwhen” contri-
butions are done. FLOSS developers are known to be activarious parts of the
day and week, unlike a traditional 9am-5pm, Monday to Frideydel of in-house
software development. It was argued that the Git SCM tedgyoprovides a new
support to such requests, since it records when a develspa@ed a commit com-
mand at her time slot, rather than losing such informatiomsing the SCM server
local time zone. This delocalised date information was uséhis paper for purpose
of estimating software productivity and effort.

The study on the activity detected in the Linux kernel was jgarad with what
found in the previous analysis of a commercial system: it feasd that the tradi-
tional 9am-5pm development time only accounts for some 5B%temoverall activity
within the Linux kernel. Other two time slots were found touseful to character-
ize the FLOSS development, namely the interval 5pm-1am Affter Officeslot),
responsible for some 31% of activity; and the interval laamdtheLate Nightslot),
responsible for some 14% of overall activity. It was therefargued that a FLOSS
effort estimation model would need to take into account slistribution of activity,
by firstly estimating the weights of the various time slots.

The study of the productivity within the Linux kernel showidt a positive bias
is observed when a major release is due. The analysis of addieted and modified
lines shows evident regularities: an increased produgtigialways detected in all
the measured attributes after a major release, as compmatied period before such

26 Andrea Capiluppi, Daniel Izquierdo-Céagtar

releases. Estimating the productivity or effort in such HSsystems produces a bi-
dimensional model, by considering the time slot in a day, thedweeks (before or
after a release) when such effort is modeled.

Finally the study of code complexity has shown that timesslahd the presence
of major releases, contribute differently to the overatlrease in complexity within
the Linux kernel: it was found that the Late Night and Afterfi€d# slots should be
carefully monitored since they more often introduce addai complexity both in
the weeks before and in the weeks after a major release. Aeiurgeneric effort
estimation model was developed to model effort as a funatidhe actions to reduce
or increase the complexity, that can be generalised to at®33, round-the-clock
project.

With respect to further work, this work could be expandechieé strands: cost
and effort estimation of FLOSS projects, repeatability 0SS effort estimation
studies, and comparison of FLOSS communities. A betteraciarization of the
commit patterns, such as studying each of the developefsdiytilocks of activity,
and their approach to commits (large and infrequent, or Isamal more frequent)
could improve estimation models, as well as dividing therfin the various parts
of the day, and by clustering changes in size buckets (as dooee, [0-10] lines,
]10-100] lines,]1100-1,000] lines, over 1,000 lines). hermore, if a committer is
usually working during theffice timeand she usually submits a change every two
hours, we could suppose that she has been working for theevdtayl around eight
hours. Some other patterns could show activity during thekerds. For example,
some developers could submit some changes just duringfispgays. We suspect
that this kind of patterns is totally different from the afarentioned one. In fact,
in this case, we should measure the real effort in other temmasonly taking into
account that day.

References

1. R. W. Wolverton, “The cost of developing large-scale wafe,” [IEEE Trans. Computvol. 23, pp.
615-636, June 1974. [Online]. Available: http://portatraorg/citation.cfm?id=1310173.1310916

2. B. W. Boehm Software Engineering Economjckst ed. Upper Saddle River, NJ, USA: Prentice
Hall PTR, 1981.

3. K. Molkken and M. Jrgensen, “A review of surveys on sofvaeffort estimation,” in
Proceedings of the 2003 International Symposium on EnmgliSoftware Engineeringser. ISESE
'03. Washington, DC, USA: IEEE Computer Society, 2003, pp3-22[Online]. Available:
http://portal.acm.org/citation.cfm?id=942801.943636

4. J.J. Amor, G. Robles, and J. M. Gonzalez-Barahona, “Effstimation by characterizing developer
activity,” in Proceedings of the 2006 international workshop on Econsrddven software
engineering researchser. EDSER '06. New York, NY, USA: ACM, 2006, pp. 3-6. [Ordin
Available: http://doi.acm.org/10.1145/1139113.1139116

5. A. Mockus, R. T. Fielding, and J. D. Herbsleb, “Two caseli&s of open source software develop-
ment: Apache and mozillaACM Trans. Softw. Eng. Methodolol. 11, no. 3, pp. 309-346, 2002.

6. K. Crowston, B. Scozzi, and S. Buonocore, “An explorattedy of open source software develop-
ment structure,” irProceedings of the ECJ8laples, Italy, 2003.

7. M. Aberdour, “Achieving quality in open source softwan&EE softwarepp. 58—-64, 2007.

8. F. P. Brooks, Jr., “The mythical man-month,”Rmoceedings of the international conference on Reli-
able software New York, NY, USA: ACM, 1975, p. 193.

9. P.J. Adams, A. Capiluppi, and C. Boldyreff, “Coordinatemd productivity issues in free software:
The role of brooks'’ law,” inCSM. IEEE, 2009, pp. 319-328.

Effort Estimation of FLOSS Projects: A Study of the Linux Kefn 27

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22,

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

A. Capiluppi, J. Fernandez-Ramil, J. Higman, H. C. Shard,M. Smith, “An empirical study of the
evolution of an agile-developed software system]GSE '07: Proceedings of the 29th international
conference on Software EngineeringWashington, DC, USA: IEEE Computer Society, 2007, pp.
511-518.

C. Bird, P. Rigby, E. Barr, D. Hamilton, D. German, and P.&w, “The promises and perils of min-
ing git,” in Proceedings of the 2009 6th IEEE International Working @gerfice on Mining Software
Repositories Citeseer, 2009, pp. 1-10.

V. R. Basili, G. Caldiera, and D. H. Rombach, “The goal t¢joesmetric approach,” inEn-
cyclopedia of Software Engineering John Wiley & Sons, 1994, pp. 528-532, see also
http://sdgweb.ipd.uka.de/wiki/GQM.

S. Koch, “Effort modeling and programmer participation ipen source software projects,”
Information Economics and Policyvol. 20, no. 4, pp. 345 — 355, 2008, empirical Issues
in Open Source Software. [Online]. Available: http://wweiencedirect.com/science/article/pii/
S0167624508000334

T. J. McCabe, “A complexity measuréEEE Transactions on Software Engineerimgp. 308-320,
December 1976.

T. J. McCabe and C. W. Butler, “Design complexity measuréraed testing,"Communications of
the ACM pp. 1415-1425, December 1989.

M. Michimayr, “Quality Improvement in Volunteer Free and éDpSource Software Projects:
Exploring the Impact of Release Management,” Ph.D. dissentat/niversity of Cambridge, 2007.
[Online]. Available: http://www.cyrius.com/publicatisfmichimayr-phd.html

D. M. German, “An empirical study of fine-grained softwaredifioations,”Empirical Softw. Engg.
vol. 11, pp. 369-393, September 2006. [Online]. Availablip:Hportal.acm.org/citation.cfm?id=
1146474.1146486

I. Herraiz, D. |. Cortazar, and F. R. Hamdez, “FLOSSMetrics: Free/Libre/Open Source Software
Metrics,” Software Maintenance and Reengineering, European Carderen vol. 0, pp. 281-284,
2009. [Online]. Available: http://dx.doi.org/10.1108B®IR.2009.43

G. Robles, J. M. Gosatez-Barahona, D. Izquierdo-Cortazar, and |. Herraiz,of$dor the Study
of the Usual Data Sources found in Libre Software Projedisternational Journal of Open
Source Software and Processes (1JOSSBI) 1, no. 1, pp. 24-45, Jan. 2009. [Online]. Available:
http://www.igi-global.com/bookstore/article.aspx¥lit=2769

G. Antoniol, U. Villano, E. Merlo, and M. Di Penta, “Anaing cloning evolution in the linux kernel,”
Information and Software Technolggxol. 44, no. 13, pp. 755-765, 2002.

M. Godfrey and Q. Tu, “Evolution in open source softwakecase study,” inProceedings of the
International Conference on Software Maintenanc€iteseer, 2000, pp. 131-142.

——, “Growth, evolution, and structural change in opearse software,” inrProceedings of the 4th
International Workshop on Principles of Software Evolntiser. IWPSE '01. New York, NY, USA:
ACM, 2001, pp. 103-106. [Online]. Available: http://daira.org/10.1145/602461.602482

C. lzurieta and J. Bieman, “The evolution of freebsd amalj’ in Proceedings of the 2006 ACM/IEEE
international symposium on Empirical software enginegrinACM, 2006, p. 211.

F. J. Shull, J. C. Carver, S. Vegas, and N. Juristo, “The ob replications in empirical software
engineering,Empirical Softw. Enggvol. 13, pp. 211-218, April 2008.

V. R. Basili, F. Shull, and F. Lanubile, “Building knovdge through families of experimentsEEE
Trans. Softw. Engvol. 25, pp. 456-473, July 1999.

G. Robles, “Replicating msr: A study of the potential regdbility of papers published in the mining
software repositories proceedings,"MSR 2010, pp. 171-180.

M. Jgrgensen and M. Shepperd, “A systematic review ofvené development cost estimation stud-
ies,” |IEEE Transactions on Software Engineeringl. 33, no. 1, pp. 33-53, 2007.

B. W. Boehm and K. J. Sullivan, “Software economics: a noag,” in ICSE '00: Proceedings of the
Conference on The Future of Software Engineeridew York, NY, USA: ACM, 2000, pp. 319-343.
A. J. Albrecht and J. E. Gaffney, “Software function, meulines of code, and development effort
prediction: A software science validation2EE Transactions on Software Engineerirgl. 9, no. 6,
pp. 639-648, 1983.

R. L. GlassFacts and Fallacies of Software EngineeringAddison-Wesley Professional, October
2002. [Online]. Available: http://www.amazon.fr/execidts/ASIN/0321117425/citeulike04-21

S. L. PfleegeSoftware Engineering: Theory and PracticeUpper Saddle River, NJ, USA: Prentice
Hall PTR, 2001.

L. H. Putnam and W. Myerddeasures for Excellence: Reliable Software on Time, wiBudget
Prentice Hall Professional Technical Reference, 1991.

28

Andrea Capiluppi, Daniel Izquierdo-Céagtar

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45,

46.

47.

48.

49.

50.

51.

L. Farr and H. Zagorski, “Factors that affect the costashputer programming: A quantitative anal-
ysis,” pp. 59-86, 1964.

B. W. Boehm, Clark, Horowitz, Brown, Reifer, Chulani, Rat#achy, and B. Steec8pftware Cost
Estimation with Cocomo Il with Cdrom Upper Saddle River, NJ, USA: Prentice Hall PTR, 2000.
B. W. BoehmSoftware Engineering EconomicsUpper Saddle River, NJ, USA: Prentice Hall PTR,
1981.

A. Abran and P. N. Robillard, “Reliability of function ps productivity model for enhancement
projects (a field study),” ifHCSM '93: Proceedings of the Conference on Software Maariea
Washington, DC, USA: IEEE Computer Society, 1993, pp. 80-87.

W. Li and S. Henry, “Object-oriented metrics that prediintainability,” Journal of Systems and
Softwarevol. 23, no. 2, pp. 111-122, 1993.

J. C. Granja-Alvarez and M. J. Barranco-Gay¢A method for estimating maintenance cost in a
software project: a case studygurnal of Software Maintenangeol. 9, no. 3, pp. 161-175, 1997.

C. F. Kemerer, “An empirical validation of software cogtreation models,Commun. ACMvol. 30,
no. 5, pp. 416-429, 1987.

L. C. Briand and V. Basili, “A classification procedure fn effective management of changes dur-
ing the software maintenance process,1@8M '92: IEEE International Conference on Software
Maintenance1992.

H. M. Sneed, “Estimating the costs of software maintendasks,” inICSM '95: Proceedings of
the International Conference on Software Maintenanc&Vashington, DC, USA: IEEE Computer
Society, 1995, p. 168.

——, “Measuring the performance of a software maintenaepadment,” inCSMR ’'97: Proceed-
ings of the 1st Euromicro Working Conference on Softwarenkéaiance and Reengineering (CSMR
'97). Washington, DC, USA: IEEE Computer Society, 1997, p. 119.

R. K. Bandi, V. K. Vaishnavi, and D. E. Turk, “Predicting m&nance performance using object-
oriented design complexity metric$EEE Transactions on Software Engineeringl. 29, no. 1, pp.
77-87, 2003.

H. M. Sneed and P. Bssler, “Critical success factors in software maintenancase study,” ilCSM
’03: Proceedings of the International Conference on SoféWaintenance Washington, DC, USA:
IEEE Computer Society, 2003, p. 190.

H. M. Sneed, “A cost model for software maintenance & evojt in ICSM ’'04: Proceedings of
the 20th IEEE International Conference on Software Maiatere Washington, DC, USA: IEEE
Computer Society, 2004, pp. 264-273.

M. Jgrgensen, “Experience with the accuracy of softwaaimtenance task effort prediction models,”
IEEE Transactions on Software Engineeringl. 21, no. 8, pp. 674-681, 1995.

I. Sommerville Software Engineering (7th Edition) (International ComgruBcience Series) Addi-
son Wesley, May 2004.

T. DeMarco,Controlling Software Projects: Management, Measuremant Estimates Upper
Saddle River, NJ, USA: Prentice Hall PTR, 1986.

T. Abdel-Hamid and S. E. Madniclsoftware project dynamics: an integrated approachUpper
Saddle River, NJ, USA: Prentice-Hall, Inc., 1991.

T. K. Abdel-Hamid, “Adapting, correcting, and perfegtisoftware estimates: A maintenance
metaphor,"Computer vol. 26, no. 3, pp. 20-29, 1993.

B. Curtis, “Keynote address: I'm mad as hell and i'm nothgadio maintain this anymore,” itCSM
'92: |IEEE International Conference on Software Maintengr992.

