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Classification of Incomplete Feature Vectors
by Radial Basis Function Networks

Richard Dybowski

Intensive Care Unit (Division of Medicine), UMDS (St Thomas’ Hospital), London, UK

Abstract
The paper describes the use of radial basis function neural networks with Gaussian basis functions to classify
incomplete feature vectors. The method exploits the fact that any marginal distribution of a defined Gaussian joint
distribution can be determined from the mean vector and covariance matrix of the joint distribution. The method is
discussed in the context of complete and incomplete training sets.
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1.  Introduction

Highly flexible discriminant functions such as projection pursuit regression models (Friedman, 1981) and
multilayer perceptrons (Bishop, 1995) can be used to estimate the probability P(Ck|x) of a class of interest Ck

conditional on a given vector x of measurements (a feature vector) taken from an object, thereby enabling the
object to be classified.

In deriving a function which discriminates between classes of interest by estimating P(Ck|x), it is assumed
that each constituent variable of x has a value, but what if at least one of these variables has not been assigned
a value?

1.1  Imputation of an incomplete feature vector

A natural response to the problem of classifying an incomplete feature vector x is to make up the deficit in
x by supplying values for the missing data (imputation). If xobs is the part of x that is observed and xmis is the
subset of x that is missing (i.e. x x x= ∪obs mis ), an intuitively reasonable approach is to impute x with the

expected values for xmis given the observed values xobs. In other words, in the absence of P(Ck|xobs, xmis), use
P(Ck|xobs, E[xmis|xobs]) in place of P(Ck|xobs). But a problem with this approach is that P(Ck|xobs, E[xmis|xobs]) does
not necessarily equal P(Ck|xobs) since, from Bayes’ theorem,
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and ( )f E Cmis mis obs obs kx x x x= [ | ] ,  is not necessarily equal to ( )f Emis mis obs obsx x x x= [ | ] , where f denotes a

probability density function (pdf). However, an approximation between P(Ck|xobs) and
P(Ck| xobs, E[xmis|xobs]) can be made as follows.

Theorem 1.  P(A|B) = E[P(A|B,x)|B], where A and B are any two statements, and the expectation is taken
over a vector of values x.

Proof.  If P(A|B,x) is regarded as a function of x then
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where f(x|B) is the pdf for x conditioned on B. Upon unfactorizing the integrand of Eq. (1) we have

E P A B B f A B d[ ( | , )| ] ( , | )x x x
x

=
ℜ

∫

= P(A|B). ¸

Let $xmis = E[xmis|xobs]. By regarding P(Ck|xobs, xmis) as a function of xmis, the Taylor series gives
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if E[xmis|xobs] is sufficiently close to xmis. Taking expectations on both sides of Eq. (2) over xmis for a given xobs

results in
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since E[xmis− $xmis ]=0, therefore, from Theorem 1,
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but solving the integration may be far from straightforward for a chosen discriminant function.
In this paper we will tackle the problem of an incomplete feature vector by reformulating the desired

conditional probability using Bayes’ theorem and expressing class-conditional probability densities as
Gaussian mixture models.

2.  Gaussian mixture models

In kernel density estimation (Silverman, 1986), the pdf f(x) from which a set of N data points {x(1),…,x(N)}

was randomly sampled is modelled by a linear combination of N kernel functions K hn(( ) / )( )x x− , a kernel

function being centred on each data point:
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where h is a smoothing parameter. Usually, K is a radially symmetrical unimodal pdf such as a multivariate
Gaussian distribution.

Kernel density estimators satisfy the asymptotic requirement that $ ( ) ( )f fx x→  as N → ∞  (e.g. Parzen

(1962)) and motivate the concept of a Gaussian mixture model (Everitt and Hand, 1981)
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in which Mk (< N) multivariate Gaussian pdfs G (Gaussian basis functions) are employed, each basis function

being defined by a mean vector µµ [ ]kj  and covariance matrix ΣΣ [ ]kj . Mixing coefficient πkj is equal to P(j|Ck),

which is interpreted as the probability that, for class Ck, a data point will originate from the j-th basis function
associated with that class.

Before continuing, we state the following theorem, which allows us to determine the marginal distribution
of any subset of x when x has a defined Gaussian distribution.

Theorem 2.  (e.g. Krzanowski (1988))  Let x be a p×1 vector with multivariate normal distribution N(µµ, ΣΣ).

If x is partitioned as ( )x x x= 1 2,
T

, where x i  is a pi×1 vector, and the corresponding partitions of µµ and ΣΣ

are
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µµ
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where µµ i  is a pi×1 vector and ΣΣ ii  a pi× pi matrix, then x i  has the distribution N( µµ i , ΣΣ ii ).

The conditional probability P(Ck|xobs) presented in Section 1 can be reformulated using Bayes’ theorem,
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and distribution f(xobs|Ck) within Eq. (5) can be estimated by applying Theorem 2 to a collection of M class-
conditional Gaussian mixture models:
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corresponding to partition ( )x x x= 1 2,
T

, where x x1 = obs  and x x2 = mis . Determination of the model

parameters via the EM algorithm is described in Appendix A.
The ability of Eq. (5) in conjunction with Eq. (6) to provide an estimate for P(Ck|xobs) suggests that the

classification of a feature vector, whether complete or incomplete, can be achieved from the parameters of a
trained radial basis function neural network, to be described in the next section.
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3.  Radial basis function networks

Mixture model (4) can be rewritten as

( )$ ( | ) ( | ) | ,f C P j C f j Ck k k

j

M k
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=
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1

. (8)

Implementation of this model requires P j Ck( | ) and ( )f j Ckx| ,  for each class Ck, but an alternative to Eq. (8)

is
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(9)

in which, through the use of a common pool of M basis functions, only P j Ck( | )  is required for each class

(Bishop, 1995, p.180). Although one would expect Eq. (8) to provide a better representation of each class-
conditional pdf of interest, a disadvantage is that the total number of adjustable parameters (summed over each
class) may be greater than that for Eq. (9), whereas the modelling accuracy provided by Eq. (9) may suffice.

Substituting Eq. (9) into the Bayesian reformulation of P(Ck|x) gives
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Fig. 1. The architecture of a radial basis function network
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When Eq. (10) is rendered as the network shown in Fig. 1, and f(x|j) is modelled by a radially symmetrical
function, the structure is referred to as a radial basis function (RBF) network in which f(x|j) are the RBFs,
φj(x) are the normalised RBFs, and wkj are the weights. Only one layer of RBFs in Fig. 1 is required to
approximate any continuous function to arbitrary accuracy (Hartmen et al, 1990).

This architecture has been proposed by a number of workers, including Broomhead and Lowe (1988) and
Poggio and Girosi (1990). Whereas multilayer perceptrons partition feature space with hyperplanes, RBF
networks perform the partitioning with hyperellipsoids. An advantage of RBF networks over multilayer
perceptrons is that, once the parameters of the normalised RBFs have been decided (see below), the weights
can be easily determined by linear optimisation since the RBFs have mapped the inputs into a higher-
dimensional space where they are linearly separable (Moody and Darken, 1989).

The parameters for φj(x) in Eq. (10) consist of P(j) and the parameters for f(x|j) (j=1,…,M). These can be
determined by modelling the density of {x(1),…,x(N)} by the Gaussian mixture model

$ ( ) ( ) ( | )f P j f j
j

M

x x=
=

∑
1

 (11)

and applying the EM algorithm described in Appendix A to the entire dataset rather than to a class-wise subset
of it. Once these parameters have been acquired, they are held constant whilst linear optimisation is used to
provide the weights wkj for Eq. (10) through supervised learning.

3.1  Classification of an incomplete feature vector

If we repeat the derivation of Eq. (6), replacing Eq. (4) with Eq. (9) and letting f j G j j( | ) ( | , )[ ] [ ]x x= µµ ΣΣ ,

then
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[ ]j  are analogous to subvector µµ 1
[ ]kj  and submatrix ΣΣ 11

[ ]kj  in Eq. (7) and are thus contained

within µµ [ ]j  and ΣΣ [ ]j , respectively. Substituting Eq. (12) into Eq. (5) gives the required expression:
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In sum, if
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is a trained RBF network with Gaussian radial basis functions G j j( | , )[ ] [ ]x µµ ΣΣ , then $ ( | )P Ck obsx  can be

determined for any xobs ⊆ x using the existing set of RBF-network parameters { , , , ( )}[ ] [ ]w P jkj
j jµµ ΣΣ and class

priors P(Ck).
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4.  Incomplete training sets

The presence of an incomplete feature vector xobs could be symptomatic of an underlying missing-data
mechanism which has also caused previous feature vectors to be incomplete. If these previous vectors are

collected together as tuples 〈 〉xobs kCT , , where Ck is the class assigned to xobs, the resulting dataset will be an

incomplete training set.
The reality of incomplete datasets has been a long-standing problem in statistics and a number of solutions

have been proposed. A standard technique is to assign values to the missing data (imputation) and perform the
required analysis or modelling on the resultant complete dataset. The choice of method for conducting
imputation is dependent upon the pattern of missingness within the dataset, on whether the precise nature of
the missing-data mechanism can be ignored, and on the type of data involved (i.e. whether it is continuous,
categorical, or a mixture of the two). Little and Rubin (1987) provide a comprehensive discussion of this
topic, a summary of which is available (Little and Rubin, 1990).

In this paper we are focusing on real-valued variables, and a sound approach for the imputation of such
variables in a dataset is to use the EM algorithm of Appendix B. This imputation determines the underlying
model most likely to have given rise to the observed data. When this model is known, the values xmis missing

from tuple 〈 〉xT ,Ck  can be estimated by using the parameters of the model.

Once a dataset has been imputed by the EM algorithm, several routes can be taken to the classification of a
new but incomplete feature vector:
(a)  Proceed with the derivation of an RBF network as described in Section 3 for the case when a complete

dataset is available and use the method of Section 3.1.
(b)  When a dataset has been imputed by the method described in Appendix B, the resulting Gaussian mixture

model (14) is equivalent to Eq. (4), therefore, the model can be used to classify incomplete feature vectors,
as described in Section 2. There is no gain in supplementing this mixture model with an RBF network.

(c)  If the condition for approximation (3) holds then Eq. (16) can be used to determine the expectation in
P(Ck|xobs, E[xmis|xobs]).

The EM algorithm of Appendix B imputes each of the class-wise partitions of the dataset separately, but if
the class labels of the dataset are momentarily ignored and the algorithm is applied to the incomplete  dataset
as a whole, then mixture model (11) is obtained in place of model (14). Once the parameters of the basis
functions of Eq. (11) have been obtained on conclusion of the imputation, the class labels can be re-instated to
allow the weights of Eq. (10) to be determined. Hence, an RBF network can be obtained directly
from an incomplete dataset.

Complete training set

RBF network (Eq. (10))
via Gaussian mixture

model (Eq. (11))

Gaussian mixture model (Eq. (4))

Incomplete training set

EM algorithm of Appendix A
applied to the entire training set

EM algorithm of Appendix A
applied to each subset of the class-
wise partition of the training set

EM algorithm of Appendix B
applied to each subset of the class-
wise partition of the training set

EM algorithm of Appendix B
applied to the entire training set
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Fig. 2.  EM algorithms for the derivation of Gaussian mixture models

5. Conclusion

The derivation of RBF networks from complete and incomplete datasets is summarised in Fig. 2.
Whichever route is taken to produce an RBF network with Gaussian basis functions, an incomplete feature
vector can be classified by the network as detailed in Section 3.1.
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Appendix A.  The EM algorithm for the parameters of Gaussian mixture models

The standard approach for determining the parameters { , , }[ ] [ ]π kj
kj kjµµ ΣΣ  of a Gaussian mixture model from

a given dataset is to use maximum-likelihood estimation. Various procedures have been developed for this
purpose (Redner and Walker, 1984), including the EM algorithm.

The expectation-maximisation (EM) algorithm (Dempster et al., 1977) is a general iterative technique for
computing maximum-likelihood estimates when the observed data can be regarded as incomplete. Each
iteration of the EM algorithm is composed of two steps: an expectation (E) step and a maximisation (M) step.
Let v be observed data,  y unobserved data, and let θθcur denote the current value of a parameter vector θθ. After
assigning an initial set of values to θθcur, the EM algorithm proceeds via the following cycle:

E-step:  Let Q E fcur

n

N
N cur( , ) ln ( , | ) { ,..., },( ) ( )qq qq qq qq=











=

∑ v y v v
1

1 .

M-step:  Determine qq qq qq
qq

∗ = arg max ( , )Q cur , make the assignment qq qqcur ← ∗ , and return to the E-step.

Let { ,..., }( ) ( )x x1 Nk  be a dataset of complete tuples xT representing class Ck. If we regard the identity j of

the kernel function which generated x as unobserved data, the E-step for mixture model (4) can be written as
(Bishop, 1995, pp.69-72]

[ ]Q P j C P j C f j Ccur n
k
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k

n
k

j

M
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( , ) ( | , ) ln ( | ) ( | , )( ) ( )qq qq ,, qq ,, qq ,, qq=
==

∑∑ x x
11

,

where

P j C
f j C

f j C

n
k

cur
n

k
cur

n
k

cur

j

M
( | , , )

( | , , )

( | , , )

( )
( )

( )

x
x

x

θθ
θθ

θθ
=

′′
′=
∑

π

π

kj
cur

k j
cur

1

and θθ is the vector of parameters πkj, µµ [ ]kj , and ΣΣ [ ]kj .

For the M-step, Q(θθ,θθcur) is maximised with respect to mixing coefficient πkj, and with respect to the

Gaussian parameters µµ [ ]kj  and ΣΣ [ ]kj . Equations for the maximisation of Q(θθ,θθcur) are as follows [Everitt and

Hand, 1981, p.37]:
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(13)

For the covariance matrix, a simplification can be made by assuming that the Gaussian distributions are

symmetrical with variance σ kj
2 . Even with this simplification, the mixture model can approximate any given

density function to arbitrary accuracy, provided that an appropriate choice has been made of the model
parameters (McLachlan and Basford, 1988).

Appendix B.  The EM algorithm for the imputation of real-valued datasets

Let { , ..., }( ) ( )x xobs obs
Nk1  be the subset of all the rows of an incomplete real-valued dataset that are labelled as

belonging to class Ck. The aim is to obtain an imputed dataset {$ , ... , $ }( ) ( )x x1 Nk , where $ $( ) ( ) ( )x x xn
obs
n

mis
n= ∪  and

$ ( )xmis
n  is assumed to be unobserved data associated with xobs

n( ) . The basic EM algorithm of Appendix A is

adapted for this imputation as follows:

E-step:  For n-1,…,Nk, let $ [ | , ]( ) ( ) ( )x x xmis
n

mis
n

obs
n curE= θθ

M-step: Obtain the maximum-likelihood estimate for θθ from the current estimate of the completed dataset

{$ , ... , $ }( ) ( )x x1 Nk , let this be the new value for θθcur, and return to the E-step.

These two steps will now be detailed.

Let x in the completed dataset { ,..., }( ) ( )x x1 Nk , where x x x= ∪obs mis , be regarded as a random sample

drawn from the pdf f(x|Ck,θθ) independently of the other samples, and let the pdf be expressed by the finite
mixture model
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For the E-step we have that
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(15)

where θθj is the subset of θθ pertaining to the j-th component of the mixture model. If the partitions of µµ [ ]kj  and

ΣΣ [ ]kj  corresponding to partition ( )x x x= obs
n

mis
n( ) ( ),

T
 are
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then, in accordance with Theorem 2, the mean vector and covariance matrix for G Cobs
n

k j( | )( )x ,, θθ  are µµ 1
[ ]kjn  and

ΣΣ 11
[ ]kjn , respectively. For the expectation in Eq. (15), we use the relationship

( ) ( )E Cmis
n

obs
n

k j
kjn kjn kjn

obs
n kjn[ | , ]( ) ( ) [ ] [ ] [ ] ( ) [ ]x x x,, θθ µµ µµ= + −

−

1 12 22

1

2ΣΣ ΣΣ .  (16)

The M-step is achieved by equations (13) using $ ( )x n  in place of x ( )n .
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