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Abstract—Deepfake technology has advanced rapidly in recent
years. The widespread availability of deepfake audio technology
has raised concerns about its potential misuse for malicious
purposes, and a need for more robust countermeasure systems is
becoming ever more important. Here we analyse the differences
between human and deepfake audio and introduce a novel audio
pre-processing approach. Our analysis aims to show the specific
locations in the frequency spectrum where these artefacts and
distinctions between human and deepfake audio can be found.
Our approach emphasises specific frequency ranges that we
show are transferable across synthetic speech datasets. In doing
so, we explore the use of a bespoke filter bank derived from
our analysis of the WaveFake dataset to exploit commonalities
across algorithms. Our filter bank was constructed based on a
frequency bin analysis of the WaveFake dataset, we apply this
filter bank to adjust gain/attenuation to improve the effective
signal-to-noise ratio, doing so we reduce the similarities while
accentuating differences. We then take a baseline performing
model and experiment with improving the performance using
these frequency ranges to show where these artefacts lie and if
this knowledge is transferable across mel-spectrum algorithms.
We show that there exist exploitable commonalities between
deepfake voice generation methods that generate audio in the
mel-spectrum and that artefacts are left behind in similar
frequency regions. Our approach is evaluated on the ASVSpoof
2019 Logical Access dataset of which the test set contains unseen
generative methods to test the efficacy of our filter bank approach
and transferability. Our experiments show that there is enhanced
classification performance to be gained from utilizing these
transferable frequency bands where there are more artefacts and
distinctions. Our highest-performing model provided a 14.75%
improvement in Equal Error Rate against our baseline model.

Index Terms—Automatic Speaker Verification (ASV) anti-
spoofing, Deepfake, synthetic speech detection, SEResNet, filter
bank

I. INTRODUCTION

Deepfake technology, which involves manipulating images,
audio, video or text content to create convincing fake rep-
resentations [1], has advanced rapidly in recent years. The
widespread availability of deepfake technology has raised
concerns about its potential misuse for malicious purposes,
such as impersonating individuals in voice-based phishing
scams, also known as ”vishing”. The case of a UK energy
CEO in 2019 being defrauded out of 243,000 dollars through
a deepfake phone call [2] highlights the urgent need for
effective automatic speaker verification (ASV) countermea-
sures to combat deepfake voice misuse. Within the past few
years, the ability of a human to be able to reliably tell the
difference between genuine and deepfake voice has come

into question, with models such as the VITS Text-To-Speech
(TTS) and voice conversion (VC) models producing subjective
naturalness mean opinion scores equal to that of genuine
human voice [3].

However, there are still telltale artefacts left behind by the
generation or conversion algorithm. Such artefacts can be very
difficult for humans to notice due to how humans perceive the
volume of a given frequency. The responsiveness of the human
auditory system is known to follow the Weber-Fechner law
which states that the intensity of a sensation is proportional to
the logarithm of the intensity of the stimulus [4]. This means
humans can much more easily detect differences at lower
frequencies than at higher frequencies. This poses a problem if
the telltale signs of deepfake audio are at higher frequencies.

Much research has been conducted predominantly concen-
trating on conventional audio features that focus on the lower
frequencies of spoken audio, usually by using a logarithmic
or mel-scaled y-axis. Examples include log-mel spectrograms
for dual audio spoof and video deepfake detection [5], prosody
and speaker embeddings produced from Mel Frequency Cep-
stral Coefficients (MFCC) [6] as well as the vast usage of
the Constant Q Cepstral Coefficient (CQCC) and Constant Q
Transform (CQT) [7]. However, such scaling of the y-axis
of the spectrogram diminishes the information in the higher
frequencies as a trade-off to enhance the fidelity of the lower
frequencies. Others have explored the use of features specifi-
cally accentuating high-frequency discriminative patterns and
audio artefacts [8] [9], with Inverse Mel Frequency Cepstral
Coefficients (IMFCC) showing promising performance for
unseen generative algorithms [10] as it accentuates the higher
frequencies instead of the lower ones. Furthermore, the authors
of the WaveFake dataset have remarked upon substantial
distinctions in the higher frequencies between authentic hu-
man audio and synthetically generated audio, particularly the
generative outputs of the MelGAN and WaveGlow vocoders
[11]. This can be explained by the fact that many neural
vocoders synthesise a waveform from the mel-spectrum [12],
by producing a waveform from the mel-spectrum more fidelity
is given to the lower frequencies but as a trade-off less fidelity
is given to the higher ones. Nevertheless, there exists a research
gap in identifying the specific locations where these artefacts
and distinctions between human and deepfake audio can be
found.

In this work, we explore the differences between human
and deepfake audio through an analysis of the WaveFake



dataset [11]. This analysis aims to show which frequency
bands contain the greatest amount of difference between
human and deepfake audio which is crucial for the effective
detection of deepfake speech. We employ the application of
a custom-designed filter bank, derived from the frequency
band-wise analysis of the WaveFake dataset. Our exploration
involves an examination of frequency bands within the Wave-
Fake dataset, revealing pronounced differences in the higher-
frequency regions compared to the lower-frequency regions.
To provide a validation of these findings, we conduct a dip-
sample confirmation by randomly selecting and comparing
spectrograms of deepfake voice with those of authentic human
voice. Additionally, we employ a baseline performance model
to investigate the extent to which amplifying frequency bands
generalize from one dataset to another, aiming to enhance
overall performance. Ultimately, this shows that there exist
commonalities between mel-spectrum generative methods, in
that most of the differences between human and deepfake
audio exist within similar frequency ranges.

The contributions of this paper include: 1) Analysis of
Frequency Bands Across Generative Vocoders: Our analysis
uncovers shared patterns in the synthesis of deepfake au-
dio across various generative vocoders. Through our anal-
ysis of the WaveFake dataset, derived from LJSpeech and
JSUT (Japanese speech corpus of Saruwatari-lab., University
of Tokyo), we identify common frequency regions amongst
different deepfake generative vocoders that are more differ-
ent (measured in Root Mean Square Error (RmSE)) when
compared with human audio. This finding suggests that these
shared frequency regions can be harnessed to improve the
classification results of deepfake audio across a spectrum
of generative techniques and datasets. We evaluate the re-
silience and generalization of our approach by testing it on
the ASVspoof 2019 LA dataset. The test set of this dataset
comprises unseen generative methods, allowing us to assess
the model’s performance in detecting synthetic audio content
generated by unseen mel-spectrum generation methods. Our
goal is to extend the robustness of audio classification models
and contribute to the advancement of effective strategies for
identifying synthetic audio across a spectrum of generative
methods. 2). A demonstration of enhanced classification per-
formance when utilised as an anti-spoofing countermeasure:
In this study, we introduce a novel pre-processing approach
that exploits these frequency regions that are shown to be
common across mel-spectrum generative vocoders. By lever-
aging the shared characteristics in WaveFake, we achieve a
notable improvement in Equal Error Rate (EER) performance
from 10.334 to 8.810. This enhancement represents a 14.75%
improvement in EER against our baseline model and a trend of
improvement by applying this novel pre-processing step alone.

II. METHODOLOGY AND ANALYSIS

In this section, we explore the methodology and analysis of
our investigation into the distinctions between deepfake and
human audio. Initially, we hypothesize that these differences
are not uniformly distributed across frequencies, challenging

the null hypothesis that posits an even spread. Specifically,
we propose that higher frequencies, potentially imperceptible
to the human ear, harbour more pronounced disparities. Our
ensuing analysis substantiates this hypothesis, revealing a
concentration of differences in the higher frequency ranges.

A. Band-Wise Analysis

For our analysis, we used the WaveFake dataset, which
consists of audio generated using 7 different deep-neural
generative vocoders sampled at 22.1kHz. The dataset contains
English and Japanese from the LJSpeech and JSUT datasets
respectively using the following vocoders: HifiGan, Fullband
MelGan, MelGan, MelGan Large, Multiband MelGan, Parallel
WaveGan and WaveGlow. We used the English LJSpeech
portion for our analysis [13]. the authors produced the Wave-
Fake dataset by running the LJSpeech authentic speech dataset
through the 7 vocoders to produce a deepfake version of
the input with the telltale signs of the vocoder that was
used to generate it. The purpose is that this can be used
for investigating the specific signs that each vocoder leaves
behind through the generative process. Most importantly,
this dataset controls for the speaker as the same speaker is
used throughout and allows for comparison with the original
LJSpeech audio. Controlling for the speaker therefore allows
for vocoder-specific patterns to be observed, any differences
are a result of the vocoder as the speaker is a controlled
factor, with the vocoder being a dependent variable. For the
audio of each generative vocoder in the Wavefake dataset, we
generated Short-time Fourier Transform (STFT) spectrograms
with an ordinal linearly spaced y-axis. From this, we split the
spectrogram into 40 frequency band sections. Each of these
frequency bands from each piece of audio was then compared
with the original genuine human audio from the LJSpeech
dataset. The frequency band sections were compared element-
wise using the Root Mean Squared Error (RMSE) of the pixel
values between the spectrogram images. The full results can
be seen in Figure. 1 which shows the RMSE between human
and deepfake for each algorithm at each frequency bin. To
analyze the WaveFake audio, we employed a filter bank, a
signal processing technique used to decompose a signal into its
frequency components. The filter bank consists of a series of
bandpass filters, each designed to isolate a specific frequency
range from the input audio signal.

The results of the analysis in Figure. 1 show multiple pat-
terns that remain true for all generative vocoders. There exists
a distinct lack of difference between the lower frequencies
(0 - 3kHz), predominantly at around 2kHz. This shows that
neural vocoders generating audio in the mel-spectrum are
very effective at recreating the lower frequencies. However,
as the frequency increases beyond around 3kHz the amount of
difference between human and deepfake increases, this shows
that there is more discriminatory information in the higher
frequencies.

Additionally, we analyzed the audio from various vocoders
in the WaveFake dataset. In Figure. 2 we can see in the human
spectrogram (left) that the fundamental frequency (F0) and



Fig. 1. Comparison of Algorithmic Differences Across 40 Frequency Bins. 200Hz intervals, 0 - 8000Hz. Bin 1 = 0-200Hz, Bin 2 = 201-400Hz, etc.

Fig. 2. Spectrogram comparison between Human (left) and WaveGlow (right).

successive formants are crisp and represented accurately as ex-
pected. However, the spectrogram on the right (WaveGlow) in
Figure. 2 shows that while the F0 and low-frequency formants
such as F1 and F2 appear to be recreated accurately, subse-
quent formants in the higher frequencies are not replicated
properly and appear blurred and distorted. This observation is
in line with what we saw with our frequency band analysis in
Figure. 1. There appear to be fewer differences between real
and fake in the lower frequencies as the audio is replicated
more accurately, whereas there are more differences in the
higher frequencies. This pattern can be observed across all
of the vocoders in the WaveFake dataset and be explained
by the fact that all of the vocoders synthesise a waveform

from the mel-spectrum. Finally, as previously mentioned these
high-frequency distortions may be difficult for humans to
perceive due to the human perception of stimulus scaling
logarithmically.

B. Filter Bank

Using the per-band analysis results, we applied specific
adjustments to the target audio on a per-frequency band basis.
This involved the amplification or attenuation of the audio
tailored to the frequency bands identified in the analysis shown
in Figure. 1. By amplifying and attenuating bands, we aim
to amplify differences between human and deepfake voices,
boosting discriminative information while selectively reducing



specific frequency ranges where the audio is similar. This
novel technique aims to enhance the signal-to-noise ratio of
the audio signal by attenuating frequency bands that are more
similar while amplifying bands that are more different. As the
WaveFake dataset is sampled at 22100Hz and the ASVSpoof
2019 LA dataset is sampled at 16000Hz, we re-sampled the
WaveFake audio using the Python library Librosa so that they
were at the same sampling rate. The audio was re-sampled and
not down-sampled to preserve the information within the audio
and prevent aliasing. For our filter bank implementations, we
utilized a Butterworth bandpass filter to partition the audio sig-
nal into distinct frequency bands expressed in Equation. 1. The
Butterworth filter was chosen for its desirable characteristics,
including a smooth frequency response. The design parameters
of the Butterworth filter, such as the lower and higher cutoff
frequencies, were determined based on the specific frequency
bands defined for our application, in this case, 40 bands in
200Hz intervals. The filter order was set to a constant value
of 5 to ensure a balance between precision and computational
efficiency.

The filter bank output y(t) can be expressed as a sum of
the outputs of individual bandpass filters:

y(t) =

N∑
i=1

gi · hi(x(t)) (1)

Here:
• N is the number of bands in the filter bank.
• gi is the gain applied to the i-th band.
• hi(x(t)) represents the output of the i-th bandpass filter

applied to the input signal x(t).
We calculate the RMSE difference between human and

deepfake audio as a proportion so that it is normalised in refer-
ence to the null hypothesis. The null hypothesis would suggest
that the amount of difference would be evenly distributed. The
proportion of the RMSE difference within each frequency bin
was calculated relative to the total difference across all bins.
This can be expressed as:

Proportional Difference =
∆(Mean RMSE)∑N

i=1 ∆(Mean RMSEi)
(2)

The gain multiplier values were calculated by finding the
normalised proportional amount of RMSE difference in each
band and dividing by the sum difference as shown in Equation.
2. For Filter Bank 2 we squared the gain values to exaggerate
the process, further decreasing similarities and increasing
differences between the audio according to the analysis.

This method ensures that the gain values represent a pro-
portionate contribution of each frequency band to the overall
difference, making them relative to each other. This can be
particularly important when dealing with signals of varying
scales, as it ensures that the gain values reflect the proportional
impact of each frequency band on the overall difference rather
than being influenced by absolute magnitudes.

These proportional gain values were then multiplied by the
number of bands. By scaling the normalized values by a factor

Fig. 3. System diagram with per-frequency band analysis of the WaveFake
dataset.

of the number of bands, we effectively convert them into gain
multipliers that reflect the relative difference between deepfake
and authentic human voice in reference to the null hypothesis.

Additionally, we apply a cutoff filter that attenuates fre-
quency bins that fall below the null hypothesis value. this ul-
timately resulted in a high-pass filter only allowing frequencies
greater than 3201Hz.

III. EXPERIMENTAL SETUP

Here we explain integrating our pre-processing step into a
classification system can be seen in Figure. 3. Our primary
goal was to test if our novel audio pre-processing technique
could be used to improve a baseline model.

A. Datasets

To test whether this approach is applicable across differ-
ent generative algorithms, we tested system performance by
evaluating using the ASVSpoof 2019 LA dataset [14]. The
ASVSpoof 2019 event separated the challenge into 2 more
specific sub-challenges, the Logical Access (LA) and Physical
Access (PA) challenges. This was to reflect the different nature
of the two problems. We utilise the LA subset as the scope of
our work is ASV countermeasures against deepfake speech.
The ASVSpoof 2019 LA dataset focuses on testing against
unseen generative methods, a general challenge in the area
and a more in-the-wild scenario. All of the unseen generative
methods in the ASVSpoof 2019 LA dataset were produced
using neural vocoder methods generating audio waveforms in
the mel-spectrum. All of the generated audio in this dataset
was produced using the VCTK corpus [15] as base data.
Many of these characteristics, such as using neural vocoders
to generate waveforms from the mel-spectrum, are shared with
the WaveFake dataset [16]. Only 6 of the generative methods
for the ASVSpoof 2019 LA dataset occur in the training and
development sets, the other 12 generative methods are unseen
and are only present in the evaluation set to test generalisation
ability. Table.I displays the makeup of the ASVSpoof 2019 LA
dataset.

B. Baseline Model

The model we chose for the baseline model was the
Squeeze-and-Excitation (SE) Residual Network (ResNet).



TABLE I
ASVSPOOF 2019 LA DATA PARTITION COUNTS.

Partition #Bonafide #Spoofed
Train 2,580 22,800
Dev. 2,548 22,296
Eval. 7,355 63,882

SEResNet is an extension of the traditional ResNet architec-
ture incorporating a SE mechanism. The SE mechanism aims
to improve the performance of Convolutional Neural Networks
(CNN) by explicitly modelling the relationships between chan-
nels in the feature maps. We used the SEResNet50 variant of
the model made open-source by Li et al. [17]. This model is
one of the highest-performing CNN models when running as a
baseline without the use of techniques such as feature fusion.
Higher performance can be gained by the use of CQT or
LFCC but our goal was to use a linearly scaled feature such as
linearly scaled spectrograms to demonstrate the effectiveness
of our novel filter technique. Features such as CQT use a
logarithmic scale and diminish the information in the higher
frequencies.

A consideration for choosing our baseline model was that
the model should be a CNN-based model to allow for the
use of Grad-Cam to produce insights. Grad-Cam visualisations
localize important regions of an image input into a CNN model
by mapping the various levels of activation in the model’s final
convolutional layer back to the input image space [18]. Grad-
Cam allowed us to look into areas of focus in the spectrograms
that the model learns throughout training. This allowed us to
take a more white-box approach.

The model was trained using binary cross entropy as the loss
function. The Adam optimizer was used with the parameters
set to β1 = 0.9, β2 a= 0.98, and a weight decay of 10−9.
To manage the learning process and ease the model in, a
learning rate scheduler was used for model warm-up, adjusting
the learning rate dynamically during training to achieve the
best possible performance. Initially, the learning rate steadily
increases over the first 1000 warm-up steps, then gradually
decreases proportionally to the inverse square root of the step
number. The model underwent a 20-epoch training cycle, the
model with the lowest EER on the development set was then
chosen for evaluation.

C. Feature Representations

In our experimental setup, we used ordinally scaled mag-
nitude spectrograms as the input feature for our model. The
choice of spectrograms served a dual purpose: firstly, they
provided a comprehensive and even representation of the
frequency content, and secondly, their ordinally scaled nature
controls for y-axis scaling. This deliberate choice enabled
us to isolate and evaluate the unique contributions of our
custom filter bank, as any observed improvements in model
performance could be attributed specifically to the alterations
introduced by the filter bank.

The spectrograms were extracted from the audio data
using the STFT technique with parameters set as follows:

n fft=512, hop length=160, win length=400, and using the
”hann” window function. These parameters were selected to
strike a balance between temporal and frequency resolutions,
ensuring a meaningful representation of the audio signal in the
frequency domain.

IV. RESULTS

Our results show a decrease in both EER and Tandem
Detection Cost Function (t-DCF), where lower is better as
shown in Table.II. t-DCF is a more reliable predictor of
performance when ASV and countermeasures are combined
[19], it provides a more comprehensive accuracy measure that
accounts for all four potential error scenarios arising from the
interaction of the ASV system and the countermeasure system.
On the other hand, EER is a more general metric for evaluating
general authentication systems such as biometric systems.
Our results suggest promise for this approach in the use of
countermeasures to protect ASV systems as there is a negative
trend in both EER and t-DCF. Our best result when compared
to our baseline was using Filter Bank 2 where both EER and
t-DCF were lower, providing an EER of 8.81 and a t-DCF of
0.1761. Other more complex features may benefit from this
approach as the gain may reveal more discriminative factors
in the higher frequencies. The results for our cutoff filter
are in Table.II show very poor metrics indicating that while
amplification of the higher frequencies can prove beneficial
to classification performance ultimately they cannot be relied
upon for even baseline-comparable performance.

TABLE II
RESULTS OF APPLYING THE BESPOKE FILTER BANKS. LINEAR

FREQUENCY CEPSTRAL COEFFICIENTS (LFCC), CONSTANT Q CEPSTRAL
COEFFICIENT (CQCC), GAUSSIAN MIXTURE MODELS (GMM)

Approach EER t-DCF
Our Baseline 10.334 0.1947
Filter Bank 1 9.923 0.1765
Filter Bank 2 8.810 0.1761
Cutoff Filter Bank 18.749 0.4239
ASVSpoof 2019 LA Baseline Systems [20]
Baseline 1 (GMM CQCC) 9.57 0.2366
Baseline 2 (GMM LFCC) 8.09 0.2116

After the model was trained, we examined Grad-Cam activa-
tion heatmaps produced from the baseline SEResNet50 model
with no filtering and after applying the filter to understand the
performance, they can be seen in Figure. 4 and Figure. 5. Grad-
Cam visualisations localize important regions of an image
input in a CNN model, they allow us to see the amount of
activation in certain regions of pixels as they pass through the
CNN. Audio samples were randomly selected from the dataset
to be visualised in a dip-sample. The Grad-Cam heatmaps
show that there do exist areas in the mid to higher-frequency
sections of the audio that are receiving a significant amount
of focus from the baseline model, this is even more so after
applying the filter. This shows that the filter has amplified
regions of interest within the spectrogram, in doing so, the
model does indeed use information in the higher frequencies as
demonstrated by the increased levels of activation from Figure.



Fig. 4. Grad-Cam activation heatmaps of 3-second ASVSpoof 2019 LA audio
samples, produced using the baseline SEResNet50 model and unfiltered audio.

Fig. 5. Grad-Cam activation heatmaps of 3-second ASVSpoof 2019 LA audio
samples, produced after filtering using the SEResNet50 model trained with
Filter 2.

4 to Figure. 5. These portions would otherwise be diminished
by using spectrograms where the y-axis is logarithmically or
mel-scaled as a trade-off for focusing on the lower frequency
portions of the spectrogram. Additionally, there appeared to
be an area of less focus between many of the Grad-Cam
visualisations between the 3kHz and 4kHz ranges shown in
Figure 4, a similar pattern was also observed in the per-band
analysis in Figure. 1. With these Grad-Cam visualisations, the
performance of the cutoff filter starts to make more sense.
While the higher frequencies can improve performance, as
shown by our Filter Bank 1 and 2 results, cutting out the
lower frequencies completely ruins performance. As the higher
frequencies alone cannot be relied on for decent performance.

V. CONCLUSION

To conclude, we investigated whether there exist differences
between human and deepfake audio that generalises across
vocoders and how much of an improvement can be gained
through exploiting these differences by using a novel filtering
technique. Our analysis shows that there are generalisable
differences between authentic human speech and deepfake-
generated speech in the higher frequency ranges.

It is noteworthy that these frequency ranges, containing
vital discriminative information, might receive limited spatial
representation and reduced resolution in more conventional
feature representations, such as mel and logarithmically scaled
spectrograms. This information may shed light on new features
for use in detecting deepfake voice as mel-spectrum that utilise

differences in the higher frequency ranges in addition to using
conventional features. From our results, these generalisable
differences appear to show a trend of improvement by applying
this novel technique at increasing strengths. Additionally, our
Grad-Cam visualisations show that more of the spectrogram
is being utilised after the audio has been filtered, specifically
higher frequency regions.

In conclusion, this study represents a progression in un-
derstanding of differences between deepfake and genuine
audio, particularly within the higher frequency range. Future
avenues for investigation encompass the integration of this
pre-processing step into SOTA models with a variety of
deepfake data sets. This is imperative to effectively tackle
the evolving challenges within audio forensics and synthetic
speech detection.
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