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ABSTRACT 

The advancement of meteorological stations is continuously supported by the advanced 

technologies and solutions toward achieving the most accurate and reliable data while 

maintaining cost efficiency. Governments and businesses are leveraging the potentials of 

Internet of Things (IoT) platforms to provide hyperlocal and highly sophisticated compact 

meteorological stations for analysing real-time weather conditions and forecasts with 

unprecedented accuracy. In this research, we developed a stable, low-cost meteorological 

system capable of recording weather parameters, powered with a low-cost and long-range 

data transfer technology to provide multiple nodes access to the internet through the 

LoRaWAN network server. Additionally, we developed a GUI application for visualising 

meteorological systems’ data on a mobile app to the users in the form of numbers, charts, and 

graphs. 

KEYWORDS 
LoRaWAN, LPWAN, Meteorological Station, Embedded Technologies 

1. Introduction 

The world of environmental monitoring applications such as weather monitoring, smart city, 

and smart agriculture is continuously evolving with advance technologies and solutions to 

achieve the most accurate data readings, using cost-effective methods. A meteorological 

station is a facility hosted either on land or sea, containing instruments and equipment used 

for measuring the atmospheric and environmental parameters. Advanced climatological 

analyses help in developing a deeper understanding of hydro-meteorological systems and 

reveal trends over time that justified environmental change (Zare-Shehneh, 2023). 

 

Fundamentally, the composition of a meteorological station comprises of machines, sensors, 

data storage, wireless communications, batteries, solar collectors, cellular or satellite 

communication technology. This hardware facilitates recording and transmission of 

meteorological data including air, wind speed, temperature, rainfall, atmospheric pressure, 

wind speed/direction, humidity; cloud height, light levels and visibility. The design of such 

system vary from expensive satellite imagery to local low-cost IoT-based systems. 

Regardless of the system design, the main expectation from a meteorological station is 

collecting data on different atmospheric conditions. In most common low-cost Internet of 

Things meteorological stations, the Arduino MCU or Raspberry Pi performs as the 

backbone. These IoT devices are fundamentally different in some way - the Arduino MCU 

only performs the specific programmed tasks, while the Raspberry Pi has the 
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multifunctional capabilities of a minicomputer. Additional advantage of using an Arduino 

MCU or a Raspberry Pi is the sensors availability and compatibility. The extensive work 

accomplished with the implementation of these devices indicates that they have had 

multiple updates and refactors, proving them to be low-cost and reliable for a system 

collecting meteorological data (León, 2017) . The meteorological system is sought after by 

specific industries, such as agriculture and astronomy; to provide them with a guide on yield 

or work quality improvements, accurate and better weather forecasting. Other application 

areas for a meteorological system include tourism and transport, atmospheric disturbance 

detection, weather phenomenon forecasting by providing a forecast for evacuation planning 

or adaptation (Chen, 2023). 

 

To obtain the most accurate and real-time meteorological data, we deploy local IoT stations, 

which is relatively new concept, where sensors and hardware is further interconnected with 

the digital world (Leon, 2016). By assembling micro-controllers, sensors, and networking 

technologies, IoT systems can be developed for industrial use and smart cities. Networking 

technology is essential in IoT systems and should be selected accordingly to the 

communication requirements. When building meteorological systems, there is a wide range 

of connectivity options: WiFi, Bluetooth, Zigbee, SigFox, NB-IoT, and LoRaWAN. 

LPWAN networking outperforms the higher frequency WiFi or Bluetooth, especially in the 

context of a low-cost IoT based meteorological station, where power consumption must be 

maintained at low levels. A recent attractive option is LoRa, an acronym for long-range, it 

operates power-efficiently on a radio frequency range, specifically designed for low-power 

systems which require long-range connectivity while maintaining a low-cost status 

(Devalal, 2018). (Murdyantoro, 2019) LoRa operates on the open ISM spectrum, capable of 

establishing connection up to 10km; its low power consumption allows for the battery to 

last for up to 10 years, while sustaining noise rates of under 20dB during demodulation 

(Murdyantoro, 2019). These specifications classify LoRa as an attractive IoT networking 

solution. Although, LoRa is not free from any disadvantages - long-range applications 

utilising LoRa can experience packet loss (Wang, 2017).  

 

Our contributions in this paper are as follows: 

• We developed a stable low-cost meteorological system capable of recording weather 

parameters. The developed system comprises of MCUs, communication units and 

sensors, which record the temperature, humidity, pressure, wind data and air quality. 

• We powered the developed meteorological system with a low cost and long-range data 

transfer technology to provide multiple nodes access to the internet through the 

LoRaWAN network server - The Things Network (TTN). 

• We utilized ThingSpeak IoT analytics to collect, organise and analyse the sensors’ data, 

by applying custom algorithms. 

• We developed a GUI web application for visualising the collected data from the 

developed meteorological systems (in a simple format of numbers, charts and graphs). 

 

2. Related Work 

The meteorological system uses weather sensors, power supplies, data collectors, and cloud 

platforms to measure, transmit, record, and analyse weather data such as wind, rain, snow, 

sun radiation, rain, and so on. The recorded weather is analysed to produce accurate results 

and forecasts, which will benefit and empower multiple industries by providing current, 
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past, and future meteorological conditions, allowing them to prepare and adapt accordingly. 

One of the industries most affected by micro-scale meteorology systems is agriculture, 

where balance must be maintained between variables like temperature or soil moisture to 

produce the optimum crop yield. Similarly, astronomers rely on sky transparency forecasts 

to select suitable times for observation. An application of this sort requires a meteorological 

system capable of monitoring at a larger spatial scale compared to agricultural systems 

(Muller, 2013), (Zare-Shehneh, 2023). One of the most affected industries by microscale 

meteorology systems is agriculture, where balance must be up-kept between variables like 

temperature or soil moisture, to produce the optimum crop yield. Similarly, astronomers 

rely on sky transparency forecasts to select suitable times for observation. An application of 

this sort requires a meteorological system capable of monitoring at a larger spatial scale 

(Muller, 2013) . 

2.1. Meteorological Stations 

The weather nature can be observed using sensors like the BME280 or DHT-11/22 (Adi, 

2020), which collect data on temperature, pressure, humidity, wind speed, and more; 

achieving accurate and tailored local results. Some more advanced systems collect data on 

wind speed and rainfall rate, using anemometers and rain gauges. The low energy Arduino 

MCU based on an Atmel 8-bit AVR microcontroller is capable of operating as the base of a 

meteorological station (Louis, 2016) which commands the multiple connected sensors. 

Sensors are efficient devices used for data collection by monitoring physical conditions, 

often installed on modules or a HATs board (Krishnamurthi, 2015). As an alternative, a 

cost-effective device like the SparkFun weather shield can create competition in the sensory 

market (Mathur, 2021)); the developer might also favour an open-source atmospheric 

model, which uses satellite imagery to provide comparable results at a lower cost. 

 

Confusion of scales can be experienced during the early project stages, where the 

implementation and network methods are mismatched with the application objectives. This 

poses a risk of over-paying for redundant monitoring coverage, or the enhancement of an 

under-performing system. Agriculture’s requirements for atmospheric observation are 

considerably more local compared to other industries, to the point where network-less 

solutions requiring manual data extraction can be sufficient (Muller, 2013). An Internet of 

Things (IoT) solution for agro-meteorological observation is proposed, it’s formed of a 

Wireless Sensor Network (WSN) consisting of base stations and child nodes. The node 

structure includes a Raspberry Pi with a set of connected meteorological sensors, using 

WiFi for communication with the base stations (Sawant, 2017). 

 

Another study on IoT environment monitoring in the Antarctic takes a different approach, 

concentrating on the wireless communication range and power efficiency. This is achieved 

by deploying a Raspberry Pi module with the implementation of LoRa. Functioning on the 

434/868 MHz channels, the Sub-GHz networking technology can take advantage of 

Antarctica’s flatness and maximise its range with the open field of view. (Gaelens, 2017) 

LoRa’s properties like dynamic payload lengths, convenient data/packet rates, and its low-

cost availability eliminate other options of Sub-GHz technology in this study, like Sigfox or 

LTE-M. A remote outdoor IoT system requires an increase of sensors and range while 

coexisting with an implementation design that would maintain low power consumption and 

hardware costs (Chandu, 2021). The experiment produced a valuable low-cost networking 
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solution for environmental condition observation but noted that it is not suitable for long-

term activity due to the limitations of Raspberry Pi, possible malfunctioning in Antarctic’s 

extreme cold conditions of -40 degrees centigrade. 

2.1.1. Wind & Rain Monitoring 

Rainfall gauges are cost-effective tools for rain data observation and recording, or just 

functioning to provide secondary results. Certain users who may not have access to reliable 

satellite imagery, or just prefer to acquire more accurate local data, utilise rainfall gauges in 

their meteorological systems. Research indicates that rain gauges are the most common 

devices used to measure the rainfall rate in specific locations (Pardo-Igúzquiza, 1998). A 

tipping bucket with a sensor is another local and digital option for rain data collection. The 

bucket fills up with rainwater and eventually tips, while the sensor captures the bucket tip 

timings (Warnakulasooriya, 2018). Using the acquired timings, and processing it through an 

equation, gives us an output of the average rainfall rate. Unfortunately, the random nature of 

rainfall reveals the algorithm’s flaws, where it misses the low and high phases of rainfall 

(D'Amico, 2013), due to heavy or light rainfall. Occasionally, other systematic errors occur 

with rainfall meters, including incorrect gauge calibration, wind-induced under-catch, or 

wetting–evaporation losses (Ciach, 2003). New algorithms are developed and proposed 

regularly to improve the readings and eliminate flaws in the classic algorithm. 

 

2.2. Internet of Things & LPWAN 

The focus on cost mitigation in IoT meteorological stations must be maintained without 

major loss in networking performance. This has influenced the adaptation of Low Power 

Wide Area Network (LPWAN) solutions, which offer communication using Sub-GHz; a 

communication technology that operates on the unlicensed ISM bands under 1 Ghz (eg. 

315, 433, 902, and 928Mhz); these are frequently used in related research in the fields of 

science, medicine, and manufacturing. Naturally these channels provide increased network 

area coverage due to their lower frequencies, compared to the wireless standard of 2.4Ghz 

(Frenzel 2013). The demand for developing IoT systems featuring low cost, low power and 

long-range connectivity influences the implementation of lower ISM band devices such as 

Lora, SigFox, or BLE (Sanchez-Iborra, 2016). 

 

2.2.1. LoRaWAN 

LoRa alliance has provided a solution to meet the industrial demand for scalable IoT 

connectivity (Alliance, 2019). It is an organisation focused on the development of 

LoRaWAN, made up of multiple institutions like Semtech, IBM, Actility and others. 

Operating on Semtech’s chirp spread spectrum (CSS) (Sanchez-Iborra, 2016).. LoRaWAN 

converts the ordinary LoRa mesh network into a star network with the implementation of a 

central gateway. This network architecture allows for the connection of an extended number 

of nodes, while providing sophisticated authorisation. 

 

LoRaWAN functions on the unlicensed Sub-GHz ISM bands, which are different depending 

on the geographical location, for example in Europe or USA it operates respectively on the 

frequencies of 868MHz and 915MHz. The low Sub-GHz frequency provides a 

receptiveness of up to 10km, conditional on the quality of the antenna; meanwhile it 

maintains configurable data rates of up to 300kbps (Di Serio, 2017). Additionally, 
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LoRaWAN’s demodulation and multiple channels offer the option to scale the system in the 

future (Murdyantoro, 2019). Supported with the extra security and organisation of The 

Things Network and Thingspeak   that provide a complete IoT network solution (Maureira, 

2011). 

2.2.2. LoRaWAN Security 

LoRaWAN packets are AES128 encrypted, include a frame counter, and use two unique 

keys to establish a secure connection with The Things Network (TTN). AppSKey and 

NwksKey ensure that only authorised devices can communicate with the server. The 

AppSKey is used to encrypt the whole payload, including the frame counter. Whilst the 

DevAddr is signed by the NwkSkey, providing verification of integrity when validated by 

the network’s gateway (Blenn, 2017). 

3. Systems Components and Design 

Certain requirements must be maintained when constructing an outdoor meteorological 

station, to ensure that it can capture the targeted parameters. First, the station must be 

suitable for all weather conditions, this can be achieved with an outdoor electronics 

enclosure consisting of a see-through plastic front, enabling observation of the light 

intensity. Second, for proper insulation, the antenna and power supply must be wired from 

outside of the box, with cable glands strategically placed over the drilled holes in the frame. 

3.1. Meteorological Sensors 

3.1.1. Temperature, Humidity, and Pressure 

The DHT-11/22 is a popular temperature sensor for low-cost meteorological systems. It 

observes and records the ambient temperature change in a decimal value, which is then 

further converted into Degree Celsius or Fahrenheit by the MCU. We used the DHT-11/22 

sensor to collect Temperature, Humidity, and Pressure data. The sensor’s ability to capture 

real-time temperature and relative humidity in the surroundings (Pasha, 2016),  provides the 

necessary ratios and variables to calculate the dew point using equation 1, here Td is dew 

point temperature (in degrees Celsius), T is the observed temperature (in degrees Celsius), 

and RH is relative humidity (in percent). This indicates the amount of water vapor needed to 

achieve an increase in saturation and temperature. 

 Td = T − ((100 − RH)/5 (1) 

To approximate the heat index in degrees Celsius, within ± 1.3 °F (0.7 °C), we applied 

equation (2) (Anderson, 2013) 

 HI = HI1 + HI2 (2) 

Where HI = heat index (in degrees Celsius) 

 HI1 = c1 + c2T + c3R + c4TR + c5T2 + c6R2 (3) 
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 HI2 = c7T2R2 + c8TR2 + c9T2R2 (4) 

T = ambient dry-bulb temperature (in degrees Celsius)  

R = relative humidity (percentage value between 0 and 100). 

 

 

Figure 1. Meteorological Sensors 

 

The following coefficients determine the heat index, which tells us the level of heat 

sensitivity on human skin in the surroundings. 

 
Table 1. Heat Index coefficients 

Coefficients Values 

c1 -8.78469475556 

c2 1.61139411 

c2 1.61139411 

c3 2.33854883889 

c4 -0.14611605 

c5 -0.012308094 

c6 -0.0164248277778 

c7 0.002211732 

c8 -0.00072546 

c9 -0.000003582 

 



7 

An alternative to the DHT temperature sensor is the BME280 sensor, which is similar to the 

DHT-11/22, performs multi-sensory functions; it can collect data on humidity, temperature, 

in addition to recording atmospheric pressure  (Adi, 2020). The BME280 sensor provides 

additional data for more advanced weather predictions and calculations, while preserving 

cost efficiency and not requiring any extra sensory hardware. 

3.1.2. Wind Speed and Rainfall Rate Sensors 

Wind speed is a fundamental atmospheric parameter caused by air moving from high to low 

pressure, usually as a result of changes in temperature. The wind affects weather 

forecasting, maritime operations, construction projects, metabolism rate of many plant 

species, and countless other implications. We used Anemometers to record the wind speed, 

which was constructed in a fan-like shape to capture wind flow velocity. Usually, cups or 

lightweight objects are attached to the fan to increase the surface area. The increase in 

surface area on the blades provides more accurate readings of wind speed and rainfall rate 

(Warnakulasooriya, 2018). 

  (5) 

A rotor is placed onto a heavy steel base to ensure that the device remains static, wings 

containing cups are installed onto the rotor. The cups are installed to ensure that all of the 

air from the wind is captured. Inside the device, a black and white pattern is embedded, with 

an optical sensor connected over it. While the device spins due to wind gusts, the optical 

sensor will decide whether the anemometer is at a black or white position. Voltage returned 

to the Arduino MCU is dependent on the reflected shade. Recording the changes between 

white and black can tell us the speed of the fan; the more frequently the voltage switches, 

the faster the fan is spinning (Shaout, 2014). 

3.1.3. MQ-135 Sensor 

For collecting air quality data, an MQ-135 sensor is installed using an analog pin on the 

Arduino MCU. It belongs to the MQ series sensor group, which consists of the most 

inexpensive and common gas sensors available. MQ-135 is designed for air quality 

measurements, and is capable of collecting data on CO2, CO, NH3, NOx, Alcohol, 

Benzene, and Smoke levels in the air (Components 101 2021). 

 

In the function setup(), the MQ-135 sensor is initialised and calibrated using the calibrate() 

function. The readings are updated at every cycle with the update() function, and added to 

the mydata packet for TTN. During calibration, the sensor resistance in fresh air is 

calculated and stored as Ro. All of the following sensor resistance Rs readings are calculated 

using the equation 6. 

  (6) 

The ratio of the acquired values Rs/Ro is compared to the figure 2, which gives a PPM 

result for each gas at that particular resistance ratio. 
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3.2. Systems’ Electronics Components 

3.2.1. SparkFun Weather Tools 

The majority of the sensors are contained on a single weather shield made by Sparkfun 

(Mathur, 2021). This shield is a viable solution for the collection of standard weather 

readings. Equipped with its built-in Si7021 temperature and humidity sensor, MPL3115A2 

barometric pressure sensors, and ALS-PT19 light sensor, it satisfies the standard 

requirements for our weather station’s data collection (Mathur, 2021) . Additionally, via the 

RJ-11 connectors, a Sparkfun weather meter kit has been installed. The kit includes an 

anemometer, wind vane, and a rain gauge (Kaewwongsri, 2020). The anemometer sends a 

signal to the MCU after each revolution, which calculates the wind velocity. Whereas the 

wind vane reports its angle to the MCU, which is indicated by the device’s resistance. The 

final meteorological component is an electronic rain gauge, which gathers water until 0.011 

inches full, it then tips and transmits a signal to the MCU. 

 

 

 

Figure 2. MQ-135 Typical Sensitivity Graph (Components 101 2021) 
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Figure 3. Installed SparkFun weather shield 

3.2.2. Dragino LoRaWAN Gateway 

We set up the Dragino LoRaWAN LPS8 (Dumitru, 2023) , an 8-channel gateway that 

enables communication between LoRa and the internet, specifically to the TTN application 

(The Things Network). To prevent exponential signal loss, we installed the LoRa devices so 

that a line of sight is provided without buildings obstruction. This is necessary to keep 

LoRa’s long distance communication stable. 

 

Figure 4. Dragino LoRaWAN LPS8 Gateway & Dragino LoRa Shield v1.4 
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3.2.3. Dragino LoRa Shield 

To enable LoRa communication, we install a Dragino LoRa shield (Dinev, 2023) onto the 

Arduino MCU, as depicted on the right side of Figure 4. This LoRa shield is responsible for 

the transmission of sensor data to the gateway. Before any data transmission, The Thing’s 

Network (TTN) establish authorisation between the gateway and the end-node, by utilising 

a series of keys. Each unique LoRa device receives a EUI and App Key. These two values, 

together with the application EUI are used for authorisation between the meteorological 

station and TTN. 

3.3. System Design 

To give an overview of the system, a Sparkfun weather shield is slotted onto a Arduino 

MCU and paired with an air quality sensor. Each meteorological station contains all the 

sensors required for the collection of standard weather data. 

Regarding networking, a LoRaWAN gateway is deployed, and the meteorological nodes are 

equipped with LoRa HATs. This enables communication between end nodes and the 

gateway, while taking advantage of a star shaped network topology. The collected data is 

forwarded to the TTN (The Things Network) which integrates Thingspeak. Finally, the API 

is utilised in a flask web application to obtain real time data updates from the cloud (Aslam, 

Mohammed, & Lokhande, 2015). 

A system design is illustrated in Figure 5, using LoRa the end devices transmit payloads to 

the authorised gateway. This LoRaWAN gateway receives the packet from the 

meteorological station and forwards it to the LoRaWAN network server (LNS). 

 

3.3.1. The Things Network 

The Things Network (TTN) is a crowd funded LoRaWAN network service, enabling users 

to connect their low energy devices for free. This IoT network consists of a mass collection 

of gateways, operating as central entities in their private star networks. TTN provides a 

secure and sustainable long-term connection and preserves the data feed’s status (Barro, 

2019). UK’s flood network system, containing multiple sensors, utilises this technology to 

connect and communicate with the cloud (Blenn, 2017). Connecting the Dragino LPS8 

gateway with TTN, provides a real-time display of the uplink and downlink payloads. Each 

meteorological station is separated into its own application which connects our single LPS8 

gateway. The station’s data stream is sorted into its own application on the cloud side of the 

system, integrating Thingspeak to forward our processed data for further analysis and 

visualisation. 

3.3.2. Thingspeak 

Thingspeak is an open-source application for storing and retrieving data over HTTP and 

MQTT, including an implementation of MATLAB for analytics and visualisations. We 

adopt Thingspeak’s API to remotely retrieve our stored sensor data in real-time (Maureira, 

2011). The communication method to the API is based on HTTP requests and authorisation 

keys (read/write). Data is stored inside fields, and up to 8 of these are available inside a 

channel. Read and write requests directly communicate with Thingspeak channels, which 

are identifiable by their unique channel ID. Additional metadata like the description, 
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latitude, longitude, and elevation is stored inside channels (Maureira, 2011). Once a channel 

is setup, MATLAB processes and visualises the data by default, but allows for further 

customisation (Pasha, 2016). We applied ThingSpeak’s MATLAB functions for data 

visualisation and computation. MATLAB is by default integrated with Thingspeak, 

providing a visualisation using standard algorithms applied on field’s data. This is a 

preferred back-end environment by engineers, due to its simple and interactive system 

which includes numeric computations, scientific visualisations and symbolic calculations 

(Valentine, 2022).  providing a comprehensive look into our gathered readings. 

 

3.4. Software 

The Arduino IDE is used to write and upload C/C++ programs to the Arduino Uno MCU. 

Additionally, the application can upload programs to cross-platform devices; therefore, not 

limiting itself to the Arduino itself. Software responsible for calibrating and gathering 

sensor data, as well as establishing LoRa connectivity is written and compiled onto the end 

devices in Figure 5. Due to the program’s scale, memory issues with the Arduino are 

possible. To ensure the program’s memory requirements are satisfied, the Arduino Nano 

MCU or other smaller memory models of the Arduino should be avoided (unless they 

contain a minimum of 2KB SRAM). 

 

Figure 5. System Design 
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The subsequent content of this section contains references to dependencies involved in the 2 

meteorological station programs, responsible for handling events like sensor management or 

calibration, which can be viewed in the top section of the meteorological station code. 

3.4.1. Meteorological Sensors 

The library SoftwareSerial.h enables serial communication through the MCU’s additional 

digital pins. Since Arduino only supports serial communication via digital pin 0 and pin 1, 

enabling extra serial communication helps to support LoRa requirements. To improve the 

read/write with I2C devices, the Wire.h library is included. The next three libraries, 

MQUnifiedsensor.h, SparkFunMPL3115A2.h, and SparkFunSi7021BreakoutLibrary.h are 

responsible for interacting with the weather shield and air quality sensors (MQ-135). SPI.h 

allows for quick communication with Arduino’s peripheral devices. Finally, the library 

lmic.h, developed by IBM, empowers the Dragino LoRa with the ability to connect between 

LoRaWAN networks, using either ABP or OTAA authorisation. 

 

On every cycle of the program, the meteorological data is updated by calling the function 

dataUpdate()  in program 2. This function gathers new readings from each sensor and 

organises it into an array, called mydata, ready to be uploaded via LoRa to TTN. Two 

objects are declared at the beginning of the program, called MPL3115A2 and Weather; they 

are responsible for the communication and collection of readings from the pressure, 

temperature, humidity, and light sensors. 

 

An algorithm for recording wind and rain data takes averages readings from the Sparkfun 

anemmometer, wind vane, and rain gauge sensors. The natural volatility of this data creates 

anomalies and inaccurate results. As a resolution, readings are constantly recorded, and only 

the mean value over time is transmitted to TTN. The sensor interacts with the Arduino 

MCU by sending interrupts (rainIRQ() and wspeedIRQ()), which are triggered by the 

anemometer making a certain number of revolutions. Whereas the rain gauge interrupt is 

triggered by the magnet registering a tip in the bucket. Two separate loops are engaged in 

the program, one collects sensor data, while the other controls the LoRa module. 

Unfortunately, these loops can’t be merged due to strict LoRa timings, which strains the 

MCU’s memory efficiency. 

 

3.4.2. LoRa Technology 

Dragino LoRa shields are implemented into our system, enabling LoRa communication. 

With the networking hardware assembled and installed, the program provides instructions 

for handling the LoRa module. The lmic.h library is used to configure and transmit LoRa 

data. The configuration begins inside the setup() function, where os-init() is declared. 

Following that, the next lines of code attempt to create a session using unique TTN keys 

(DEVADDR, nwkskey, appskey). As previously mentioned, these three variables are critical 

for authorising the OTAA connection. They are declared in the code’s header as static 

constants, which stores the keys in hexadecimal format. With the session now active, the 

next section begins the TTN gateway channel configuration. By default, the gateway will 

not take advantage of all 8 channels, which can affect the quality of our connection. Using 

the procedure LMIC-setupChannel the existing frequency range is expanded to use all of the 

available channels simultaneously. Following the configuration, the do-send(&sendjob) 

function is declared. This initiates a single repetition of the loop, collecting sensor data and 
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attempting to transmit it to TTN. Next the onEvent(ev-t ev) function is initiated, which 

schedules the do-send() function whenever it receives EV-TXCOMPLETE status. The code 

is also capable of handling multiple other status responses. 

3.4.3. The Things Network 

TTN hosts a collection of LoRaWAN gateways by the public, which enables smart devices, 

like meteorological stations, to create a low powered connection to the internet (Blenn, 

2017) . For TTN to understand the received data from our stations, the program 2 is written. 

The decoder() function is responsible for receiving and converting the data into appropriate 

data types. It then further filters it into specific field variables and forwards them to our 

Thingspeak application. 

3.4.4. Web Application 

To present the data feed in a graphical user interface (GUI), we developed a web 

application, as shown in Figure 6. The back end of the application was written in Flask 

(Python) to support scaling and provide the necessary security between the application and 

Thingspeak (Aslam, Mohammed, & Lokhande, 2015). The client side has timed requests for 

the collection of data readings, coded in JQuery, allowing for dynamic weather data 

updates. Standard HTML, CSS and Javascript was used to develop the front end. We 

deployed the web application by hosting it on our York St John computer science server, 

which provides internet accessibility. 

 

 

Figure 6. Web Application Front Page 

• The application’s back end is a layer responsible for the handling various website 

functionalities. Using function start() the upload of index.html is initialised, which 

produces the view of our application in Figure 6.  

• The real-time upload of data from the Thingspeak API is handled by “/data-update”, 

which utilises the weather class to return our parameters and meta data back to the 
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client. Apart from the standard readings, getWeatherCondition() is used to compute the 

current general weather condition, which in Figure 6 is Sunny.  

• On the client side, a jQuery updateData.js script is written to communicate with the 

/data-update route. Additionally, the code is responsible for handling front-end data 

and executing simple logic/animations. 

 

 

4. System Testing & Results 

4.1. Testing Overview 

Meteorological stations are deployed locally in two locations around York, Lord Mayors 

Walk University Campus, and the Sports Field. General tests are designed and performed, 

where the stations remain active for a couple of hours to collect data. Testing continues until 

enough data is gathered for sufficient results, through which we can evaluate the data’s 

complete life cycle. Beginning at the sensors, then the Arduino MCU, LPS8 Gateway, TTN, 

Thingspeak, and finally ending its cycle at the web application with the user. The accuracy 

and reliability of the collected data is an important element of focus during testing, in 

addition to the LoRaWAN network performance quality, which can affect the original 

meteorological station results. 

The first test involves the observation of active LEDs on the electronics and sensors, when 

the Arduino MCU is connected to the batteries. This will indicate if the meteorological 

station is receiving power. Thereafter, the MCU should begin calibrating the sensors and 

initialising a LoRa connection between the gateways. To inspect if a successful connection 

has been established, we open the TTN application and check if the status appears as online. 

Gateway connection status can be confirmed by checking the TTN Gateway page, or 

alternatively by viewing the logs on the gateway’s dashboard. The gateway is assumed fully 

functional in our system if data is being received simultaneously from both the 

meteorological stations. Every payload received by TTN should be decoded and forwarded 

to Thingspeak, and their timestamps can be used to compare and confirm that the data has 

been registered appropriately. Meanwhile, the payload values should be visualised using the 

default MATLAB generated graphs, with x and y axis values at a suitable accuracy. 

Data updates should occur every 10 seconds and display from the correct Thingspeak 

channel. The testing of this can be accomplished by comparing the web application 

variables to the Thingspeak entries. The systems have been launched and left running for a 

couple of hours. A stable feed of readings has been generated by both the stations, and the 

LoRaWAN connection remained active during the testing phase. Generally, all the hardware 

and applications were successful in producing viable results. 

 

4.1.1. Power & LoRa Connection Results 

On power connection, Arduino MCU LEDs switch on, indicating that the device has 

launched. To further showcase the status, we provide a screenshot from TTN application, 

which displays our station’s online status through the device web page. You can find this 

screenshot in. Additionally, TTN shows that the device is successfully sending payloads 

approximately every 30 seconds. Further analysis of the received payloads reveals the 

decoding script results has correctly sorted the data into a Thingspeak format. 
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The web application is launched in Google chrome, displaying the index page to the user. 

During the web application observation, we recognise the consistent time updates every 10 

seconds, while concurrently including an update to all our atmospheric variables. This 

concludes that all the expected results are displayed and updated according to our 

requirements. The displayed atmospheric variables include the temperature, humidity, 

pressure, light intensity, carbon monoxide, wind speed, wind direction, and rain. 

 

5. Discussion 

The findings of this research reveal that LoRa networking is suitable for hosting IoT 

meteorological stations, particularly with an implementation of a LoRaWAN gateway, 

offering a scalable environmental observation system solution. Our test results have 

highlighted the pros and cons of constructing a meteorological station utilising low power 

MCUs and a LPWAN networking approach. Successful results on Arduino’s power 

connection, and LoRa to TTN communication quality were collected. This indicate that the 

batteries can power the IoT weather station. However, in terms of sustainability, this may 

not be the best solution, since the batteries eventually lose charge causing the system to go 

offline. An improved method should be considered for power delivery to this system, for 

example the solar panel solution could be explored. It would include an implementation of a 

charging module, solar panels, and a lithium battery upgrade. We can also conclude that 

LoRa connectivity has been correctly established successfully, since the status appeared to 

be online post-system launch. 

 

A further example of captured payloads from the weather station is displayed in our results. 

The challenge encountered here was the decimal/float numbers were not passing correctly 

to TTN. To adjust this, the values were converted to whole numbers by scaling them larger, 

and later returning them to their correct scale inside the web application. With a successful 

connection of the LoRa shield to TTN, the LPS8 gateway appears fully functional. The 

LoRaWAN gateway activity has contributed to the majority of testing results that we have 

achieved. Throughout the testing phase, screenshots have been captured and provided, 

highlighting the connected status, and displaying live data traffic from the meteorological 

stations. 

 

Regarding statistics and data organisation, most of it was handled by the Thingspeak 

application. MATLAB algorithms were applied on incoming data entries, producing 

customisable graph visualisation. During testing, the entry timestamps in Thingspeak are 

compared to TTN payloads, confirming that every packet is transferred. It is worth 

highlighting that the timestamps are correct to the unit second, meaning that the delay at 

this stage is minimal. The chart lines gradually rise or drop to account for different weather 

changes, especially in the light intensity chart, where the sunset’s effect is displayed by the 

reduction in the captured voltage level over time. Looking at the results, the Thingspeak 

charts often skip to a whole number, as they are automatically rounded to the nearest whole 

figure. This affects the graph accuracy, but the variables are later converted back into their 

original decimal values. Our web application delivers a simple and modern interface for live 

data visualisation. The index page provides a live display of every observed variable by the 

meteorological stations. The front end appears to give a good perspective of the collected 

data from the meteorological stations, with the only adjustment that transpired post-testing 
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being the publication of the Thingspeak channel links onto the web application, to provide a 

graphical history of our observed values to the user. 

6. Conclusion 

We examined the results throughout all the production stages, including the meteorological 

station assembly and development, IoT platform configuration and web application 

construction; with a general focus on LoRa’s system performance. We developed a system 

capable of collecting and analysing all the mandatory weather data readings, as specified in 

the design stage. These include the temperature, humidity, pressure, and wind speed. Also, 

the project has been upgraded to include sensors capable of reading the light intensity, air 

quality, wind direction and rain rate. TTN has performed as expected by providing cloud 

connectivity for the LoRa data and connecting it with the Thingspeak platform. This 

enabled further handling, analysis, and visualisation of the collected sensor data using 

MATLAB. To establish a reliable and constant transmission of the meteorological data to 

TTN, a Dragino LoRaWAN gateway was deployed in our network. Employing its multi-

channel mechanism and additional authorisation methods improve the performance and 

security of our system. 

During the development phase, we encountered some basic performance issues with LoRa, 

where we had to adjust the meteorological stations’ placement to ensure a line of sight is 

maintained between the nodes. LoRa’s Sub-GHz frequency makes the communication 

noticeably sensitive to any obstruction on the line of sight. Additionally, the chosen 

locations posed inaccessibility issues for a wired power design, therefore we determined to 

power the system using batteries. Other important factors that we noted during the station 

construction was its waterproofing, air flow, condensation, transparency and more. Ensuring 

that all the parameters like light intensity or air quality, could be captured within our 

outdoor electronic enclosure. 

This work has shown that LoRa technology is a capable networking solution for deployment 

in scalable projects involving multiple end nodes. Furthermore, we have displayed how 

LoRa can provide reliable and efficient live data transmission in an IoT system. While 

WiFi, Bluetooth and other technologies were all viable options, LoRa incorporates most 

sought-after networking features, such as long-range connectivity, low power, and reduce 

dependence on external infrastructure. This makes it a notably desirable IoT networking 

technology for both small and industrial scale applications. 
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