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A B S T R A C T

There is increasing interest in exploring the use of functional MRI neurofeedback (fMRI-NF) as a therapeutic technique for a range of neurological conditions such as
stroke and Parkinson's disease (PD). One main therapeutic potential of fMRI-NF is to enhance volitional control of damaged or dysfunctional neural nodes and
networks via a closed-loop feedback model using mental imagery as the catalyst of self-regulation. The choice of target node/network and direction of regulation
(increase or decrease activity) are central design considerations in fMRI-NF studies. Whilst it remains unclear whether the primary motor cortex (M1) can be activated
during motor imagery, the supplementary motor area (SMA) has been robustly activated during motor imagery. Such differences in the regulation potential between
primary and supplementary motor cortex are important because these areas can be differentially affected by a stroke or PD, and the choice of fMRI-NF target and grade
of self-regulation of activity likely have substantial influence on the clinical effects and cost effectiveness of NF-based interventions. In this study we therefore
investigated firstly whether healthy subjects would be able to achieve self-regulation of the hand-representation areas of M1 and the SMA using fMRI-NF training.
There was a significant decrease in M1 neural activity during fMRI-NF, whereas SMA neural activity was increased, albeit not with the predicated graded effect. This
study has important implications for fMRI-NF protocols that employ motor imagery to modulate activity in specific target regions of the brain and to determine how
they may be tailored for neurorehabilitation.
1. Introduction

Real-time functional magnetic resonance imaging neurofeedback
(fMRI-NF) is currently being explored as a non-invasive technique to
improve motor rehabilitation outcome in neurological conditions
including Parkinson's disease (PD) (Subramanian et al., 2011) and stroke
(Liew et al., 2016; Linden and Turner, 2016;Wang et al., 2017). Recently,
the first randomized controlled trial for fMRI-NF in PD suggested that the
technique may lead to clinically significant motor improvements when
combined with physical exercise (Subramanian et al., 2016). Initial
clinical findings and theoretical considerations suggest that
self-regulation training with neurofeedback may particularly benefit
movement initiation and fluidity (Linden and Turner, 2016). Regarding
stroke, a recent systematic review concluded that fMRI-NF training can
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lead to learned modulation of brain signals and may be associated with
beneficial behavioral changes (Mihara and Miyai, 2016; Wang et al.,
2017). Hence, there is an increased interest in improving fMRI-NF pro-
tocols to maximize the potential of the associated clinical outcomes
(Stoeckel et al., 2014).

One central consideration when designing fMRI-NF interventions is
the choice of suitable target brain region(s) from which feedback is
provided during training. Although some techniques work with implicit
feedback that does not require cognitive strategies (Watanabe et al.,
2017), most fMRI-NF training protocols currently employ mental stra-
tegies such as visual imagery (Habes et al., 2016), affective imagery
(Johnston et al., 2011; Linden et al., 2012; Young et al., 2017) or motor
imagery tasks (Auer et al., 2016; Berman et al., 2012; Blefari et al., 2015;
Chiew et al., 2012; Subramanian et al., 2011, 2016). Therefore, target
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regions are often selected based on their anticipated involvement in the
respective mental imagery process.

For fMRI-NF of motor areas, most protocols instruct participants to
perform motor imagery (Blefari et al., 2015; Sepulveda et al., 2016;
Sitaram et al., 2012; Subramanian et al., 2016). FMRI correlates of motor
imagery have been well documented in healthy individuals (Guillot et al.,
2009; Jeannerod, 2001; Munzert et al., 2009; Sharma and Baron, 2013;
Solodkin et al., 2004; Vingerhoets et al., 2002) and preliminary data from
stroke survivors also showed robust neural correlates of motor imagery
(Bajaj et al., 2015a; b; Kraft et al., 2015; Sharma et al., 2009; Wong et al.,
2013) in the ventral premotor cortex (vPMC), dorsal premotor cortex
(dPMC), and the supplementary motor area (SMA (Hetu et al., 2013);)
This finding has been corroborated by recent motor imagery based
fMRI-NF studies (Blefari et al., 2015; Sepulveda et al., 2016; Sub-
ramanian et al., 2016). Further, neuroimaging studies of motor imagery
and motor execution indicate that both tasks share overlapping motor
networks, although differences have been identified (Hanakawa,
2016)(for a review see (Hetu et al., 2013)). In particular for the primary
motor cortex (M1), the motor imagery literature consists of mixed find-
ings (Hetu et al., 2013), and it is not clear whether M1 can be robustly
activated during motor imagery training. It thus remains an open ques-
tion whether M1 represents an effective target region for motor
imagery-based fMRI-NF paradigms that entrain upregulation.

The first aim of this study was thus to compare self-regulation abilities
for M1 and a higher motor region (SMA) in the same participants. Its
second aim was to explore the feasibility of graded neurofeedback of
motor regions. The rationale for graded neurofeedback protocols, where
participants are not just trained to upregulate activity in the target region
but to upregulate it to different specified levels, is that they provide more
degrees of freedom for adaptive neurorehabilitation programmes and for
neural communication in a BCI framework. ‘Gradual’ fMRI-NF has been
introduced recently (Sorger et al., 2016) (referred to as ‘graded’ in this
study). It offers increased scope for evaluating training success, for
example by assessing how well participants can attain discrete magni-
tudes of BOLD signal changes through supervised mental imagery. Given
that it is well established that certain motor regions, including the SMA,
are activated during non-supervised motor imagery, significant BOLD
activation of a motor region during supervised motor imagery training
(e.g. fMRI-NF training) does not by itself provide sufficient evidence of
volitional control success. Graded fMRI-NF training, in contrast, allows
one to gauge the degree of control gained over the activation level of a
target region.

In this study, we aim to lay the foundation for the further develop-
ment of motor-imagery based neurofeedback of areas in the motor
network. The graded NF protocol separates the general effects of motor
imagery from the more specific neurofeedback targeted effect of voli-
tional self-control as reflected in the BOLD signal. Participants were
required to target two discrete levels (low and high level), while feedback
was provided from either the SMA or M1. The novelty of our design is
that it allows this to be assessed, alongside the typical neurofeedback
effect, within a single factorial framework by contrasting which of the
two regions feedback information is derived from. The purpose of this
study is to provide the foundation for future development of fMRI-NF
protocols for neurorehabilitation, in particular stroke and PD. Given
that the majority of published studies have targeted cortical motor re-
gions (Wang et al., 2017), typically premotor areas or primary motor
areas, our aim was to determine which region is most suitable for motor
imagery based NF. Our graded NF design allows us to address two
important questions;

1) When combined with a kinesthetic motor imagery strategy, are SMA
and M1 robustly activated? This is a key prerequisite for further NF
upregulation training.

2) Do subjects show better separation between discrete target levels for a
particular motor region when provided with feedback from that
region?
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We hypothesized that SMA based fMRI-NF training would show
robust activation in the SMA, but no activation in M1. Given previous
unsuccessful attempts of M1 fMRI-NF training (Berman et al., 2012;
Blefari et al., 2015; Chiew et al., 2012), we hypothesized that M1 based
fMRI-NF training would not yield M1 activation, whilst the SMA as a
region involved in motor imagery would still show activation. Lastly, we
expected to find differences in SMA activation between target levels
when feedback was provided from the SMA (active condition), but not
when feedback was provided from M1 (passive condition).

2. Methods

2.1. Experiment

2.1.1. Participants
Twenty healthy participants were recruited from an internal experi-

ment database. All participants gave written informed consent and the
Cardiff University School of Psychology Ethics Committee approved the
study. Data from three participants were excluded due to technical dif-
ficulties with the feedback system during scanning. Data from the
remaining 17 participants (8 female; age 26.6� 5.5 [Mean� SD] years)
were included in the data analysis.

2.1.2. Motor imagery and post-training questionnaires
Motor imagery can be performed in two different modalities. It can be

mainly visual or mainly kinesthetic. Visual motor imagery focuses pri-
marily on visual mental imagery (either from a first or a third person
perspective), whereas kinesthetic motor imagery usually involves taking
a first-person perspective and imagining the feeling and experience of
movements without overt movement (Hanakawa, 2016). Previous liter-
ature suggests that only a minority (27%) of studies had specified the
modality that participants used during motor imagery training (Hetu
et al., 2013), indicating that participants received inconsistent or un-
specific instructions between or across studies. Kinesthetic and visual
motor imagery are associated with distinct neural activity patterns
(Guillot et al., 2009; Kilintari et al., 2016; Solodkin et al., 2004) and this
may partly explain the inconsistent findings reported for M1in the motor
imagery literature. In the present study participants completed a stan-
dard motor imagery questionnaire before the scanning session, which
included self-ratings for both visual and kinesthetic motor imagery tasks
on a scale from 1 to 7 (Gregg et al., 2010). The questionnaire was used (1)
to make participants more aware of the distinction between the two
different motor imagery forms and (2) to assess their self-rated baseline
ability of motor imagery. After scan sessions, participants were asked to
fill in a questionnaire about their experience.

2.1.3. Instructions for localizer and neurofeedback training
Among the studies that have reported the modality of motor imagery

instructions, and reported M1 activation, only kinesthetic motor imagery
activates M1 (Hetu et al., 2013; Solodkin et al., 2004; Stinear et al., 2006)
and therefore for this study participants used only kinesthetic motor
imagery strategies (Guillot et al., 2009). Specifically, participants were
instructed to imagine the body sensation and experience of moving both
of their hands, without actually moving them, and while remaining
relaxed. Participants could chose the precise movement they imagined,
but were told to imagine a movement that they regularly perform (e.g.
playing an instrument, doing housework or typing).

During the localizer run, participants were presented with an empty
thermometer on the screen. They were instructed to perform a paced
bimanual motor execution task (finger opposition) during task periods
(as indicated by green arrows). Specifically, numbers from 1 to 4 were
presented at a frequency of 1.33 Hz to pace the movement during task
periods. During rest periods (as indicated by red arrows) participants
were instructed to rest and relax. Participants were reminded that no
feedback was presented during the localizer run.

For the neurofeedback runs, it was explained to participants that bars
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in the thermometer represented the activity level in the target region.
Participants were instructed that their goal was to use kinesethetic motor
imagery to control the feedback by filling up the bars of the thermometer
display. They were further instructed to attempt to maintain the activa-
tion at target levels by adjusting their motor imagery strategy (e.g. by
changing the speed and/or intensity of the imagined movement). Besides
these aspects, participants were not restricted in the content of motor
imagery and were allowed to imagine any activity or sport that involved
movements of both hands. Indeed, participants were encouraged to
explore which motor imagery strategies were most effective in gaining
control over the filling bars of the thermometer display. Furthermore,
participants were instructed that mental imagery strategy changes would
not immidiately effect the feedback because of the hemodynamic delay.
Between scans they were also reminded to remain still, relaxed and avoid
muscle contractions during scanning.

2.1.4. Post-training questionnaire
After scan sessions participants completed a questionnaire about their

experience, which was designed to rate their perception of the following
aspects of the experiment: (1) controllability of feedback for both ROIs,
(2) the difficulty of filling up bars in the thermometer, and (3) the dif-
ficulty in maintaining the thermometer at a discrete level. For question 1,
a score of 10 indicated high controllability, whereas for question (2) and
(3), a score indicated high difficulty. Question (2) and (3) were added as
exploratory items to the questionnaire after data collection had already
started and were thus only recorded in 10 participants.

2.1.5. MRI data acquisition
Imaging data were acquired using on 3T General Electric HDx with an

eight-channel receiver head coil. Blood oxygenation level-dependent
(BOLD) fMRI runs (see description below) were measured with a T2*-
weighted gradient-echo echo-planar imaging (EPI) sequence. Each
functional EPI volume contained 25 slices of 2.5-mm thickness, with
0.5-mm inter-slice spacing (in-plane resolution¼ 3mm, matrix
size¼ 64 � 64, FoV (field of view)¼ 192mm, TR (repetition
time)¼ 1550ms, TE (echo time)¼ 30ms, flip angle¼ 80�, orienta-
tion¼ transversal). High-resolution structural images were acquired
before the first functional scan using a fast-spoiled gradient echo (FSPGR)
sequence with 172 contiguous sagittal slices of 1-mm thickness (voxel
size: 1 � 1� 1mm, TR¼ 7.9 s, TE¼ 3.0ms, flip angle¼ 20�,
FoV¼ 256 � 256� 172mm).
Fig. 1. Experimental Setup. A) show sequence of scans during train session, b) shows
C) shows an exemplary sequence of the thermometer display with low level and high
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2.1.6. Monitoring of physiological confounds
A recent critical systematic review of fMRI-NF (Thibault et al., 2018)

has highlighted the importance of monitoring subject physiology during
scans, to determine if BOLD signal changes are significantly confounded
by physiological noise (Murphy et al., 2013). Therefore, we recorded
pulse waveforms using pulse oximetry, from which subject heart-rate
(HR) time series were calculated. We also recorded the partial pressure
of end-tidal carbon dioxide (PET CO2) using a nasal canula for the ma-
jority of participants. Data was recorded with Spike2 (version 5.21,
Cambridge Electronics Design Limited, Cambridge, UK) for 10 (PET CO2)
and 13 (pulse traces) participants, respectively.

2.1.7. Real-time fMRI neurofeedback setup
Reconstructed DICOM images were transmitted in real-time from the

MR computer to a dedicated analysis computer. Turbo-BrainVoyager
(TBV) software (BrainInnovation B.V., Maastricht, The Netherlands,
version 3.2) was used for real-time online pre-processing and analysis of
BOLD signals including motion correction (with respect to the first vol-
ume of the functional localizer) and spatial smoothing (4mm full width
at half maximum; FWHM).

2.1.8. Scan session
The sequence of scans is shown in Fig. 1A. Subjects lay supine in the

scanner with their heads fixed using foam cushions to minimize head
motion and they were instructed to remain as still as possible during data
acquisition. Scanning started with an anatomical scan, followed by a
motor execution functional localizer run (LOC). The LOC run served to
identify functionally relevant voxels and to calculate individual percent
signal change (PSCLOC) to scale the visual feedback. The motor execution
LOC run (272 vol) consisted of four blocks of bilateral finger opposition,
flanked by five rest blocks (each block consisted of 16 vol and lasted for
24.8 s). Once target regions (M1 and SMA) were identified, the session
proceeded with five neurofeedback runs (NF) with one ROI, followed by
five NF runs with the other ROI, using a counterbalanced order across
participants who were blinded to the order and target region they
received feedback from.

If feedback information was provided from the SMA, we labelled it an
active condition for SMA and a passive condition for M1, and vice versa.
NF runs consisted of 180 vol each, and contained two repetitions of two
block types, a low and high neurofeedback level, which were flanked by
rest blocks (each block consisted of 20 vol and lasted for 31 s). Thus, the
target region with SMA in blue and M1 in magenta for an exemplary participant.
level training blocks, flanked by rest blocks.
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study had a factorial design, in which for each ROI there were two
conditions (active and passive), each with two levels (high and low). Par-
ticipants were instructed to use kinesthetic motor imagery involving both
hands during fMRI-NF and to avoid any movement or muscle
contractions.

2.1.9. Target region selection and feedback normalization
An incremental GLM was used for online analysis of both LOC and NF

runs (Version 3.0, Brain innovation, Maastricht, The Netherlands); the
model included a single task predictor for both LOC and NF. For LOC, a
linear drift term was also included.

The selection of voxels for the target regions was guided by use of t-
statistic maps (with a variable t-threshold, but at least t¼ 5.0), as well as
anatomical landmarks. For M1, we aimed to restrict the ROI to the hand
knob area (Yousry et al., 1997). For the SMA ROI, we aimed to target the
proper SMA, and avoid selecting voxels in the pre-SMA. Local gyri and
sulci have been shown to be rather variable between subjects and be less
reliable, than for instance, white matter tracts (Behrens et al., 2006). To
identify proper SMA, we thus used as an anterior border, the vertical line
traversing the anterior commissure (VCA), which is perpendicular to the
AC/PC plane (Picard and Strick, 2001; Zilles et al., 1996). Voxels were
selected in both hemispheres within 3 slices and with a similar number of
voxels per hemisphere and per target region (in total 36 voxels with 18
voxels per hemisphere for M1 and SMA; 6 voxels per slice).

Based on selected target regions, the percent signal change (PSC)
during the motor execution localizer was calculated for both regions (M1
and SMA) separately. This allowed us to calibrate the feedback presen-
tation based on PSC values from the respective target region and thereby
to account for differences in the hemodynamic response (Obata et al.,
2004).
2.2. Real-time fMRI analysis, neurofeedback calculation and presentation

For feedback presentation during NF runs, the mean raw signal value
was extracted from the ROI at the analysis computer and transmitted to a
stimulation computer at every TR via a direct TCP/IP network connection
to minimize delays in data transmission. The percentage signal change
(PSCNF) was provided as a feedback signal and was computed based on
equation (1),

PSCNF ¼ ðval� baselineÞ*100
baseline

(1)

where val is the mean of the last three consecutive mean ROI raw signal
values, and baseline is the median ROI signal value during the second half
(i.e. last 10 TRs) of the preceding rest period. PSCNF were then normal-
ized by PSCLOC to map it on to the (15) segments of the thermometer
display such that every segment represents 10% of the PSCLOC. Values
below 0 were rounded up to 0, values above 15 were rounded down to
15. The calculation was carried out in an in house written Python script
(Python 2.7.10). The Open Source Python library Expyriment was used
for online feedback presentation (Krause and Lindemann, 2014). The
visual feedback display consisted of a thermometer with 15 segments and
indications for either rest (i.e. red arrows at the bottom) or the target
levels (Fig. 1C). Target levels were defined by 50% (low) and 100% (high)
of the PSCLOC and indicated by green arrows. Both the low and high-level
conditions were repeated twice per run and were interleaved by rest
periods. During rest periods, no feedback was presented, and the ther-
mometer remained empty. The order of the condition (low and high target
level) was counterbalanced across runs and subjects.

3. Analysis

3.1. Offline fMRI analysis

All subsequent results are based on an offline analysis of raw data that
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was performed in AFNI (version 16.2.18). Raw data were motion cor-
rected and spatially smoothed (4mm FWHM) with pre-processing pa-
rameters identical to the online analysis. Mean ROI time series were then
extracted for all runs and subsequent analysis was restricted to these.
Since ROI mean time series were extracted from both ROIs for each run,
for each ROI there exists a condition in which it was the “active” target
for NF training (active), as well as a condition in which NF training was
performed on the other ROI (passive). Thus, for each ROI, the active
condition contains the response to motor imagery when feedback was
provided from that region, and the passive condition contains the
response to motor imagery when feedback was provided from the other
region. Therefore, the passive condition served as a form of internal
(offline) control condition for a given ROI, because it reflects the
response to motor imagery in that ROI when NF training is based on the
feedback signal from the other ROI.

For LOC and NF runs a GLM analysis of the data was performed. For
LOC runs, the model included a predictor for activation blocks and a
linear drift term. For NF runs a predictor that modelled the NF response
across both levels was included, as well as a parametric predictor that
modelled the difference between levels. No linear drift term was
included, but separate pre-onset baseline period predictors were included
to match the online analysis baseline period (i.e. 10 vol preceding stim-
ulus onset). Thus, the offline analysis replicated the online analysis,
except for the addition of pre-whitening to account for temporal auto-
correlation of the BOLD signal (Woolrich et al., 2001).

Offline PSC values were defined similarly to the online analysis, as a
ratio between task response and baseline estimation. However, in the
offline analysis the LOC baseline period was simply represented by the
intercept term in the model (as is the norm for standard analysis). For NF
runs, PSC values were calculated for low and high levels separately, and
the baseline period was represented by the intercept term plus the pre-
onset baseline period that was used in the online analysis. In this way,
the offline NF PSC values are representative of the average online NF PSC
values.

3.2. Statistical analysis

The main hypotheses were tested at the group level through the use of
ANOVA models. For each subject, median PSC values were calculated
across all runs for each ROI in both active and passive conditions, and for
the low and high target level separately. For each ROI data were fit to a
2x2 ANOVA model (target level x feedback), with target level having
low and high levels and feedback with active and passive conditions.
Physiological traces (PET CO2 and HR) were convolved with respective
hemodynamic response functions, and correlated with the task predictor
(Pearson's r). Obtained correlation coefficients were Fisher-z-
transformed for both measurements and ROIs, averaged across runs,
and submitted to one-sample t-tests.

All frequentist t-tests were carried out one-sided, unless stated
otherwise. Bayesian paired t-tests were conducted using JASP (version
0.8.6)(Team, 2018) using informed half-normal priors. Priors that were
used to test for M1 activity were scaled by 75% of the group M1 PSC
value as measured during the functional localizer and priors to test for
differences between low and high target level of SMA activity were scaled
by 50% of the group SMA PSC as measured during the functional local-
izer, which reflects the scaling of target levels during online feedback (for
more details on used prior distributions, see Results section).

4. Results

4.1. Motor imagery questionnaire

Motor imagery questionnaire data were collected from 14 of 17
participants. Data suggested that participants reported competence in
imagining movements visually (5.5� 0.2 points [Mean� SEM]) and
kinesthetically (5.4� 0.2 points), as indicated by the average ratings.
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The sum scores for visual (38.4� 1.7; range 24–48) and kinesthetic
(35� 1.6; range 28–44) motor imagery were also comparable. During
administration of the questionnaires, all subjects reported that they un-
derstood the difference between the two forms of motor imagery and
provided examples for illustration. Hence, we concluded that partici-
pants in our sample were able to engage in kinesthetic (upper-limb)
motor imagery.

4.2. Percent signal changes in target ROIs

Group mean PSC values during the motor execution (finger opposi-
tion) localizer task were 1.48� 0.12 [SEM] for M1, and 1.10� 0.08 for
SMA, respectively. Fig. 2A shows the mean BOLD responses across sub-
jects and runs for each ROI in both the active and passive neurofeedback
conditions. In Fig. 2B, a robust positive BOLD response during the task
period can be seen in the SMA for both feedback conditions, whereas the
M1 shows a clear negative response. These event related time courses
indicate that the SMA showed sustained activation during the task
period, while M1 was deactivated irrespective of whether feedback was
provided fromM1 or the SMA. M1 deactivation was confirmed by a t-test
based on participants' M1 PSC values averaged across the low and high
feedback level during the task period (M1 active: t16¼�2.196, p¼ 0.022;
Cohen's d¼�0.533; M1 passive: t16¼�3.552, p¼ 0.002; Cohen's
d¼�0.862). This was supported by Bayesian t-tests (N(0, 1.11); M1
active: BF-0¼ 3.496; M1 passive: BF-0¼ 44.241).

Next, we tested for differences in SMA activation during the low and
high neurofeedback condition. SMA PSCs values during SMA (active) and
M1 (passive) training were submitted to a 2 (low and high target level) x
2(active and passive condition) repeated measures ANOVA. We found an
Fig. 2. A) Bar plots for BOLD percent signal changes (PSC) in the target ROIs durin
Event related BOLD activity in target ROIs during the active and passive conditions. S
(shaded). C) Voilin plot showing the Controllability ratings for SMA and M1, *** sig
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effect of level (F1,16¼ 7.334, p¼ 0.016, ω2 ¼ 0.26). However, there was
no effect for feedback condition (F1,16¼ 0.231, p¼ 0.637, ω2 ¼ 0.0), nor
an interaction between feedback condition and level (F1,16¼ 0.005,
p¼ 0.947, ω2¼ 0.0). We thus only followed up level effects for SMA PSCs
pooling across active and passive SMA PSCs and found a significant dif-
ference of moderate strength (Mean difference: 0.087� 0.029 PSC,
t16¼ 3.006, pbonf¼ 0.005, Cohen's d¼ 0.729). Likewise, a Bayesian t-test
suggested strong evidence for a greater PSC during the high compared to
the low level condition (N(0, 0.55); BFþ0¼ 14.61). However, we note
that this effect was likely mainly driven by PSCs from the active SMA
condition, as suggested by a descriptive comparisons of effect sizes
(active: Cohen's d¼ 0.818, 95% Confidence Interval [0.257 to 1.361];
passive: Cohen's d¼ 0.393, 95% CI [-0.107 to 0.882]). Lastly, to test for
an effect of time in level separation, difference scores (high vs. low level)
for each active run were submitted to a repeated measures ANOVA. No
effect of time was found for SMA (F4,52¼ 1.199, p¼ 0.322, ω2¼ 0.014)
or M1 F4,64¼ 1.125, p¼ 0.354, ω2¼ 0.007) fMRI-NF training. Taken
together, we found evidence for M1 deactivation irrespective of the
feedback condition. Further, SMA PSC data suggested a main effect of the
motor imagery level, which seemed largely driven by the active SMA
neurofeedback condition.

4.3. Physiological measurements

As with any BOLD fMRI study, magnitude changes can be confounded
by non-neural sources of variance, such as motion and physiological
noise. Furthermore, physiological processes may be modulated by un-
derlying mechanisms that also respond to the cognitive demands of a
task, such as arousal or concentration, e.g. increased heart-rate during
g the active and passive conditions (Mean � within subject standard error). B).
hown are group mean values and within-subject standard error around the mean
nificant difference p < 0.001.
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arousal or subconscious changes in breathing during increased mental
activity. Specifically, partial pressure end-tidal carbon dioxide (PET CO2)
acts as a strong vasodilator, and heart-rate (HR) impacts the BOLD signal
(Murphy et al., 2013). To account for potential physiological confounds
(Thibault et al., 2018), we collected PET CO2 and HR traces and corre-
lated these with the task predictor. In general, small negative relation-
ships were found, except for HR in M1 (see Table 1), although these were
not significant after multiple comparison correction. Also, the Bayes
Factor remained inconclusive for all measurements and ROIs, suggesting
that correlations between physiological confounds and the task were
rather negligible.
4.4. Post-training questionnaire

Lastly, we tested whether differences between ROIs (SMA and M1) in
up-regulation were reflected in reported experiences. Hence, we first
assessed how participants rated the controllability of the feedback during
M1 and SMA training. Fig. 2C shows participants rated controllability
higher for the SMA (t16¼ 4.28, p< 0.001, 5.8� 0.6 vs. 3.2� 0.5, Cohen's
d¼ 1.0), for which the Bayes Factor suggested strong evidence (N(0,
0.5); BF10¼ 53.5). The SMA was also rated as the better region with
regards to the perceived ability to fill up the thermometer bars (t9¼ 6.89,
p< 0.001, 3.5� 0.7, vs. 8.7� 0.4, Cohen's d¼ 2.2), and to maintain bars
at target levels (t9¼ 5.16, p< 0.001, 5.2� 0.6, vs. 8.6� 0.4, Cohen's
d¼ 1.6). For both effects Bayesian t-tests suggested strong evidence (N(0,
0.5); BF10¼ 52.08 and BF10¼ 24.29, respectively). Taken together, rat-
ings of controllability reflect that participants' perception of control of
the feedback during SMA neurofeedback training and their inability to
self-regulate M1.

5. Discussion

5.1. Main findings

Our main finding is that kinesthetic motor imagery did not elicit a
positive BOLD response in the M1 region of motor cortex, irrespective of
whether of feedback information was provided. In fact, we observed a
significant negative BOLD signal change for both conditions. This result
has considerable implications for motor imagery based fMRI-NF in
particular because it suggests that upregulation of the M1 BOLD signal is
precluded by a negative activation during motor imagery. The inability of
participants to upregulate M1 BOLD is also reflected in subjective ratings
of controllability, which were low. This observation has wider implica-
tions for any fMRI-NF paradigms that employ specific cognitive strate-
gies, because it highlights the critical importance of selecting regulation
objectives that are achievable with a given choice of target region and
cognitive strategy.

A second target area, the SMA, was also trained in separate runs, and
consistent with previous reports (Subramanian et al., 2011, 2016), we
found that participants did show activation during motor imagery.
However, this in itself is not sufficient to demonstrate volitional control,
because it is established that the SMA is activated during motor imagery
in general, without feedback being necessary. The proposed benefit of
neurofeedback as a therapeutic tool is based on the rationale that par-
ticipants can self-regulate their own brain activity, and that this
Table 1
Correlations between physiological parameters and motor imagery task predictor for h
ROIs. Descriptive and inferential statistics (one-sample t-test) of z-transformed correlat
values before and after (FDR) correction. 95% CI¼ 95% Confidence Interval, BF ¼ B

z (Mean� SEM) t df

HR SMA �0.06� 0.04 �1.359 9
C02 SMA �0.08� 0.03 �2.351 12
HR M1 0.02� 0.05 0.336 10
C02 M1 �0.07� 0.04 �1.920 13
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volitional control can be used to modulate brain states that can lead to a
clinical benefit. This requires demonstrating genuine neurofeedback ef-
fects that extend beyond mere motor imagery training effects, and mere
psychosocial effects (Thibault et al., 2018). The strength of the present
study lies in the use of a graded NF paradigm, because the targeting of
discrete BOLD response magnitudes presumably requires some degree of
self-regulation that would benefit from a feedback loop. We found a main
effect of feedback level on SMA PSC values, which demonstrated
significantly higher BOLD responses during in high compared to low
levels, but no interaction between target level and feedback condition.
Moreover, we addressed the concern of potential physiological con-
founding factors (Thibault et al., 2018) and showed that PET CO2 and HR
did not correlate significantly, and numerically only to a small degree
with self-regulation blocks (Table 1).
5.2. M1 deactivation

The role of M1 in motor imagery is likely complex and context
dependent and subject of an active debate (for a review see (Hetu et al.,
2013; Munzert et al., 2009);). For instance, an Activation Likelihood
Estimation (ALE) meta-analysis based on 73 published fMRI motor im-
agery studies found no conclusive results for M1 activation and noted
that only 22 out of 122 neuroimaging studies (fMRI and PET) reported
M1 activation (Hetu et al., 2013). The authors concluded that imprecise
motor imagery instructions may explain some of the inconsistency of M1
findings reported in the motor imagery literature, and it further been
suggested that only kinesthetic motor imagery may elicit M1 activation
(Blefari et al., 2015; Solodkin et al., 2004). In this study, we have more
rigorously controlled for both these factors by providing clear in-
structions and instructing participants to exclusively use kinesthetic
motor imagery of actions that involved both hands. The use of SMA as a
separate ROI, and the demonstration of a robust positive BOLD response
in this area, also served as a control condition, and strongly negate any
notion that participants were simply unable to engage in motor imagery.
We have demonstrated that M1 (hand knob) could not be activated
despite reinforcing feedback and conclude that it likely not involved in
motor imagery, which would explain previous unsuccessful M1 fMRI-NF
attempts (Berman et al., 2012; Blefari et al., 2015; Chiew et al., 2012).
However, we also note that these reported attempts as well as the present
study comprised a single session. Hence, it remains possible that partic-
ipants can activate M1 and gain volitional self-regulation with more
training experience, for instance after multiple sessions of M1
up-regulation fMRI-NF.

One potential confounding factor of motor imagery paradigms is
movements or subtle muscle contractions, which could lead to spurious
activations within regions of interest (Thibault et al., 2018). The few
studies that have reported M1 activation during motor imagery mostly
did not control (Lotze et al., 1999; Perronnet et al., 2017; Sharma et al.,
2008) for overt movements and muscle contractions, for which Electro-
myography (EMG) recordings are required. Likewise, this study did not
record EMG to rule out muscle activity and this limitation should be
addressed in future studies. However, the within subject design and
comparison of separate ROIs limits the likelihood that participant motion
(either voluntary or involuntary) contributes in any systematic way.
Importantly, our main finding of M1 deactivation during motor imagery
eart-rate (HR) and pressure end-tidal carbon dioxide (PET CO2) for both training
ion coefficients. Shown are Mean and Standard Error of Mean (SEM) values and p-
ayes Factor.

p pFDR Cohen's d [95% CI] BF

0.207 0.277 �0.43 [-1.07 to 0.23] 1.022
0.037 0.148 �0.65 [-1.24 to �0.04] 2.915
0.744 0.774 0.10 [-0.49 to 0.69] 0.540
0.077 0.154 �0.51 [-1.06 to 0.05] 1.765
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periods strongly suggests that the presented results were likely not
confounded by participants’ overt movement production, because these
would result in a positive BOLD response in the M1 target region whose
voxels were selected based on a motor execution localizer.

5.3. Neural origin of M1 deactivation

One potential mechanistic explanation for the observed M1 deacti-
vation during motor imagery could relate to the suppression of overt
movements. Invasive electrophysiological stimulation studies have
shown that M1 can have suppressive effects onmuscular activity inmotor
control (Ebbesen and Brecht, 2017). In our motor imagery paradigm
participants were required to avoid muscular activity, and it is plausible
that inhibition of movement is realized in the primary motor cortex,
which acts as the final station where motor commands converge before
being executed. Previous fMRI motor imagery studies have reported
inhibitory projections from the SMA to M1 in healthy participants
(Kasess et al., 2008; Solodkin et al., 2004) and stroke survivors (Bajaj
et al., 2015b), which could explain the M1 BOLD deactivation reported
here. Moreover, one motor imagery study conducted in stroke survivors
reported an inverse relation between (self-reported) motor imagery and
activity of M1, indicating that individuals with higher motor imagery
capacity showed more suppression of M1 activation (Confalonieri et al.,
2012).

Electrophysiological studies suggest that M1 is involved in motor
imagery and can provide further insight into the neural origin of M1
BOLD deactivation. For instance, one magnetencephalography study re-
ported activity in the hand area of M1 during motor imagery (Schnitzler
et al., 1997). More direct evidence for the involvement of M1 in motor
imagery stems from a electrocorticography (ECoG) study that reported
decrease of power (Miller et al., 2010) within lower frequencies reported
for motor imagery (Pfurtscheller and Aranibar, 1979; Pfurtscheller and
Neuper, 1997), including the Mu-rhythm (8–13Hz). Similar findings
have been reported in BCI that could demonstrate training effects in
motor imagery paradigms (for a review see (Cervera et al., 2017);). A
power decrease of the Mu-rhythm during unilateral hand motor imagery
has further been associated with increased spinal motor neuron excit-
ability (Takemi et al., 2015), as well as increased excitability of the
corticospinal tract and intracortical GABAergic inhibition (Takemi et al.,
2013). Simultaneous EEG-fMRI recordings have linked the Mu-rhythm to
a decrease in BOLD deactivation (Mullinger et al., 2014). Taken together,
some electrophysiological correlates of motor imagery anti-correlate
with BOLD and may hence partly explain the presented M1 findings.

5.4. Graded neurofeedback

The second aim of this study was to test if participants could exert
volitional control over the BOLD signal, in either SMA or M1 during
kinesthetic motor imagery, to target two discrete BOLD signal change
magnitudes. We found a significant main effect of target level for SMA
PSCs in general, but no interaction between target level and feedback
condition (active vs passive). Thus, although there was a significant dif-
ference between SMA PSC in high vs low target level conditions, this effect
was not significantly modulated by the feedback condition. However, a
comparison of effect sizes suggested that the level effect was mainly
driven by the active condition. As such it appears that graded fMRI-NF
does aid participants in achieving discrete levels, but the specific neu-
rofeedback effect of volitional control of BOLD signals was relatively
small compared with the general motor imagery effect. More neuro-
feedback training sessions may be required to demonstrate that partici-
pants benefit from feedback by utilizing this information to achieve self-
regulation of discrete BOLD target levels.

We note that a previous study that investigated (3-level) graded fMRI-
NF for different mental imagery tasks found superior self-regulation ef-
fects within a single training session when comparing fMRI-NF to a pure
mental imagery session (Sorger et al., 2016). However, one main
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difference between the study designs lies in the selection of target re-
gions: whereas the present study used a motor execution task, Sorger
et al. (2016) used a mental imagery task to identify target regions and
maximum PSC to scale the feedback, and thus possibly targeted voxels
that are more specifically involved in the respective mental imagery task.
Additionally, LOC PSC values were on average larger than in our study.
Although it remains speculative, participants may in consequence have
had more dynamic range to exploit of the BOLD signal. This notion seems
supported by a recent BCI study that used a graded feedback approach
and found a positive relationship between accuracy of self-regulation and
maximal localizer PSC values that were used to scale the individual
feedback (Krause et al., 2017).

5.5. Implications for motor neurofeedback

We have provided new insights into neural correlates of (supervised)
motor imagery, which can inform future attempts of translating fMRI-NF
to clinical applications. In particular for stroke rehabilitation, fMRI-NF
may provide new means to enhance neuroplasticity (Wang et al.,
2017). One possible target region could be M1, which has been inten-
sively studied in brain stimulation based stroke rehabilitation (McDon-
nell and Stinear, 2017). Considering the presented findings, however, M1
is likely a suboptimal target region for motor imagery based fMRI-NF
upregulation training, although it remains possible that M1 activation
can be achieved with longer training. We note that our results are largely
in line with findings from Hanakawa and colleagues who had compared
motor networks during motor planning, motor imagery and motor
execution (Hanakawa, 2016). The authors had classified brain areas as
“movement-predominant”, which included the M1 and SMA, and as
“imagery-predominant”, which included the SMA but not M1. Further, a
direct comparison between tasks suggested that associated motor net-
works largely overlapped, but also that voxels that were more responsive
to motor execution were located more anteriorly within the SMA and the
precentral gyrus. In contrast, voxels that were more responsive to motor
imagery were locatedmore posterior within these areas. This observation
may be of relevance for the interpretation of the presented findings,
because training voxels were identified using a motor execution localizer.
To achieve optimal voxel selection future studies may benefit from
employing a motor imagery based localizer scan. One alternative
approach to test if M1 activation can be learned could be realized in a
design that does not use explicit motor imagery strategies whilst con-
trolling for movements. Another set of techniques that could yield control
over M1 is multivariate fMRI-NF, given that in previous studies, different
imagined actions could be decoded fromM1 (Park et al., 2015; Pilgramm
et al., 2016; Zabicki et al., 2017).

We note that the presented findings are confined to young healthy
participants and may not generalize to patient populations. For instance,
stroke survivors show altered motor networks (Rehme et al., 2011;
Rehme and Grefkes, 2013), implying that motor areas in the contrale-
sional hemisphere can partly compensate for motor impairment.
Furthermore, inter- and intrahemispheric network activity alters over
time, hence optimal target regions may also depend on the time after
stroke, in addition to other factors such as the lesion location (e.g.
hemisphere), and involvement of the corticospinal tract (Stinear et al.,
2007). For instance, individuals with right-hemispheric stroke seem to
show more frequently impairment of motor imagery than individuals
with left-hemispheric stroke (Kemlin et al., 2016). M1 remains a prom-
ising target region for motor execution-based fMRI-NF training for in-
dividuals who possess sufficient residual motor function. The literature
on motor execution-based fMRI-NF training is currently limited to one
study in healthy participants that reported training success for the M1
hand knob area (Neyedli et al., 2017).

With regards to the SMA as a target region, besides its role in motor
control, it is involved in vigilance more generally (Cunnington et al.,
2002; Hinds et al., 2013), as well as attention to timing (Coull et al.,
2004; Macar et al., 2006). Both cognitive processes are likely recruited
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during the attempt to self-regulate brain activity, for instance partici-
pants likely monitor their self-regulation performance and attend to the
temporal delay of the visual feedback display. Although we could control
for general mental imagery effects by comparing PSCs obtained from the
SMA active and the SMA passive condition, such cognitive processed that
involve the SMA may have interfered with participants attempt to in-
crease and decrease SMA activity while targeting discrete BOLD levels. It
thus remains to be tested whether self-regulation success in motor im-
agery based graded fMRI-NF could be increased by targeting other pre-
motor areas (e.g. vPMC), using different a form (e.g. intermittent
(Hellrung et al., 2018);) or modality (e.g. auditory) of feedback presen-
tation, or employing a different feedback type (e.g. connectivity based
feedback (Liew et al., 2016);).

6. Conclusion

In this study we have demonstrated that M1 shows a robust negative
BOLD response during kinesthetic motor imagery in the context of NF.
This finding may explain previous unsuccessful attempts of M1 fMRI-NF,
suggesting that it represents a suboptimal target region for upregulation
paradigms in which participants use explicit kinesthetic motor imagery.
Conversely, premotor cortical regions such as SMA are more suitable
target regions because of their more active role in motor imagery in
general. However, the robust reactivity of premotor areas like SMA to
different forms of motor imagery also presents a confound in NF studies
that aim to develop volitional self-regulation of neuronal activation, as
additional evidence beyond simple positive BOLD responses is required
to demonstrate volitional self-regulation.
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