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Abstract: Wi-Fi-based human activity recognition (HAR) has gained considerable attention recently
due to its ease of use and the availability of its infrastructures and sensors. Channel state information
(CSI) captures how Wi-Fi signals are transmitted through the environment. Using channel state
information of the received signals transmitted from Wi-Fi access points, human activity can be
recognized with more accuracy compared with the received signal strength indicator (RSSI). However,
in many scenarios and applications, there is a serious limit in the volume of training data because of
cost, time, or resource constraints. In this study, multiple deep learning models have been trained
for HAR to achieve an acceptable accuracy level while using less training data compared to other
machine learning techniques. To do so, a pretrained encoder which is trained using only a limited
number of data samples, is utilized for feature extraction. Then, by using fine-tuning, this encoder
is utilized in the classifier, which is trained by a fraction of the rest of the data, and the training is
continued alongside the rest of the classifier’s layers. Simulation results show that by using only 50%
of the training data, there is a 20% improvement compared with the case where the encoder is not
used. We also showed that by using an untrainable encoder, an accuracy improvement of 11% using
50% of the training data is achievable with a lower complexity level.

Keywords: channel state information (CSI); convolutional autoencoder; human activity recognition (HAR);
machine learning (ML)

1. Introduction

Human activity recognition (HAR) is a vast research field that has attracted significant
attention from academic research communities as well as industry players. In the healthcare
industry, the effect of using HAR mostly includes the monitoring of the elderly and patients
who need constant care, unusual activity detection (e.g., fall detection), age detection,
and early detection of diseases such as Alzheimer’s. Data for detecting human activities
can be collected via cameras (image and video), wearable/environmental sensors, and
smartphones. Vision-based HAR algorithms, despite their high accuracy, have limitations
such as violating the privacy, dependence on adequate lighting, and the requirement for
direct visibility of the target. As a result, the existence of obstacles or walls can cause
problems in data gathering. The use of wearable sensors also may cause discomfort and
disturbance in performing activities while still compromising people’s privacy. Collecting
the transmitted signal from Wi-Fi access points via smartphones has become a conventional
approach that brings advantages over other methods in terms of privacy, availability, ease
of installation and use, as well as cost. Two common attributes of the received Wi-Fi signal
used in HAR are the received signal strength indicator (RSSI) and channel state information
(CSI). RSSI has been vastly used in HAR [1] as well as localization [2] because of its ease of
use and acceptable accuracy. Although collecting CSI needs more complex receivers and
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more processing because it contains both the phase and amplitude information, it is shown
to give more accurate results in HAR as compared to RSSI [3–5]. CSI is also less sensitive to
the distance between Wi-Fi transmitters and receivers and to the obstacles [6].

Machine learning (ML) and, in particular, deep learning (DL) are powerful tools
for classification and prediction that have been extensively used to recognize human
activity. For example, in [7], Shalaby et al. present techniques using deep-learning-based
tools trained by CSI data that are highly accurate in HAR and perform well for high-
dimensional and time series data. Autoencoders (AE) are used to extract rich features
to enhance classification capabilities. AEs are unsupervised deep learning methods that
extract features or reduce the dimensionality of the data, and their applications include
denoising, synthetic data generation, feature extraction, etc. The purpose of using AEs,
which consist of an encoder and a decoder, is to transfer the input to a space with reduced
dimensions and then regenerate the input with maximum similarity to the original one
at the output layer. In the encoder, data are compressed, and then in the decoder, the
features extracted from the encoder are used to reconstruct the data. Then, the trained
encoder can be used in classifiers. In some research papers, AE is used in order to remove
the noise [8]. Zou et al. [9] propose a CSI-based method named autoencoder long-term
recurrent convolutional network (AE-LRCN) that includes a convolutional neural network
(CNN) for feature extraction, a long short-term memory (LSTM) module to reveal inherent
temporal dependencies, and an autoencoder to remove noise. Guo et al. [10] propose
an LSTM-based encoder and a CNN-based decoder to solve the problem of decreasing
accuracy when the classifier is used for different users. To compare the performance of
AEs with the rest of the methods for feature extraction, Mihoub et al. [11] use different DL
techniques, including AEs, recurrent neural networks (RNN), LSTM, gated recurrent units
(GRU), multilayer perceptron (MLP), and random forests (RF) for feature extraction and
show that AEs achieve excellent performance in feature extraction.

In [12], a new method based on deep learning is proposed for HAR, which uses
CNN-3D combined with convolutional long short-term memory (ConvLSTM) for classify-
ing human behavior in videos. This method is well-suited for real-time HAR applications
besides its high performance. There are some limitations to this method, such as the
requirement for a large amount of data to obtain high accuracy while limited available
training data exists. Moreover, this method is sensitive to noise and missing data. It is
worth noting that the requirement of labeled training data for classifier adaptation to each
individual is an essential obstacle to the widespread adoption of HAR-based applications.
In [13], a multi-resolution fusion convolution network (MRFC-Net) has been proposed
to improve the accuracy of recognizing the activities. In [14], a light extraction approach
using the residual convolutional network and a recurrent neural network (RCNN-BiGRU)
is proposed for optimal feature set selection, and the feature selection is based on the
marine predator algorithm (MPA). This method achieves good performance, although the
computational cost of this method is high.

In [9], due to the use of AE-LRCN, high performance has been achieved without
requiring any expert knowledge, and it is not time-consuming. The proposed method
in [10] demonstrates high classification performance compared with KNN, SVM, and
RNN. Their method also has improved the stability of activity recognition in different
indoor environments. On the one hand, most of the aforementioned HAR techniques
need a large amount of data for training, and if the amount of collected data is not high
enough, their performance may degrade dramatically. On the other hand, human-centered
data collection used for HAR is costly and includes privacy problems (e.g., see [15]).
Therefore, it would be very valuable to provide a method that can detect human activities
with acceptable accuracy using a small amount of data. To this end, augmented and
synthetic data generation methods have been proposed [16]. A generative adversarial
network (GAN) is a neural network-based structure specified for creating synthetic data.
In simple terms, GAN consists of two components, a generator part and a discriminator
part. The generator and discriminator have trained simultaneously, which makes it a
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challenge to train a stable model based on GAN. If the data available for GAN training
are limited, the neural networks used in GAN only generate new repetitive (similar) data
from the same limited data and degrade the performance level of the human activity
recognition model when facing real and different evaluation data [17]. Although it is
common to use GAN when the dataset is limited to generate synthetic data, the two
main disadvantages associated with GAN have prompted researchers to explore alternative
methods for classification. Furthermore, in reference [18], Prabono et al. proposed a solution
to counteract the problems associated with insufficient data by utilizing two autoencoders
to extract data features. The first autoencoder is trained with a large dataset. Then, the
trained encoder is used by fine-tuning in the second AE to extract more effective features
from the smaller dataset. The second AE output is given to SoftMax for classification
and labeling. The focus of this study is on data reconstruction, with an emphasis on the
outcomes of hyperparameter optimization. The authors stated that the primary challenge
in their research was the examination of various feature dimensions to identify the optimal
setting for constructing data with higher accuracy. Therefore, automated feature dimension
selection could potentially enhance effectiveness in several aspects. Collecting an adequate
amount of data poses a significant challenge as an alternative method to address the issue
of insufficient data. Moshiri et al. in [19] gather CSI data from human activities such as
walking, running, standing, sitting, lying down, falling, and bending, and after converting
CSI data into RGB images, feed them to a 2D-CNN layer, and compare the performance
with other ML methods.

In this research, to relieve the problem of HAR data gathering, which is a time-
consuming and costly task and may include some privacy invasion, a method based
on multi-input multi-output convolutional autoencoder (MIMO-AE) and fine-tuning is
proposed, which improves the accuracy of the classification by richer feature extraction
from a smaller set of training data. The proposed MIMO-AE is based only on convolutional
neural networks, which are a well-known choice for processing multidimensional arrays.
This network has multiple separate input arrays and hence, multiple separate output arrays.
Similar to other autoencoders, this structure has two sub-networks of encoder and decoder,
regardless of the number of inputs and outputs. The encoder network fuses two inputs
into one array, which is considered an extracted feature. Then, the decoder network tries to
reconstruct the two mentioned outputs from extracted features. These outputs are quite
similar to the two original inputs. By the end of the training process, the encoder network
can be used as the first layer of the classifier. In this approach, the network will serve
as a retrainable layer. In other words, by utilizing fine-tuning, this trained network can
be retrained simultaneously with other layers of the classifier. Aside from the pretrained
encoder, the proposed classifier contains both CNN-based and LSTM-based layers. LSTM
cells help the network to learn the sequential aspect of data more efficiently. MIMO-AE has
a significant advantage over regular AE in that it requires fewer data.

The rest of this paper is organized as follows: In Section 2, a brief explanation of
CSI, autoencoder, MIMO-AE with its structure, and fine-tuning is provided. Additionally,
this section defines the four distinct approaches utilized and gives their corresponding
structures. Then, in Section 3, experimental results of the fourth approach and an explana-
tion of comparisons are given. Finally, conclusions are discussed in Section 4. The main
contributions of this study can be listed as follows:

1. The use of multi-input multi-output autoencoder for extracting targeted information
in CSI data.

2. Modifying models to extract more information from a limited number of samples,
and therefore, training models with high accuracy, using small data size.

3. Reducing the complexity of the autoencoder-based CNN HAR models while keeping
the accuracy at an acceptable level.
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2. System Method

In this section, the model used for feature extraction and classification is explained.
First, the multi-input multi-output autoencoder is explained. Then, four different ap-
proaches for training the model are described in detail.

2.1. Channel State Information

Orthogonal frequency-division multiplexing (OFDM) technologies are commonly
used in telecommunication networks between each pair of transmitters and receivers to
transmit coherent information using the Wi-Fi signal on the channel. In OFDM modulation,
messages are superimposed on orthogonal subcarriers and transmitted. Transmitting
information using OFDM modulation makes it possible to transmit several signals with
overlapping spectra through one channel. To put it another way, in OFDM modulation,
a single information stream is split among several closely spaced narrowband subchannel
frequencies instead of a single wideband channel frequency. The presence of obstacles
causes reflection, scattering, and multipath fading [20]. Therefore, when a person between
the transmitter and receiver performs an activity, some changes will be made in transmitting
the multipath of the Wi-Fi network. Channel state information (CSI) provides information
about the amplitude and phase of the transmitted signals so that we can be aware of changes
in Wi-Fi signals, including signal scattering, ambient attenuation, environmental fading
(including multipath fading and shadow fading), and power decays because of distance in
each transmission path during propagation [21]. Using CSI in this context instead of RSSI
has many advantages, including more sustainability, reduced environmental influences,
and increased transmission of information [3,22]. In addition, OFDM technology can be
used in Wi-Fi devices, and the bandwidth can be divided between several orthogonal
subcarriers by using the IEEE 802.11 n/ac standard. It is also possible to use multiple
antennas for the transmitter and receiver called multiple input multiple output (MIMO)
antennas in the Wi-Fi device, which makes it possible to intensify the multiplexing benefit
and reduce channel interference [23]. The CSI data can be represented as a channel matrix:

CSI =

H1,1 . . . H1,r
...

. . .
...

Ht,1 · · · Ht,r

 (1)

where t is the number of transmitters, r is the number of receivers, and Ht,r represents a
vector that includes complex pairs of subcarriers. H can also be demonstrated as:

Ht,r = [ht,r,1, · · · , ht,r,k] (2)

where k represents the number of data subcarriers, h is a complex number that incorporates
the phase and amplitude of CSI. Therefore, each subcarrier can be expressed as:

hi
t,r = Ai

t,rejθi
t,r , i ∈ [1, . . . , k] (3)

In the complex number h, A is the CSI amplitude, θ is the CSI phase, and i is the
number of subcarriers in each channel. The number of available subcarriers can also vary
according to the type of selected hardware or channel bandwidth. In 20MHZ bandwidth,
Raspberry pi4 (Nexmon CSI Tool) can access 56 subcarriers.

Performing an activity or making changes in the environment causes changes in the
phase and amplitude. However, the presence of unsynchronized transmitters and receivers
can cause random phase offsets in CSI and change it chaotically. In addition, the phase
can be influenced by the sampling frequency offset, while CSI usually has an almost fixed
range [24]. Therefore, the CSI amplitude is usually used.

2.2. Autoencoder

An autoencoder is an unsupervised artificial neural network consisting of an input
layer, an output layer, and one or a number of hidden layers. Converting the input space
to the hidden space is called encoding, and the inverse is known as decoding. The output
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of the encoder, which is placed in the latent space, is the extracted features (data with
fewer dimensions), which shows the more essential information of the input layer. In this
research, AE has been used to extract similar features of examples of a common class so
that the performance of the classifier can be improved by using the extracted features. The
proposed AE is completely explained in Section 2.3. After learning the encoder in the AE, it
is saved and used in the classifier. In this research, the decoder, which is used to reconstruct
the input data, is not used in the classifier. The function that is used to make a nonlinear
mapping of the x input at the encoder is as follows:

di = σ(wxi + b) (4)

where σ is a nonlinear activation function, di is encoded features, and w and b are weight
and bias, respectively. The decoder function used to reconstruct the input data is as follows:

d̂i = σ(ŵdi + b̂) (5)

where d̂i is the output of the decoder, which is tended to be exactly similar to the input,
while ŵ and b̂ are, respectively, the weight and bias of the decoder.

2.3. MIMO-AE

MIMO-AE is an unsupervised neural network that, similar to single-input single-
output AE, tries to extract effective features through an encoder so that the output of
the decoder can be obtained similarly to the input. MIMO-AE can have different inputs
with different natures and essence. Similar to audio-visual tasks [25], which aim to detect
emotions, MIMO-AE could receive two inputs with different natures. In audio-visual
issues, usually one of the inputs is audio, and the other is an image. Both image data and
audio data can be extracted from video data. Generally, inputs in MIMO-AE can also have
the same nature. In our proposed research, both inputs are an array of CSI data from the
same source. To clarify, they can even have the exact same arrays as input, or we can have
repetitive combinations. In [26] Geng et al., similar to the proposed research, MIMO-AE
is used for feature extraction from CSI data, which improved the performance compared
to previous methods for generating channel charts for user-relative positioning and many
other applications. Apart from the nature of the data, MIMO-AE considers the similarities
between the inputs as a feature, which is extracted from the encoder. Then, the differences
are also stored as weights and biases in the decoder. In the proposed research, only the
extracted similarities are considered. As a result, after training MIMO-AE, only the trained
encoder of AE is used in the classifier. In order to more easily understand the efficiency of
this AE, a very simple example is given.

The RGB color images, as depicted in Figure 1, can be considered, one of them displays
purple, and the other one shows green. If these two images are considered as inputs to
the two-input two-output AE, the extracted feature from the encoder is blue, which is the
similarity between these two images. The differences are also red and green, which are
stored as weights and biases of the decoder during feature extraction. Finally, red and
green combine with the shared color (blue) and reconstruct the inputs at the output.

In the proposed model, a percentage of the data is randomly selected for the training
process of AE. Then, samples of classes are compared with each other pairwise, and the
extracted similarities are considered as the output of the encoder. It should be noted that
two duplicated samples could also be compared. Three-dimensional samples, according to
Figure 2, are considered as input for convolutional layers. Then, the features extracted from
both inputs through convolutional layers will be merged and again will be passed through
the convolutional layers. The encoder’s output is the features made of similar aspects of
input arrays. Meanwhile, all the inputs that are from the same class of activity, despite their
differences, share similarities regarding their type of activity. Then, the trained encoder is
saved and used in the classifier. The decoder is a mirror of the encoder, which consists of
several convolutional layers with different channel sizes. All convolutional layer filters are
depicted in Figure 2. Finally, the number of channels is adjusted such that the number of
channels in input and output is the same at the end.
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2.4. Fine-Tuning

Transfer learning (TL) is a machine learning method that can improve the performance
of a second model by using the pretrained model (with specified weights and biases) as a
base point for the second similar model. The TL method has been used in HAR problems in
recent years. Hernandez et al. [27] have reviewed the research on TL in HAR. Fine-tuning
is also one of the methods based on transfer training. In the fine-tuning method, after
training the first model, it is used in another different model related to the first model.
Choosing the used part of the first model in the other model is a sensitive step. This choice
should be made so that the output of the first model improves the final results of the second
model. For example, in Figure 3, after training the first network with dataset 1, model 1 is
prepared to be used in another network. Then, network 2, which includes trained model 1,
is trained with dataset 2. It should be noted that model 1 in network 2 can be trained again.
For instance, in the proposed method, the encoder is the only part of AE which is used in
the classifier.

Another difference between the fine-tuning method and TL is in the selected dataset
for training the first and second models. In TL, the dataset used to train the first model
must be completely different from the dataset used to train the second model. While in the
fine-tuning method, if supposedly 10% of the dataset is used for training the first model,
the remaining 90% of the same dataset should be used for training the second model. In
both methods, after training the first model and determining the weights and biases, in
the second model, the weights and biases of the first model will have more imperceptible
changes than when they were trained from the beginning. In this research, fine-tuning is
used because only a small percentage of the data was used for training the AE model, and
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a fraction of the remaining data was randomly selected for training the classifier. The data
used for AE training do not play a role in training the classifier.
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2.5. Classifier Included by the Encoder

As mentioned earlier, the main goal of this study is to improve the performance of
HAR models in case of extremely limited data using prior knowledge. To do so, the idea
of utilizing a two-input two-output autoencoder is suggested. After the training of the
autoencoder with a small number of samples, the encoder part of the network will be used
as the first layer of the HAR classifier. In order to implement this structure, two different
approaches can be selected. In the first approach, the encoder layer can be used as an
untrainable layer, or in other words, as a function. This idea causes the achievement of
a more capable model while spending almost the same computational cost as the basic
HAR classifier. In the second approach, the encoder layer in the advanced HAR classifier
would be retrained, or in other words, would be fine-tuned. This model achieves the
best recognition results; however, the computational cost is quite higher, considering the
fact that the size of the trainable network would be much larger. In this matter, it has
been demonstrated through early trials that are incorporating a retrainable encoder as
the primary layer of an advanced HAR classifier results in achieving the highest level of
performance. In order to justify its computational cost, it is essential to demonstrate that the
superior performance of the network is not solely due to its larger structure or the presence
of more trainable parameters [28]. Please note that when an encoder layer is added to
the classifier, and it requires retraining, the number of trainable parameters will increase,
despite the increase in performance. However, if used as an untrainable function, it can
increase efficiency. Although using the untrainable encoder results in lower accuracy, the
computational cost is significantly reduced. To achieve this, a completely similar structure,
compared to the HAR network with a trainable encoder, is used for comparison, while
its first layer, i.e., the structure of the encoder is completely untrained. During these
simulations, it was observed that this network failed to achieve the recognition accuracy
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of the targeted HAR classifier network that contained a retrainable encoder subnetwork.
The process of trial and error led to the decision to study the selected model in four distinct
ways, namely: a simple classifier, a classifier with an untrained encoder, a classifier with an
untrainable encoder, and lastly, a classifier with a retrainable encoder. In [19], the whole
existing data are used to achieve high performance, and each presented method is based on
using just one type of neural network. For example, the recognition is achieved by using just
the CNN-2D since the authors believed they could achieve better performance compared to
using LSTM. However, in this research, to classify the samples, we use CNN-2D alongside
LSTM. Moreover, in the proposed method, because of using the presented encoder in the
classifier, the model will be capable of extracting more effective features compared with
simple CNN-2D used in [19], and by these features, better performance will be achieved,
alongside using less training data.

2.5.1. Model a: Designed Classifier

The first method used in this research is a classifier whose input is a CSI time series.
According to Figure 4, the input enters the classifier consisting of convolutional and
LSTM layers.
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Figure 4. A simple presentation of the classifier without using any pretrained layer.

In this method, the encoder is not used. Sequentially, all the layers used for feature
extraction and classification are shown in detail in Figure 5. The classification is performed
by the fully connected layer. A sliding window of length 300 slides over the CSI samples,
converting the CSI vectors into two-dimensional arrays. Then, a number of samples are
randomly selected from the beginning to test and obtain the accuracy of the model, and
the rest are used for training and validation. According to the purpose of the research,
which is to use fewer samples for training, different amounts of training samples are used
for training the model. For feature extraction in this model, we consider the CSI samples,
which are stored as arrays of size 300 × 26 × 2 after representation by using a sliding
window as input for the convolutional layers shown in Figure 5.
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A convolutional neural network is a neural structure that works well for feature
extraction and classification of multidimensional data. In this research, this neural network
includes several convolutional layers with an activation function, an integration layer,
and a fully connected layer. Convolutional layers consist of filters that are applied to
multidimensional arrays and perform feature extraction from the data. In this model,
a regularizer is applied to CNN layers. In this process, the normalized set of parameters
under training will be added to the cost function. The purpose of this work is to minimize
this added value using the optimization algorithm. The reason for choosing this approach is
that it is one of the first examples of overfitting in the model of exponential enlargement of
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parameters under training. Keeping these values small through regularization can prevent
overfitting. Batch normalization has been used to normalize the variance and mean of each
batch or stabilize the distribution of the activation value in the training process. Therefore,
the use of batch normalization prevents overfitting and also increases the speed of training.
Average pooling 2D has been used almost after each convolution layer. Average pooling
2D decreases the computations by reducing the dimensions of feature maps, excluding
channel size. This layer computes the average value of each batch of the feature map that
the filter is sliding on. Then, by using dropout in the targeted layer, a certain percentage of
neural network neurons are randomly selected and will not be trained at the end of the
training step.

According to Figure 5, after the convolutional layers, the LSTM neural network was
used. LSTM is a type of RNN in which the problem of forgetting is solved. This idea
was first proposed by Hochreiter et al. [29]. This network is capable of learning long-
term dependencies, especially in sequence prediction problems. Therefore, this network
performs feature extraction well in the field of HAR for prediction or classification using
CSI data. Considering that the output format of CNN is different from the input format of
LSTM, we will use the time distributed input.

Time distributed applies a linearization function to the signal while maintaining a time
integration. After changing the data representation, it will be used as input for LSTM [30].
As is shown in Figure 6, the size of the multidimensional arrays changes after passing
through this function. In simple terms, this function applies the selected layer (here, the
flatten layer) to each member of the sequential series. This approach helps maintain the
sequential aspect of prior output while changing the shape and size of each member, using
the posterior selected layer. In Figure 6, t is the number of input arrays, m and n are the
array’s x and y axis, and h is the channel size.
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Finally, the extracted features are entered into the fully connected layer for classifi-
cation. In the dense layer, seven activity classes are defined using the SoftMax activation
function, and the classification is performed. The same approach is implemented in all
methods for random split-of-dataset, which is presented in Figure 7.
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Figure 7. Randomly splitting process of selected dataset, for creating the training, validation, and test
(evaluation) datasets.

2.5.2. Model b: Retrainable Encoder

In this method, fine-tuning is used, which is mentioned as one of the methods based
on transfer training. The TL method has been used by different researchers to improve
the performance of the model in the field of HAR [21,31]. In this method, the AE model is
trained by a small percentage of data, then the trained encoder, by using the fine-tuning
method, is used in the classifier. In other words, the trained encoder is considered the first
part of the classifier. In addition, the encoder can be retrained alongside the classifier. This
idea is illustrated in Figure 8. This means that the encoder weights and biases are updated
using the information obtained from the new data in the classifier. All three suggested
networks share multiple layers (original classifier) after the position of the encoder in
their structure.
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only difference, compared to Figure 4.

2.5.3. Model c: Untrainable Encoder

In this method, another model for feature extraction has been implemented on the
CSI dataset before classification. In Section 2.3, the MIMO-AE used is explained. After
training AE, the trained encoder has been stored. Then, the trained encoder was used as
a function or untrainable layer in the classifier, as shown in Figure 9. Based on the definition
of fine-tuning in Section 2.4, the use of the previously trained network (here, encoder) in
the new model is the main concept of fine-tuning. The preprocessed CSI signal will be
used as the input of the model. Then, a pretrained encoder is used as the first layer of the
classifier. Note that the encoder will not be retrainable in the classifier. Then, the features
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extracted from the encoder enter the next layer of the classifier. The difference between this
method and the previous one is that the encoder will not be trained again in the classifier.
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2.5.4. Model d: Untrained Encoder

In this method, an untrained encoder is used. To put it in another way, all the layers
used in MIMO-AE are fully depicted in Figure 2. In this case, the untrained structure of
the encoder is used as the first layers of the classifier, as depicted in Figure 10. As a result,
there is no need to train AE and upload its encoder in this method.
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Figure 10. A simple presentation of classifier included by the untrained encoder, which is the only
difference, compared to Figure 4.

In Figure 11, first, the dataset is split. A minor percentage of the dataset will be
divided to train the autoencoder in order to use its trained encoder in the classifier by
the fine-tuning method. In the multi-input multi-output autoencoder’s training process,
the data have increased dramatically since a lot of pairs of samples could be created by
a minor percentage of the dataset. Then, considering the rest of the dataset, by 30% of the
dataset for the testing process, different fractions (10% to 50%) of the training dataset have
been used to train the classifier. A five-fold cross-validation in the data splitting process is
used. Then, by using these different fractions of training data, the proposed models have
been trained. Two main approaches have been applied to train the classifier (the classifier
that includes a retrainable encoder and the classifier that includes an untrainable encoder).
In the classifier’s training process, the one that includes an untrainable encoder uses the
trained encoder without training it again. The other approach of training the classifier
(classifier that includes a retrainable encoder) uses the trained encoder and continues to
train the encoder in the classifier with different fractions of the dataset. However, in order
to make sure that the results are not affected by having more trainable parameters, another
approach for training the classifier has been applied. This approach includes an untrained
encoder which makes the classifier have the same number of parameters as the classifier
that includes a retrainable encoder.
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3. Results and Discussion
3.1. Human Activity Recognition Dataset

To show the performance of the model, the dataset of [19] has been used. The CSI
dataset collected by them was Wi-Fi-based. In the research [19], by installing the Nexmon
tool on a Raspberry pi 4GB, they were able to collect and store CSI data according to the
transmitted and received information. They used Raspberry pi 4 and a Tp-link archer
c20 as an access point (AP) in 20 MHz, and a personal computer (PC) is used for traffic
generation by pinging or watching a movie on the internet. Then the AP will reply with
pong packets to the sent pings from the PC. Raspberry pi uses only one pair of transmitters
and receivers, but due to its futuristic capabilities and inexpensiveness, it has become
a suitable tool for data collection. The Nexmon tool installed on Raspberry pi has also
minimized noise by applying filters during data collection, and its configurations were as
follows: Core 1, NSS mask 1, 4000 samples, 20 s. The standard used is also IEEE 802.11ac,
which is used in 20 MHz bandwidth on channel 36. The AP’s MAC address filter was also
set in order to make sure that the Raspberry pi would not connect to another Ap on channel
36. AP and Pi are both located 1m above the ground and they are 3 m away from each
other. In the research [19], 4000 CSI samples were collected in the 20 s. After sampling,
each line represents 5 ms. The parts related to the activity are completely separated and
then the raw CSI is stored in CSV files as matrices with 52 columns (subcarriers) and 600
to 1100 rows (depending on the activity time). Along with the CSI samples, there are
labeled files to separate the lines for each activity. Depending on the presented model, the
number of samples used for training the model is also different. In other words, depending
on the complexity of the work and the selected algorithm, the amount of data required
for HAR is different. The dataset used in this research includes seven activities: walk,
run, sit down, lie down, stand up, bend, and fall. Each activity was performed 20 times
by 3 volunteers of different ages in a room at home. As a result, the dataset includes
420 samples. In this research, only 1.5% of the total data was used for training AE. The data
used for AE training is not used for classifier training. In all methods, initially, 20% of the
original data are separated for the testing (evaluation) process and different percentages
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of the remaining data (from 10% to 50% of 80% of the original data) are used for the
process of model training, including the validation process. More precisely, from the data
which have been separated for the model training, 20% is used for validation, and the
remaining data are used for training. The dataset is available on a GitHub repository
(https://github.com/parisafm/CSI-HAR-Dataset, accessed on 19 February 2023).

3.2. Comparison of Proposed Models

The proposed DL method for classification, along with feature extraction by AE, has
shown better performance compared with [19] when we use a fraction of data. In this
part, the results of the methods explained in Section 2 are presented and compared. The
simulations were performed using the hardware with these specifications: a high-speed
GeForce RTX 3070 GPU with 8 GB of memory, 24 GB RAM, and a CPU that is 11th Gen
Intel(R) Core (TM) i7-11370H. We used CSI’s domain for simulations. It contains vectors
with 52 dimensions (subcarriers). After preprocessing, the dataset is given to the presented
models. In all models, 20% of the total data are used for testing, and different percentages of
the remaining data are used for training the model; 20% of the training data are also selected
for validation in order to be informed about the overfitting. The classifier consists of two
CNN layers with the same channel size depicted in Figure 5: as a method for preventing
possible overfitting, a dropout of 40% is used in the suggested model; one LSTM layer with
a hidden size of 32 and a dropout of 40% are used, as depicted in Figure 5. The dimensions
of the convolutional window in both layers are 5 × 5. We used the Adam optimizer with a
learning rate of 0.0001. Categorical cross entropy has also been used to obtain loss. The
batch size and the number of epochs used in the batch are 64 and 300, respectively.

In the introduced AE, the dimensions of the convolutional window in all layers are
considered to be 10 × 10, and the used activation in all convolutional layers is Relu so
that the fading problem can be partially covered. Dropout and pooling are not used in
the presented AE model. The number of epochs and batch size considered are 50 and 25,
respectively. The optimizer used is also Adam, with a learning rate of 0.0001. The size of
the window used to convert the CSI data into a multidimensional array is also considered
to be 300. The used AE was trained using only 1.5% of the total data, which is a very
small amount. This approach is in agreement with the goal of the research, which is using
fewer data to achieve high performance. The data used to train AE will not be used for the
training of the classifier again. In the three presented methods, AE was used in the classifier
in three different manners, and the results were compared with the classifier without AE. In
this research, five-fold cross-validation was used to provide more logical and non-random
results. While using the five-fold method, the entire training data are not used for model
training. In the suggested process, after dividing data into five parts (folds) and selecting
four parts for training and validation, and one part for evaluation, from 10% up to 50% of
those four parts will be used for further processing. This approach helps using a small size
of training data, while the original process of five-fold validation will be kept intact since
evaluation data at each fold represents a certain part of full data, and merging evaluation
data parts regarding each fold, makes the whole dataset true.

Regarding data with small size (e.g., 10%) and according to Table 1, the classifier
without AE outperforms the other models. However, this percentage of the training
samples is very small (the same as 20%), and therefore, the performances of the models
are not reliable. Therefore, the focus is on the performance accuracy of methods using
50% of the used data. Note that simulations show that using up to 100% of data does not
significantly improve the accuracy. According to Table 1, Model c demonstrates better
performance than Model a in every fraction of data, excluding 10%. This shows using a
trained encoder can perform quite well. Although the number of total parameters varies,
in the case of this encoder, the number of trainable parameters is almost the same as in
Model a (shown in Table 2), but they do not have the same computational cost since the
untrainable encoder layers include their own pretrained parameters, which affect both
offline and online phases in Model c. Regarding the online phase and based on the results

https://github.com/parisafm/CSI-HAR-Dataset
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of Table 3, the little difference between the required time could be ignored due to its
great performance.

Table 1. Average accuracy comparison of proposed models using different percentages of data in
case of using MIMO-AE.

Percentage of Used
Dataset for Training

and Validation

Retrainable
Encoder + Classifier

(Model b)

Untrained
Encoder + Classifier

(Model d)

Untrainable
Encoder + Classifier

(Model c)

Designed Classifier
(without Encoder)

(Model a)

10% 37 20.98 39.79 39.90

20% 68.2 45.99 62.65 57.34

30% 87.27 72.58 75.08 62.94

40% 93.21 81.47 79.3 69.53

50% 94.49 72.77 81.72 73.02

60% 93.5 91.65 83.22 80.02

70% 95.87 81.94 87.27 81

80% 96.75 94.6 87.96 80.5

Table 2. The total number of trained and untrained parameters.

Retrainable
Encoder + Classifier

(Model b)

Untrained
Encoder + Classifier

(Model d)

Untrainable
Encoder + Classifier

(Model c)

Designed Classifier
(without Encoder)

(Model a)

Total parameters 2,227,131 2,227,131 2,227,131 11,659

Trained parameters 2,227,107 2,227,107 12,235 11,635

Untrained Parameters 24 24 2,214,896 24

Table 3. The process time (sec) for retrainable encoder, untrained encoder, and designed classifier
(without encoder) methods.

Percentage of Used Dataset
for Training and Validation

Retrainable
Encoder + Classifier

(Model b) (Train/Test)

Untrainable
Encoder + Classifier

(Model c) (Train/Test)

Designed Classifier
(without Encoder)

(Model a) (Train/Test)

10% 512.27, 7.62 210.22, 7.58 54.05, 0.6

20% 854.6, 1.03 284.14, 1.03 44.0, 0.46

30% 1225.54, 1.23 336.28, 1.03 49.37, 0.52

40% 1593.31, 1.06 431.77, 1.4 59.47, 0.52

50% 1951.65, 1.11 515.32, 1.14 64.04, 0.44

Model b, which shows the best performance in comparison with other models, is
a combination of both methods in Sections 2.5.3 and 2.5.4. In order to justify that its superior
performance is not due to the high computational cost of its training process, Model d
is introduced. The comparison between Models b and d demonstrates that, although
they have equivalent numbers of trainable parameters (Table 2), the performance is quite
different, as shown in Table 1. While Model b achieved better performance (compared to
Model c), it has more trainable parameters, which leads to more computational cost and
more processing time, according to Tables 2 and 3, specifically in the offline phase. Hence,
Model c is more efficient in the case of the training process because of having a lower
computational cost and better performance than Model a. Moreover, as is shown in Table 3,
The time consumption during the online phase remains similar across proposed models,
including Models c, b, and d.
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In comparing Models a and c using 20%, 30%, 40%, and 50% of the data, Model c
showed improvement of 5.31%, 12.14%, 9.77%, and 8.7% respectively. By using only 1.5% of
the total data for training the AE and 50% of the used data for training the classifier, Model
c reached an accuracy of 81.72%. Meanwhile, Model b outperforms Model d when using
20%, 30%, 40%, and 50% of the data, with improvements of 22.21%, 14.69%, 11.74%, and
21.72%, respectively. The best performance seen in this experiment was achieved by Model
b with 94.49% accuracy while using 50% of the data. The experimental range of data used
in the research was 10% up to 80%, but after reaching 50%, no significant improvement
was observed. Therefore, the research aims to use a range of 10% up to 50% of the used
data. For example, by using 10% of the data, Model b achieved 37% accuracy, and by using
30% and 50%, 87.27% and 94.49%, respectively. However, beyond 60% up to 100%, the
improvement was negligible, with accuracies between 96.8% and 97.5%. Compared to the
basic classifier, the biggest improvements have been achieved in the case of using 30% of
training data, which are 12.14% and 24.33%, regarding untrainable encoder and retrainable
encoder, respectively.

As is shown in Figure 12, using 50% of the used data, the model that includes a re-
trainable encoder outperforms other training approaches. Although the model includes an
untrainable encoder, is known as an efficient approach for training, and is second place
in accuracy still, its result is way better than the designed classifier (without the encoder).
The confusion matrices presented in Figure 13 have also been used to show the accuracy of
four models that were trained with 50% of the used data (including 80% of the total dataset
for training and validation) and tested with 20% of the total data and detailed recognition
results of each class are presented using confusion matrices in Figure 13. Based on these
results, for the activities of sit down and lie down, due to the similar start position and
different end of the activity, we expected difficulty in distinguishing these two activities
from each other using a small part of data for training the model. However, Model b
recognizes the differences between these two activities with high accuracy. To justify that
this result is not reached just because of the number of total parameters, a comparison
between Models b and d is made. In Model b, out of 20% of the data that were separated
for the test, just 1.65% of the sit-down and lie-down data were not distinguished from
each other; while in Model d, 16.35% of the test data for these two were wrongly detected.
According to matrices, bend, sit down, and lie down activities are detected impressively
(100%, 98%, and 98% accuracy, respectively), and detecting run activity is performed with
less accuracy (87%). Furthermore, it is crucial to detect falls in this research, as it is relevant
to caring for the elderly. According to the confusion matrices of method in Section 2.5.2,
this activity has been detected with 96% accuracy using 50% of the used data, which is
more than the method in Section 2.5.4. The accuracy of fall events has made this research
practical using only a small amount of data.

Due to their fast physical changes in small windows of time, discriminating between
running and standing up could be a challenge. As shown in matrices b, 3.35% of the test
data could not be discriminated, and as shown in matrices d, 14.95% of the test data for
these two activities has not been detected. Therefore, it seems that method in Section 2.5.2
is performed better not just because of the number of parameters but also because the used
encoder was trained before. Moreover, for the lie-down and sit-down activities, Model c
could not distinguish 20% of these activities in test data and in Model a, there is a 31%
error rate. For standing up and running activities, Model c could not detect 8.75% of these
activities in test data, and Model a is not able to detect 24% of these activities. As a result,
using a pretrained encoder could improve our classifier in order to detect activities. Finally,
according to Figure 13, Model b, compared with Model c could achieve performed results
in detecting all seven activities.
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Two of the proposed methods show the best results compared with others. Therefore,
in order to show the performances with different parameters, R2 score, F1 score, precision,
and recall have been illustrated in Table 4. All results are based on one-time simulations.

Table 4. A table of methods including an untrainable encoder and retrainable encoder’s R2 score,
F1 score, precision, and recall.

Percentage of Used
Dataset for Training

and Validation

R2 Score
(Retrainable/Untrainable)

F1 Score
(Retrainable/Untrainable)

Precision
(Retrainable/Untrainable)

Recall
(Retrainable/Untrainable)

10% 0.1, -0.42 0.33, 0.33 49.7, 41.74 38.08, 38.08

20% 0.62, 0.23 0.65, 0.59 71.12, 66.25 65.84, 61.91

30% 0.84, 0.48 0.88, 0.68 88.43, 68.82 88.45, 68.30

40% 0.89, 0.7 0.92, 0.8 92.33, 80.12 92.13, 80.58

50% 0.9, 0.69 0.94, 0.8 94.6, 82.19 94.59, 81.08

In early trials, simple AEs were considered a competitor for MIMO-AE. However,
since the use of fewer data samples is viewed as an advantage, in the case of simple AE,
using 1.5% of the data only provides 179 samples for the training process, while comparing
to the same situation about MIMO-AE, where the training process has access to 32,041
pairs of samples (179 × 179). This circumstance led to simple AEs, in the best scenario, not
properly being trained and, in some scenarios, reaching the overfitting point. To clarify
the full aspects of using simple AE, the results of using this AE in the training process
of the suggested classifier are presented in Table 5. The structure of this AE is similar to
Figure 2, while the only difference is the number of inputs and outputs. As results show,
compared to the suggested MIMO-AE, while in the trainable scenario, there is only a 3%
difference between best results (in the case of 50% of used data), in the untrainable scenario,
this difference increases up to 15%. Therefore, not only this AE fails to reach a similar
performance in the case of using it in the trainable model, but in the case of using it as
an untrainable model, results are significantly weaker compared to MIMO-AE, and this
keeps the complete model from reaching its full potential. Therefore, despite its need for
more computational cost, final results justify the training of MIMO-AE since its results are
superior compared to simple AEs.

Table 5. Average accuracy comparison of proposed models using different percentages of data, in the
case of simple AE versus MIMO-AE.

Percentage of Used
Dataset for Training

and Validation

Retrainable
Encoder + Classifier

(Simple AE)

Untrainable
Encoder + Classifier

(Simple AE)

Retrainable
Encoder + Classifier

(MIMO-AE)

Untrainable
Encoder + Classifier

(MIMO-AE)

10% 35.87 31.7 37 39.79

20% 64.37 48.16 68.2 62.65

30% 84.52 53.56 87.27 75.08

40% 91.4 52.09 93.21 79.3

50% 92.32 66.34 94.49 81.72

60% 91.56 68.3 93.5 83.22

70% 93.33 65.6 95.87 87.27

80% 94.08 77.89 96.75 87.96

Another examined AE structure in this study for learning latent representation is
Variational Autoencoder (VAE). In this autoencoder, instead of encoding an input as a
single point, we encode it as a distribution over the latent space [32]. Early simulations
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showed that this structure could not be trained at all in the case of two-input two-output
mode, and in the single-input single-output mode during training, it demonstrates a
completely unfavorable behavior in the amount of error function.

In this research, despite the imbalance in the samples of each class, the solving class
imbalance methods have not been used. The Synthetic Minority Oversampling (SMOTE)
technique leads to balance classes. SMOTE is a statical method that can increase the number
of the samples of the classes by generating from existing minority samples. In the first steps
of this research, the use of the SMOTE technique [33] was considered a comprehensive and
strong solution to solve the class imbalance problem; however, the results demonstrated
that there is no need to use this method. The reason for not using this method is due
to the fact that in the obtained results, none of the complications of the imbalance class
were observed.

3.3. Comparing with Others

After considering the method in Section 2.5.2 as the named method presented in this
research, it has been compared with the results of [19] as a benchmark. Considering the
various challenges of recording HAR-related data, it is more favorable to record a small
number of samples, with regard to special conditions of one study, and adjust available data
on the web to use them alongside newly recorded samples. Accordingly, the performance
of Model b, with respect to the fraction of used data for the training and validation process,
has been compared with [19].

In [19], the data considered for the test include 20% of the total data. Then, from
the remaining 80% of the data for training and validation, 10% to 50% is selected. As
shown in Table 6, regarding 10% of used data, the proposed method has lower accuracy.
Since the percentage of used data for training and validation is very small, the obtained
results are not reliable. In 20% of the used data, all models performed almost the same.
In 30% up to 50% of the used data, the accuracy of the proposed model has improved
significantly. To check the performance of the model presented by [19] in detecting each
activity, the confusion matrix has been used. Two methods from [19] have been selected
for comparison with the best method presented in this research. One of these methods
was classification using 2D-CNN, which had the highest accuracy among the rest of the
methods presented in [19], and the other was classification using LSTM, which is expected
to perform well for time series data. According to Table 6, the proposed model in this
research, in the case of 30% of used data, has an 18.89% improvement compared to 2D-CNN
and 9.01% improvement compared to LSTM. In 40% of the used data, 22.96% and 18.57%
improvements have been shown using the proposed method in this research compared
to 2D-CNN and LSTM, respectively. In 50% of the used data, using the proposed model
instead of 2D-CNN and LSTM for detection has improved performance by 21.94% and
17.77%, respectively.

Table 6. Comparing average accuracy of classifier included by the retrainable encoder with LSTM
and 2D-CNN-based classifiers from [19] using different percentages of data.

Percentage of Used Dataset for Training and Validation LSTM [19] 2D-CNN [19] Retrainable Encoder + Classifier
(Model b)

10% 64.76 55.54 37
20% 68.27 62.23 68.2
30% 78.26 68.38 87.27
40% 74.64 70.25 93.21
50% 76.72 72.55 94.49

Therefore, when the entire available data is not used for training, the presented models
in [19] do not show remarkable performance compared to the proposed method in this
research. This comparison can be made in detail strictly in the confusion matrix (Figure 14).
The performance accuracy of the presented matrices (Figure 14) is only based on using
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50% of the used data for model training. Testing the models and obtaining accuracies have
also been done using only 20% of the total data. Since walking and running share great
similarities, regarding people’s physical behavior, we compare the activity of walking and
running using the confusion matrix. In Model b, 2.2% of the samples of these two activities
are misdiagnosed. While in the 2D-CNN and LSTM models presented in [19], 21.5% and
13.5% of the samples of these two activities are wrongly recognized, respectively. Both sit-
down and lie-down activities, which had the same start position, have been perused in the
confusion matrices (Figure 14). Accordingly, in the Model b presented in this research, only
1.65% of the test samples were not distinguished from each other, and in the 2D_CNN and
LSTM models of [19], 3.05% and 3.83% of the samples were not distinguishable, respectively.
As a result, these two activities can be detected from each other to a good extent in all three
methods. However, based on the method of Section 2.5.2, the accuracy of discriminating
sit-down and lie-down activity samples is generally higher than similar results in [19]. In
this research, the accuracy obtained from both sit-down and lie-down was 98%, respectively,
while in [19] research, the accuracy obtained from them was 67% and 73% in 2D-CNN,
and 74% and 87% in LSTM. In addition, the accuracy for bend activity in our proposed
method is 100%, but in other methods in [19], the accuracy is quite lower. For the most
part, the method presented in this research becomes particularly important due to the lack
of human-centered data because method of Section 2.5.2 has achieved 94.49% accuracy by
using only 50% of the used data (which is 80% of the total dataset). Therefore, the extraction
of similarities by the trained encoder in MIMO-AE using only 1.5% of total data and the
fine-tuning process has proven to become quite effective.
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Furthermore, in [19], after converting CSI data into image-like arrays and classification
using 2D-CNN, despite the use of the entire data, the accuracy of the model performance
reached 95% (the best result among the rest of the [19] methods), while we have achieved
94.49% accuracy by using the retrainable encoder by only 50% of used CSI data.

4. Conclusions

This study aimed to train effective HAR models while focusing on using a limited
number of samples. To do so, the idea of transfer learning has been utilized. By doing so,
prior knowledge of the pretrained encoder, which is part of a larger two-input two-output
autoencoder, is used as a subnetwork of designed classifiers. This idea is executed in
three different manners, using the encoder as a retrainable, untrainable, and untrained
network. The results of these three classifiers have been compared with counterparts in
a fair condition. The final results demonstrated that in order to present a model with
high evaluation accuracy, it is not necessary to provide the training process with a huge
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chunk of data, and it is more efficient to extract features and information from them with
a more efficient process. Regardless of aiming for higher accuracy or a more beneficial
training process, MIMO-AE provides a noticeable improvement in the performance of the
classifier. Compared to the basic classifier, the improvements that have been achieved
in the case of using 50% of training data are 8.7% and 21.47%, regarding the untrainable
encoder and retrainable encoder, respectively. They achieved 81.72% and 94.49% accuracy.
While this study uses CSI as its main representation of data, for future work, it is possible
to use extra steps, such as wavelet and spectrogram transforms, for better frequential
representation. Moreover, the structure of multi-input multi-output autoencoders can be
redesigned using other possible options. In addition, a better network could be introduced
for the autoencoder in order to achieve better performance while using an untrainable
encoder in the classifier.
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