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Neuroanatomical dimensions in medication-
free individuals with major depressive 
disorder and treatment response to SSRI 
antidepressant medications or placebo

Major depressive disorder (MDD) is a heterogeneous clinical syndrome 
with widespread subtle neuroanatomical correlates. Our objective was 
to identify the neuroanatomical dimensions that characterize MDD and 
predict treatment response to selective serotonin reuptake inhibitor (SSRI) 
antidepressants or placebo. In the COORDINATE-MDD consortium, raw 
MRI data were shared from international samples (N = 1,384) of medication-
free individuals with first-episode and recurrent MDD (N = 685) in a current 
depressive episode of at least moderate severity, but not treatment-resistant 
depression, as well as healthy controls (N = 699). Prospective longitudinal 
data on treatment response were available for a subset of MDD individuals 
(N = 359). Treatments were either SSRI antidepressant medication 
(escitalopram, citalopram, sertraline) or placebo. Multi-center MRI data 
were harmonized, and HYDRA, a semi-supervised machine-learning 
clustering algorithm, was utilized to identify patterns in regional brain 
volumes that are associated with disease. MDD was optimally characterized 
by two neuroanatomical dimensions that exhibited distinct treatment 
responses to placebo and SSRI antidepressant medications. Dimension 1 was 
characterized by preserved gray and white matter (N = 290 MDD), whereas 
Dimension 2 was characterized by widespread subtle reductions in gray 
and white matter (N = 395 MDD) relative to healthy controls. Although there 
were no significant differences in age of onset, years of illness, number of 
episodes, or duration of current episode between dimensions, there was a 
significant interaction effect between dimensions and treatment response. 
Dimension 1 showed a significant improvement in depressive symptoms 
following treatment with SSRI medication (51.1%) but limited changes 
following placebo (28.6%). By contrast, Dimension 2 showed comparable 
improvements to either SSRI (46.9%) or placebo (42.2%) (β = –18.3, 95% CI 
(–34.3 to –2.3), P = 0.03). Findings from this case-control study indicate 
that neuroimaging-based markers can help identify the disease-based 
dimensions that constitute MDD and predict treatment response.
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of 2,288 MDD and 3,077 controls, the classification accuracy was 
found to be up to 62%23. However, there was significant clinical het-
erogeneity, including treatment-resistant depression and a mixture 
of depressive states, symptom severities, and comorbid psychotic 
symptoms, and classifications require replications in independent 
patient cohorts. In a large but more clinically homogeneous sample, 
Wen et al9. identified two distinct dimensions in late-life depression 
(501 late-life depression, 495 controls), one with relatively preserved 
gray matter and a second with widespread atrophy and white-matter 
disruptions that showed an accelerated progression to Alzheimer’s 
disease. As predictors of treatment response, reduced baseline pre- 
treatment gray-matter volumes, in particular in the hippocam-
pus and lingual gyrus, have been predictors of poorer treatment 
response, while increased volumes, including in the anterior and 
posterior cingulate cortices and middle frontal gyrus, have predicted 
treatment remission20,26,27.

In the present study, we sought to delineate heterogeneity in MDD 
in a large multisite consortium of raw individual magnetic resonance 
imaging (MRI) data with deep phenotypic characterization (COORDI-
NATE-MDD28). We used a semi-supervised machine-learning method, 
heterogeneity though discriminative analysis (HYDRA)29, which defines 
dimensions of the disease (here MDD) using healthy controls as a 
reference group, thus avoiding clustering based on disease-irrelevant 
features. The present sample consists of raw individual structural MRI 
in individuals with MDD, defined by structured clinical diagnostic crite-
ria, obtained during a current depressive episode of at least moderate 
severity, in first-episode or recurrent MDD, not treatment-resistant 
depression, and medication free (685 MDD, 699 controls). Because 
the consortium studies shared anonymized raw data, we are able to 
optimize characterization of the precise location and magnitude of 
effects in each participant.

Our aim was to identify whether MDD is characterized by distinct 
neuroanatomical patterns and to examine the relation between dimen-
sions and treatment response. We hypothesized that the optimal solu-
tion in our sample would be two dimensions, as observed in late-life 
depression using structural MRI data9. Because we had longitudinal 
treatment outcomes in a subsample (359 MDD), we further examined 
whether the dimensions would demonstrate distinct predictive profiles 
for response to placebo or to selective serotonin reuptake inhibitor 
(SSRI) medications based on individual treatment responses. Due to the 
data-driven nature of the methods used here, it is difficult to predict the 
neuroanatomical characteristics of the subtypes that will emerge and 

Major depressive disorder (MDD) is both highly prevalent and debili-
tating. MDD affects over 320 million people worldwide, is the main 
precursor of suicide, and is the leading cause of disability globally, with 
profound impacts on daily life, work, and relationships1–4. The remis-
sion rate is about 30% for the initial treatment, but 30–40% of patients 
continue to have significant symptoms despite full treatment trials 
of antidepressant medication or psychotherapy5,6. Individuals with 
MDD show significant heterogeneity in their symptoms and treatment 
outcomes and in the longitudinal course of the illness. We do not have 
any biomarkers to aid in identifying the disorder or to predict treat-
ment response. Consequently, MDD is currently best conceptualized 
as a syndrome rather than a disease with a distinct pathophysiology.

Data-driven approaches can delineate the heterogeneity that 
constitutes the clinical diagnosis by identifying potential neurobio-
logical dimensions. It is likely that distinct brain mechanisms underlie 
heterogeneous clinical presentations, treatment outcomes, and lon-
gitudinal course7–9. Neuroimaging subtypes might be able to quantify 
heterogeneity in clinical presentation and identify optimal treatment 
strategies best suited to distinct subtypes, including identifying treat-
ment resistance early in the course of the illness10.

On the basis of functional connectivity measures, two to four 
MDD subtypes have been reported11–15. A common pattern of altered 
connectivity that included ventromedial prefrontal, orbitofrontal, 
and posterior cingulate cortices, insula, and subcortical regions was 
observed along with distinct patterns of functional connectivity and 
clinical symptom profiles in four subtypes12. By addressing hetero-
geneity, these studies reveal the potential to identify neuroimaging 
subtypes that constitute major depression. However, the variety of 
functional connectivity measures and clinical heterogeneity, namely, 
disparate depressive states, medication status, comorbid disorders, 
and forms of depression, including treatment-resistant depression, 
have limited interpretation and rendered the subtypes less comparable 
across studies16,17.

The high reliability of structural MRI and its derived measures 
could offer a marker of disease18,19. Initial studies were limited by 
small samples from single sites20–22. Recent multisite cohorts show 
classification accuracies ranging from 52% to 75%23–25. However, the 
classification outcomes have been binary (MDD versus control). The 
highest classification accuracy was achieved in a cohort with a formal 
MDD diagnosis in a current depressive episode, but the sample size 
was limited (230 MDD, 77 controls)25. In the Enhancing Neuroimaging 
Genetics through Meta-analysis (ENIGMA) consortium, consisting 
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Fig. 1 | Neuroanatomical patterns across the dimensions. False discovery 
rate- (FDR-) corrected voxel-wise comparison of gray-matter volume differences 
in Dimension 1 (top row) and Dimension 2 (bottom row) versus controls are 

presented in transverse, sagittal, and coronal sections. Color bar indicates 
strength of group differences (MIDAS statistic) between MDD and healthy 
control participants.
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therefore to derive a hypothesis regarding treatment outcomes in the 
subtypes. However, on the basis of previous findings, we hypothesized 
that a subtype with smaller volumes would predict a poorer response 
to antidepressant treatment.

Results
HYDRA reveals two-dimension optimal model
The highest Adjusted Rand Index (ARI) (0.61) was achieved with a 
HYDRA model for k = 2 dimensions, consisting of 290 participants 
with MDD assigned to Dimension 1 (D1) and 395 participants with MDD 
assigned to Dimension 2 (D2). Split-sample and leave-site-out (LSO) 
analyses replicated the optimal k = 2 dimension solution. In leave-site-
out analysis, the percentage overlap for MDD participants assigned 
to the same dimension ranged from 86.26% to 94.86% with an aver-
age overlap of 92.70%. D1 was characterized by preserved gray- and 

white-matter volumes in all regions relative to healthy controls, while 
D2 was characterized by subtle widespread decreased volumes relative 
to controls (Fig. 1 and Supplementary Figs. 1 and 2).

When the analysis was restricted to MDD participants in the pro-
spective treatment trials (N = 359 MDD), D1 was characterized by pre-
served gray- and white-matter volumes, while D2 was characterized by 
widespread gray- and white-matter reductions compared with healthy 
controls, although there were no differences in anterior cingulate or 
hippocampal volumes.

Clinical variables across dimensions
There were no significant differences between D1 and D2 in age of onset 
(P = 0.3), years of illness (P = 0.2), number of episodes (P = 0.07), dura-
tion of current episode (P = 0.9), age (P = 1.0), sex (P = 0.5), or years of 
education (P = 0.4) (Table 1).

Table 1 | Demographic and clinical variables for MDD and healthy control participants

Healthy controls MDD participants MDD D1 MDD D2

Sample size 699 685 290 395

Age (yr) 38.4 (15.4) 35.3 (12.3) 35.3 (12.6) 35.3 (12.2)

Age range (yr) 16–72 18–65 18–65 18–64

Sex

Female (number, percentage) 404 (58) 439 (64) 181 (62) 258 (65)

Male (number, percentage) 295 (42) 246 (36) 109 (38) 137 (35)

Ethnicity (number, percentage) 621 (89) 470 (68) 179 (62) 290 (73)

Asian 167 (27) 173 (37) 80 (45) 93 (32)

Black 16 (3) 16 (3) 2 (1) 14 (5)

Hispanic 9 (1) 9 (2) 1 (0.6) 8 (3)

Middle Eastern 0 2 (0.4) 1 (1) 1 (0.3)

Mixed 10 (1.6) 10 (2) 2 (0.6) 8 (3)

Native American 3 (0.4) 11 (2) 1 (0.6) 10 (3)

Pacific Islander 1 (0.2) 2 (0.4) 1 (0.6) 1 (0.3)

White 415 (67) 247 (53) 91 (5) 155 (53)

Years of education 15.3 (2.7) 14.5 (2.7) 14.8 (2.5) 14.4 (2.8)

HAM-D 0.9 (1.5) 21.4 (5.1) 21.0 (4.8) 21.7 (5.3)

MADRS 0.5 (1.1) 29.0 (5.1) 28.9 (5.2) 29.0 (5.0)

First-episode/recurrent MDD 128/355 52/168 76/187

Age of onset (yr) 24.5 (10.8) 22.5 (9.8) 25.3 (11.1)

Years of illness 6.5 (9.9) 6.3 (8.8) 6.7 (10.4)

MDD episodes 7.7 (20.3) 8.1 (20.8) 7.4 (20.1)

Duration of current episode (weeks) 57.9 (119.2) 55.6 (97.7) 59.5 (132.2)

Prospective treatment sample

Total (number MDD participants) 359 165 218

Escitalopram 116 38 102

Citalopram 36 16 20

Sertraline 98 56 42

Placebo 109 55 54

HAM-D score

Baseline 20.5 (4.1) 20.0 (4.0) 20.9 (4.1)

Values presented are mean (s.d.) except where indicated. Montgomery–Asberg Depressive Ratings Scale (MADRS) ratings were available from CAN-BIND and Manchester samples. There is a 
significantly greater number of women than men participants (P = 0.02). Healthy controls had a higher mean age (P = 0.003) and greater number of years of education (P = 5.7 × 10–9) than MDD 
participants. Chi-squared test of independence was used for the categorical variable (sex), and the Mann–Whitney U test was used for continuous variables (age and years of education). For 
some sites, the number of years of education was estimated from text data; this is detailed in the Supplementary Information. One healthy control participant was 16 years old, and three were 
17 years old. Treatment with SSRI antidepressants showed a significantly greater reduction in HAM-D score (post-treatment HAM-D 10.6) relative to placebo (post-treatment HAM-D 12.5) (t = 2.23, 
P = 0.03). Ethnicities for Stratifying Resilience and Depression Longitudinally, Oxford, Manchester Remedi, and King’s College London studies (Methods) were estimated to be around 90%, 90%, 
90%, and 95% white, respectively.
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Interaction between HYDRA dimensions and treatment 
outcomes
Treatment with SSRI medications was associated with a significantly 
greater improvement in depressive symptoms (–48.7%) relative to pla-
cebo (–35.4%) across both D1 and D2 (β = 37.8, 95% confidence interval 
(CI) (12.4 to 63.1), P = 0.004). Treatment with SSRI antidepressants 
showed a significantly greater reduction in total Hamilton Depression 
Rating Scale (HAM-D) score (post-treatment HAM-D 10.6) relative to 
placebo (post-treatment HAM-D 12.5) (t = 2.23, P = 0.03).

There was a significant dimension-by-treatment interaction 
effect in which D1 showed a greater improvement in depressive 
severity following SSRI medication (51.1%) compared with placebo 
(28.6%). By contrast, D2 showed a general improvement in depres-
sive symptoms that did not achieve treatment response to either 
SSRI medication (46.9%) or placebo (42.2%) (β = –18.3, 95% CI (–34.3 
to –2.3), P = 0.03) (Fig. 2).

To examine whether the interaction between dimensions and 
treatment group differed according to SSRI medication, we performed 
a second linear regression with the treatment group variable including 
all four treatment categories (SSRI sertraline, SSRI escitalopram, SSRI 
citalopram, and placebo) instead of a binary category (SSRI medica-
tions and placebo). The effect size (Cohen’s f2 = 0.13) of the interaction 
term has an F statistic of 4.361 based on our analysis using a linear 
regression model. With a sample size of 359, assuming that we adjust 
for 10 additional covariates in the model and the same effect size, we 
have over 99% power to detect a significant interaction term between 
treatment and HYDRA dimension under 5% Type I error. The outcome 
variable and covariates of the linear model remained unchanged. Treat-
ment with citalopram (N = 36 MDD) was associated with the greatest 
improvement in symptoms compared with placebo (N = 109 MDD) 
(mean reduction = 68.8%, β = 74.1, 95% CI (30.0 to 118.4), P = 0.001), 
followed by escitalopram (N = 116 MDD) (mean reduction = 48.8%, 
β = 48.6, 95% CI (14.0 to 83.3), P = 0.006) and then sertraline (N = 98 
MDD) (mean reduction = 41.3%, β = 41.8, 95% CI (12.8 to 70.9), P = 0.005).

There was a significant interaction between dimensions and treat-
ment response to sertraline: D1 showed a greater improvement in 
depression severity following sertraline treatment relative to placebo, 
whereas D2 showed a greater improvement in depression severity fol-
lowing placebo relative to sertraline (β = –24.6, 95% CI (–43.4 to –5.7), 

P = 0.01). There were no significant interactions between dimensions 
and escitalopram (P = 0.17) or citalopram (P = 0.17) (Fig. 3).

In the machine-learning analysis with linear regression using 
the calculated hyperplane distance in place of the binary dimension 
label, we similarly found that treatment response to placebo tended 
to increase with likelihood of being clustered in D2, while response to 
sertraline tended to decrease (Fig. 4).

Case-control comparisons of gray-matter volume
The voxel-wise regional analysis of volumes in normalized space 
(RAVENS) showed several areas of significant gray-matter volume 
reductions in MDD participants relative to healthy controls, includ-
ing in bilateral medial orbital gyri, bilateral subgenual, pregenual and 
dorsal anterior cingulate cortices, and bilateral insula. Significant gray-
matter volume increases were evident in MDD participants relative to 
healthy controls in the left parahippocampal gyrus, bilateral ventral 
diencephalon, and extended into the left brainstem (Fig. 5a).

Controlling for medication history or recurrent MDD as a proxy 
measure of previous medication use, significant gray-matter volume 
reductions remained in the anterior cingulate and insula, and addi-
tional gray-matter volume reductions became significant, includ-
ing in the right superior frontal gyrus, left parahippocampal gyrus, 
bilateral basal forebrain, and left cuneus (Fig. 5b). No regions showed 
significantly increased volumes in MDD relative to healthy controls. 
Furthermore, after excluding MDD participants with recurrent depres-
sion, MDD participants in a first episode of depression (n = 262) showed 
more-pronounced gray-matter reductions in the same regions, in par-
ticular in the bilateral anterior cingulate, frontal pole, medial frontal 
gyri, middle frontal gyri, gyrus rectus, orbital gyri, insula, inferior and 
superior temporal gyri, as well as bilateral lingual gyri (Fig. 5c).

Discussion
In the present study, MDD was characterized by two reproducible neu-
roanatomical dimensions that showed distinct responses to placebo 
and SSRI antidepressant medications. D1 demonstrated preserved 
regional volumes compared with healthy controls and significantly 
greater treatment responses to SSRI antidepressants relative to pla-
cebo. By contrast, D2 was characterized by widespread volumetric 
reductions and no significant differences in the clinical response to 
placebo or SSRI antidepressants. The dimensions were revealed using 
a fully data-driven analysis in a large multisite consortium consisting of 
raw individual data from deeply phenotyped MDD individuals who were 
medication free with first-episode or recurrent MDD, not treatment-
resistant depression, and who were in a current depressive episode of 
at least moderate severity without psychotic features.

Early classification studies were hampered by small sample sizes 
from a single site20,21. While recent studies have included large multisite 
sample sizes, only binary case-control classification has been achieved 
using structural MRI, perhaps limited by clinical heterogeneity in the 
MDD samples23,24. In a more clinically homogeneous MDD sample that 
was in a current depressive episode, a higher accuracy was achieved, 
but this was also a binary case-control classification, which could be due 
to the limited sample size25. The present study sought to address these 
two issues of size and clinical heterogeneity in a large multisite sample 
and relatively homogeneous deeply phenotyped clinical cohorts, which 
revealed two neuroanatomical dimensions.

Dimension D1 showed generally preserved neuroanatomy, while 
D2 showed widespread decreased volumes. In D2, the greatest deficits 
were observed in the insula, limbic, and temporal lobes. Volumetric pre-
dictors of clinical response in major depression have included the left 
middle frontal and right angular gyri for treatment with SSRI medica-
tions, escitalopram or sertraline, or to the serotonin and noradrenaline 
reuptake inhibitor (SNRI), venlafaxine, in the International Study to 
Predict Optimized Treatment in Depression study30, increased hip-
pocampal tail volumes for the SSRI medication, escitalopram, in the 
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Fig. 2 | Depressive symptoms across the dimensions and treatment groups. 
Difference in percentage change in HAM-D scores across HYDRA dimensions 
(D1 (n = 164) and D2 (n = 195), n = 359) and binary treatment groups following 
treatment with SSRI medications (n = 250) and placebo (n = 109). Data are 
presented using a bar plot as mean values and 95th percentile error bars. The 
asterisks (*) indicate significant differences between the two subgroups using 
linear regression model (two-sided P < 0.05).
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Canadian Biomarker Integration Network in Depression (CAN-BIND) 
study31, as well as anterior and posterior cingulate cortex and left mid-
dle frontal gyri for the SSRI medication, fluoxetine20. The present find-
ings indicate that widespread preserved neuroanatomy in MDD might 
further distinguish clinical response to either SSRI medications or to 
placebo. Furthermore, early changes observed after a week of treat-
ment (for example, increased anterior cingulate cortical thickness 
being associated with better clinical responses to the SSRI, sertraline, 
in the Establishing Moderators and Biosignatures of Antidepressant 
Response in Clinical Care (EMBARC) study32 and increased hippocam-
pal volume being associated with improved clinical responses to the 
SNRI, duloxetine33) could provide additional predictive markers and 
suggest potential mechanisms.

The whole-brain case-control analysis of gray-matter volumes 
revealed reductions in the anterior cingulate, medial orbital gyri, and 
insula. In first-episode MDD, gray-matter reductions were observed 
more widely in bilateral anterior cingulate, medial and middle frontal 
gyri, gyrus rectus, orbital gyri, insula, and inferior and superior tempo-
ral gyri. Meta-analyses have reported widespread gray-matter deficits 
from the anterior cingulate, medial prefrontal and orbitofrontal corti-
ces, insula, hippocampus, parietal, and temporal regions in recurrent 
MDD34 with more-limited reductions in first-episode MDD, including 
the anterior cingulate, gyrus rectus, medial orbital gyri, and tempo-
ral gyri35. In the ENIGMA-MDD consortium, widespread reductions 
were found in cortical gray matter, which included the orbitofrontal 
cortex, anterior and posterior cingulate, insula, and temporal lobes36. 
Recent meta-analyses have also reported regional increases in cortical 
thickness in the anterior cingulate, posterior cingulate, ventromedial 
prefrontal, and orbitofrontal and supramarginal cortices37,38, which are 
evident in medication-free MDD37 and predominantly in first-episode 
medication-naïve MDD37–40. While cortical gray matter is the product 
of cortical thickness and surface area, which have distinct genetic 
and developmental origins41, gray-matter volume is more affected 
by surface area42. The regional distributions include the medial pre-
frontal–limbic network, which is posited to be important for affec-
tive regulation and modulated by serotonin function43 as well as the 
orbitofrontal–striatal network implicated in reward processing and 
modulated by dopamine function44.

The mechanisms for increased volumes could reflect disease-
related as well as compensatory responses. Synaptic pruning is a 
fundamental process in brain development and maturation45. Neu-
ron–glial cell signaling has a crucial role in synaptic pruning, which can 
strengthen more active synapses and remove less-active connections, 
improving neuronal signal-to-noise ratio45, while aberrant pruning 
might contribute to neurodevelopmental disorders. Compensatory 

responses include structural plasticity as an adaptive response to a 
neural insult, resulting in increases in activity, such as hyperexcitability 
in connected areas with increased synaptogenesis that can be observed 
in morphometric changes46.

Altered immune activation and inflammatory responses have 
been documented in MDD, including hypothalamic–pituitary–
adrenal- (HPA-) axis hyperactivity. Prefrontal gray-matter volumes 
have shown an inverse relation with serum levels of high-sensitivity 
C-reactive protein47, and an inverse correlation has been found for 
orbitofrontal cortical thickness with interleukin-648 as well as serum 
cortisol in MDD49. Inflammatory responses, neurotransmitter levels, 
and neurotrophic factors further modify neuronal and glial cells, which 
might be more subtle for neuronal cell bodies relative to glial cell den-
sity50. Elevated levels of inflammation, however, are most evident in 
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treatment-resistant depression51, while the present sample consisted 
of first-episode and recurrent MDD.

Functional connectivity within intrinsic brain networks offers com-
plementary measures. Reduced baseline resting-state connectivity 
within the orbitofrontal component of the default mode network (DMN) 
has been found to predict clinical response to the antidepressant medica-
tion duloxetine33. Pre-treatment connectomic signatures within the DMN 
as well as inter-network connectivity distinguished MDD participants 
who achieve remission with antidepressant medication and those with 
persistent symptoms52. There were no significant differences between 
the antidepressant medication classes (escitalopram, sertraline, and 
venlafaxine), although there was no placebo treatment52. In the EMBARC 
placebo-controlled trial, higher connectivity within the DMN as well 
as between the DMN and executive control networks predicted better 
outcomes specifically for sertraline. From a seed-based connectivity 
analysis, low functional connectivity in the dorsolateral prefrontal cortex 
and subcallosal cingulate cortex and high connectivity in the ventral 
striatum and amygdala were associated with a greater improvement 
from the antidepressant medication sertraline relative to placebo53.

Our findings reveal that medication-free first-episode and recur-
rent MDD are characterized by two neuroanatomical dimensions that 

suggest distinct responses to SSRI antidepressant medications and pla-
cebo. D1 showed a significantly greater clinical improvement with SSRI 
antidepressant medication relative to placebo, whereas D2 showed 
no significant differences in treatment effects between SSRI antide-
pressants and placebo. Antidepressant medications demonstrate 
significantly greater treatment efficacy than placebo in randomized 
controlled MDD trials54,55. The effects are clinically significant with 
greater symptom severity, as defined by the UK National Institute of 
Health and Social Care. How measures of treatment efficacy translate 
into a clinically meaningful benefit has important implications at the 
individual level56. Moreover, receiving placebo treatment as part of a 
clinical trial involves systematic follow-up visits, which is not the same 
as receiving ‘no treatment’57.

Yet it is not possible to predict treatment response to any antide-
pressant medication or to placebo. We found that D1 shows distinct 
responses to SSRIs and placebo in MDD participants in a current epi-
sode of moderate severity. The present findings support the possibility 
of identifying at the individual level MDD participants who will show 
a greater likelihood of treatment response to SSRI antidepressant 
medication relative to placebo. Choosing the right treatment would 
lead to earlier improvements in depression symptoms and reduce 
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Fig. 5 | Neuroanatomical case-control differences. a,b, FDR-corrected 
voxel-wise comparison of gray-matter volume differences between the whole 
MDD participant group versus healthy controls (a) and after controlling 
for medication status (b). c, Gray-matter volume differences between MDD 

participants in a first episode of depression and healthy controls. The color bars 
indicate the strength of the group differences (MIDAS statistic) between MDD 
and healthy control participants.
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morbidity associated with persistent symptoms. The dimensions 
reveal a potential neuroimaging-based marker that can predict treat-
ment outcome to SSRI and placebo, offering an important step toward 
treatment stratification.

Limitations of the present study include the lack of repeated longi-
tudinal MRI measures for each treatment arm. The analysis was focused 
on the baseline measurements during a current depression episode, 
limiting the analysis to depressive state rather than as a trait-like fea-
ture. Macroscopic structural abnormalities have been linked with 
microstructural cytoarchitectonic properties58. How neuroanatomy 
might change following treatment and effects on the observed dimen-
sions is unclear but will be examined in the studies that have acquired 
repeated MRI scans. The present analysis was limited to a single modal-
ity; preliminary functional connectivity measures indicate that there 
are additional dimensions59. Surface and thickness indices are geneti-
cally independent, potentially providing distinct contributions to treat-
ment response predictions60. Functional connectivity in combination 
with neuroanatomical dimensions has the potential to yield a novel 
neuroanatomical–neurofunctional coordinate system28. As previous 
history of antidepressant medication treatment has been associated 
with a greater response to antidepressant medication relative to pla-
cebo61, it is possible that medication history might distinguish the two 
dimensions. Of note, we did not include treatment-resistant depres-
sion, which is characterized by a history of multiple serial treatment 
trials and often combination of treatments. The present findings were 
fully data-driven, and it is not possible to predict treatment response 
at the individual patient level solely on the basis of treatment history. 
Nonetheless, the findings might reflect previous antidepressant use 
or the neurobiological impact of other clinical factors, which are not 
clinically predictive at the individual patient level.

In summary, MDD is a heterogeneous disorder with widespread 
subtle neuroanatomical correlates. In the present study, we used a 
semi-supervised clustering method in a large multisite sample consist-
ing of deeply phenotyped, medication-free MDD individuals in a cur-
rent depression episode. We found two neuroanatomical dimensions 
that showed distinct treatment responses to SSRI medications and to 
placebo. D1 demonstrated preserved volumes and showed greater 
clinical improvements with SSRI antidepressant medication relative 
to placebo, while D2 was associated with widespread reduced volumes 
and no significant difference in treatment responses to either SSRIs 
or placebo. The present findings indicate that MDD is composed of 
neuroanatomical dimensions that have distinct treatment responses, 
offering the potential to develop neuroimaging-based markers in com-
bination with other markers for disease identification and prediction 
of treatment response.

Methods
Participants
COORDINATE-MDD is an international consortium consisting of raw 
individual MRI data with deep phenotypic characterization in MDD28. 
Ethical approvals were acquired by institutional review boards for each 
study site. The subset of MDD participants included in the present study 
satisfied the following inclusion criteria: (1) Diagnostic and Statistical 
Manual of Mental Disorders 4th Edition (DSM-IV) based diagnosis of 
MDD; (2) in current depression episode of at least moderate severity, 
defined as a 17-item Hamilton Rating Scale for Depression score equal 
to or greater than 14; (3) medication free at the time of scanning. Exclu-
sion criteria were as follows: (1) current comorbid psychiatric, medical, 
or neurological disorders; (2) treatment-resistant depression, defined 
as not achieving clinical response to two or more trials of antidepres-
sant medications. A flowchart depicting the screening process is in 
Supplementary Fig. 3.

The present study consists of a total of 685 MDD participants 
from 10 studies (datasets are described in detail in the Supplementary 
Information): CAN-BIND62 (N = 92), EMBARC63 (N = 257), Huaxi MR 

Research Center SCU (HMRRC64, N = 111), King’s College London (KCL65, 
N = 20), Manchester Remedi66,67 (N = 40), Laureate Institute for Brain 
Research (LIBR68,69, N = 554), Oxford70 (N = 39), Predictors of Remission 
in Depression to Individual and Combined Treatments (PReDICT71, 
N = 63), Stanford SNAP72 (N = 8), and Stratifying Resilience and Depres-
sion Longitudinally (STRADL73, N = 1); and a total of 699 healthy control 
(HC) participants from 10 studies: CAN-BIND (N = 23), EMBARC (N = 39), 
KCL (N = 20), LIBR (N = 141), Manchester Blame (N = 46), Manchester 
Remedi (N = 30), Oxford (N = 31), HMRRC SCU (N = 139), Stanford SNAP 
(N = 50), and STRADL (N = 180). EMBARC is a publicly available dataset. 
All other data were shared and aggregated through the COORDINATE-
MDD consortium28. We obtained anonymized demographic, clinical, 
and MRI data from the principal investigators of the original studies 
that contributed to the present analysis. The data were acquired under 
a data-sharing agreement that allows us to access and analyze the 
data as collaborators in the consortium. The data do not contain any 
information that could identify the participants in the original studies.

The pooled age range was 18–65 years for MDD and 16–72 years 
for healthy control participants. MDD diagnosis was based on DSM-IV 
or DSM-IV Text Revision diagnostic criteria. The number of MDD par-
ticipants who were treatment-naïve is 128. Information about ethnicity 
(self-reported) can be found in Table 1. Missing information is because 
data either were not collected or were not shared. Image protocols, scan-
ner acquisition parameters, and study characteristics can be found in 
Table 1 and Supplementary Information. Demographic information by 
site, for patients and controls, can be found in Supplementary Tables 2  
and 3. Each study was approved by the local ethics committee, and all 
participants gave written consent to participate and share de-identified 
data according to each institution’s local legislative and/or ethical poli-
cies. Ethical approval numbers are as follows: Manchester (Stockport 
Research Ethics Committee 07/H1012/76), SNAP (IRB approval 12104), 
EMBARC (STU 092010–151), Oxford (REC reference 11/SC/0224), LIBR 
(WCG IRB 1136261 and 1136947), STRADL (NHS Tayside committee 14/
SS/0039), PReDICT (Emory IRB # 00024975), KCL (Bromley NHS REC 
13/LO/0904), and SCU (IRB 2020(54)).

Longitudinal treatment outcomes were available in a subset of 
five prospective clinical treatment trials: CAN-BIND (N = 81), EMBARC 
(N = 207), Oxford (N = 35), Manchester (N = 36), and PReDICT (N = 63). 
The treatments were an SSRI antidepressant medication (citalopram 
(Manchester), escitalopram (CAN-BIND, Oxford, PReDICT), or sertra-
line (EMBARC)), an SNRI medication (duloxetine (PReDICT), placebo 
(EMBARC), or cognitive behavioral therapy (PReDICT). Treatment  
duration was 6 weeks (Oxford), 8 weeks (CAN-BIND, EMBARC,  
Manchester), or 12 weeks (PReDICT). Depression symptom sever-
ity was assessed by clinician-rated scales: 17-item HAM-D (EMBARC, 
Oxford, PReDICT)74 and Montgomery–Åsberg Depressive Ratings Scale  
(CAN-BIND, Manchester)75. Montgomery–Åsberg ratings were con-
verted into HAM-D rating using conversion tables76. Symptom ratings 
were acquired at baseline and following treatment for all studies (Table 1).  
Trial registration numbers are as follows: CAN-BIND (NCT01655706), 
EMBARC (NCT01407094), and PReDICT (NCT00360399). Oxford and 
Manchester do not have clinical trial registration because it was not a 
national or funder requirement at the time.

Image preprocessing
Each participant’s quality-controlled T1-weighted MRI image was pre-
processed with a containerized processing pipeline. Preprocessing 
steps consisted of correction for magnetic field intensity inhomogene-
ity followed by multi-atlas skull-stripping77. Images were segmented 
using a state-of-the-art multi-atlas, label fusion method (MUSE) to 
derive 259 pre-defined anatomical regions of interest (ROIs) of the 
segmented tissue maps19 (the list of ROIs can be found in Supplemen-
tary Table 4). Voxel-wise regional volumetric maps (RAVENS) were 
generated for each tissue volume78 by spatially aligning the skull-
stripped images to a template in the Montreal Neurological Institute 
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coordinate-space using a registration method79 and harmonizing for 
site, age, and sex effects80.

Application of HYDRA to identify neuroanatomical 
dimensions
HYDRA is a nonlinear semi-supervised machine-learning clustering 
method to distinguish patients from controls by combining multiple 
linear classifiers, whereby each hyperplane separates a dimension 
of patients from the control group resulting in a ‘1-to-k’ mapping29. 
Therefore, HYDRA clusters disease effects by comparing brain  
patterns with those of healthy controls rather than by comparing 
patients with one another. The Adjusted Rand Index (ARI) is a measure 
of similarity between iterations of the clustering process. The Rand 
Index is the sum of the number of pairs of participants that are clus-
tered in the same subtype in two separate iterations and the number 
of pairs of participants that are clustered in different subtypes in 
both iterations, divided by the total possible number of pairs. The 
ARI is the Rand Index adjusted for chance such that the upper bound 
ARI = 1 indicates that all participants are clustered identically across 
iterations whereas an ARI = 0 indicates that participants are randomly 
assigned into clusters. The ARI is used to identify the optimal number 
of dimensions (k) from a range between 2 and 5. Since HYDRA is a 
multivariate method, we applied it to the raw MUSE ROIs. To evalu-
ate the robustness of the optimal k clusters scheme, we performed 
additional analyses. First, we used split-sample analyses to evaluate 
the robustness of the optimal k dimension solution to assess whether 
the dimensions in each half exhibit similar neuroanatomical patterns, 
given that the two halves have similar cohort characteristics in terms 
of age, sex, and site. Second, we conducted leave-site-out cross-
validation to examine whether the dimensions were being driven by 
any one particular site.

Voxel-wise RAVENS of regional tissue volumes
Voxel-wise RAVENS gray- and white-matter maps78 were used to identify 
the brain regions that differentiate each HYDRA dimension from the 
healthy control group. Statistical parametric maps estimating devia-
tions from healthy controls for each dimension were calculated using 
regionally linear multivariate discriminative statistical mapping81 
with age and sex as covariates and filtering out non-significant voxels 
(pFDR < 0.05). Covariate effects were first removed from the data using a 
linear model and then the core method for detecting group differences 
was run for the remaining variable of interest (patients versus controls). 
For completeness, we examined the gray-matter differences between 
the MDD participant group as a whole and healthy controls while con-
trolling for age, sex, and years of education. In a second model, we also 
controlled for medication history as an additional covariate. Medica-
tion history, which was measured by the number of antidepressant 
medication trials, was available for only one site (CAN-BIND). Since 
we did not have individual medication information for the rest of the 
sample, we used a proxy measure as an estimate of previous medication 
use. MDD participants in a first episode of depression were medication-
naïve and would not have taken previous antidepressant medications, 
whereas MDD participants with recurrent depression would have. Last, 
to better understand the regional gray-matter differences in first-
episode MDD participants relative to healthy controls, we excluded 
the MDD participants with recurrent depression (all other covariates 
remained the same). Regions have been labeled with reference to the 
MUSE atlas19. HYDRA and all voxel-wise analyses were performed in 
MATLAB 2018A.

Statistics
Demographic and clinical variables. Group comparisons for demo-
graphic (age, sex, and years of education) and clinical (age of onset, 
years of illness, and duration of current episode in weeks) variables  
were examined across the HYDRA dimensions using Mann–Whitney  

U tests for continuous variables (for example, age) and chi-square tests 
for categorical variables (for example, sex).

Evaluation of HYDRA dimensions and their treatment response to 
antidepressant and placebo. The subset consisted of four cohorts 
of MDD participants from the prospective, longitudinal clinical treat-
ment trials that had included healthy control participants from the 
same sites: CAN-BIND (N = 81), EMBARC (N = 207), Oxford (N = 35), 
and Manchester (N = 36). Treatment was SSRI antidepressant (citalo-
pram (Manchester), escitalopram (CAN-BIND, Oxford), or sertraline 
(EMBARC)) or placebo (EMBARC). Treatment duration was six weeks 
(Oxford) or eight weeks (CAN-BIND, EMBARC, and Manchester).

Of the five cohorts with longitudinal treatment outcomes,  
PReDICT (N = 63) had included only MDD participants. As robustness 
of the optimal dimensional clustering involves comparison of the  
patterns between patients and healthy controls, we could not be certain 
about the results for the five cohorts; therefore, we present the results 
for four cohorts here, and the results including PReDICT are presented 
in Supplementary Figs. 4 and 5.

To examine interactions between HYDRA dimension and treat-
ment group, we used a linear regression model with the percentage 
change in the clinician-rated depressive symptom scale (continu-
ous) as the outcome variable and HYDRA dimension (categorical, 
two groups) and treatment group (categorical, two groups: SSRI and 
placebo) as the independent variables while controlling for age, sex, 
and site. Percentage change in score was calculated as follows: (pre-
treatment baseline score – post-treatment score)/pre-treatment 
score × 100. The effect size (Cohen’s f2 = 0.06) of the interaction 
term has an F statistic of 3.607 on the basis of our analysis using a 
linear regression model. With a sample size of 359, assuming that we 
adjust for six additional covariates in the model and the same effect 
size, we have over 99% power to detect a significant interaction term 
between treatment and HYDRA dimension under 5% Type I error. 
We chose P = 0.05 (two-sided) as the threshold for significance. The 
analyses were repeated while controlling for additional confounding 
factors (years of education and medication status) and are presented in  
Supplementary Results 2.

The linear regression models were conducted using the statsmodels  
0.13.1 Python module82. Power analyses, Mann–Whitney U tests, and 
chi-square tests were conducted in R version 4.2.2.

In a machine-learning analysis, we trained a support vector 
machine to classify patients between the identified HYDRA dimensions 
and performed an additional linear regression using the calculated 
hyperplane distance in place of the dimension label.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
CAN-BIND data are available from https://www.braincode.ca/;  
EMBARC data are available from https://nda.nih.gov/edit_collection. 
html?id=2199; original data are available from individual co-authors, 
and the derived data are available on reasonable request to correspond-
ing authors C.H.Y.F. and C.D.

Code availability
The MUSE algorithm for image segmentation is available at https://
www.nitrc.org/projects/cbica_muse. The HYDRA algorithm is avail-
able at https://github.com/evarol/HYDRA. The MIDAS algorithm 
is available at https://github.com/evarol/MIDAS. The following  
R packages were used: WebPower 0.8.6 (https://cran.r-project.org/
web/packages/WebPower/WebPower.pdf ), effectsize 0.8.2, and 
ggplot2 3.4.0. (https://cran.r-project.org/web/packages/ggplot2/
ggplot2.pdf).
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