
The Experience Of OSCAR
Cornelia Boldyreff, David Nutter and Stephen Rank

University Of Lincoln
{cboldyreff,dnutter,srank }@hemswell.lincoln.ac.uk

Introduction
The problems encountered during the
development of the Open Source Component
Artefact Repository (OSCAR)[3] as a component
of the GENESIS[4] platform are relevant to
distributed development of academic research
prototypes[2] especially where research products
are to be reused in further projects. GENESIS is
an Open Source software engineering
environment that provides process, resource and
software artefact management support to
distributed software teams.

Background
OSCAR was designed at the University of
Durham to store large collections of software
artefacts, either generated by the other GENESIS
components or by developers accessing OSCAR
directly. It provided services to index (with a Self
Organising Map[1]), version control and annotate
artefacts with extensible metadata.
Problems were encountered in all phases of the
project, leading to slowly increasing delay.
Risk-management resulted in a reduction of
functionality in the final OSCAR deliverables
including the removal of dependability and
promised plug-in features.

Project’s Vital Statistics
The table below compares the rest of the
GENESIS project with OSCAR. The OSCAR code
is obviously the largest single component of the
system.

GENESIS project (excluding OSCAR)
Total LoC 119,846
Mean class size 239
No. of classes 501
No. of packages 69

Of which subpackages 60
No. of support files 683
OSCAR sub-project
Total LoC 53,718
Mean class size 191
No. of classes 281
No. of packages 30

Of which subpackages 19
No. of support files 665

OSCAR was the largest single component in the
system, unsurprising given its important role.

Consortium Map
This shows the location across Europe of the
various consortium partners. There is a large
concentration of partners in Italy.

Academic partner

Commission

Industrial partner

University Of DURHAM, UK

EUROPEAN COMMISSION

Schlumberger, ES

University Of Rome, IT

University Of SANNIO, IT

University Of SALERNO, IT

LogicDIS, GR
MoMA, IT

Poor Collaboration

Agree a process for software release and information
distribution. Stick to it!
Additionally, the choice of tools and platform are
important when arranging collaboration. In
particular, a centralised repository of all project
data should be established at project
commencement, rather than relying on
per-component or per-developer repositories.

Undocumented Meetings

Partners who are unable to attend meetings should be
kept fully informed.
This is especially important if decisions
impacting the work of the absent partners are
taken at that meeting. Full minutes should be
produced and circulated of all such meetings,
with the important decisions highlighted.
Unbalanced geographic distribution can
exacerbate collaboration and communication
problems.

Short Timescale

Concentrate on effective risk management
Due to lack of recovery time after mistakes, a risk
management plan must be prepared for a variety
of unfavourable situations. Our usual response
to a bad risk was to discard that functionality in
favour of something more simple.

Overambition

Manage expectations: promise little and over-deliver if
you can.
Obviously this must be balanced with the need to
do novel research, if that is a goal of the project.
A simplistic project may not be impressive from a
research perspective.

Poor component choice

Take care that selected components satisfy all stakehold-
ers’ needs before proceeding
This was our greatest design failing in terms of
time wasted, so be careful! The risk management
plan should address situations where
components need to be abandoned.

Balancing Needs

Solve partner’s problems first. Any blue-sky research
is a bonus.
Much research including GENESIS is funded on
condition that the academic partners collaborate
closely with their industrial counterparts to solve
a real problem. It is therefore churlish to use the
time to do purely speculative research. A
process, not necessarily formal, for exchanging
software and management information between
sites is necessary. For example, academic
partners should address the installation support
needs of industrial partners.

Documentation

Balancing the need for documentation with ongoing
work is hard. Impress upon collaborators the need to
be adventurous. Provide examples!
While examples are vital for researchers learning
the new software, complete reference guides and
manuals are not. Additionally, examples are
quick to write whereas comprehensive manuals
are not.

Dissemination

An ”information pack” with lots of documents and if
possible software is an invaluable aid when talking to
curious potential users
Industrial dissemination is somewhat different,
but for academics collected papers and source
code on CD is a convenient format for
distribution at conferences.

Bugtracking

Agree the information required in a useful bug report
and train researchers developing with the system to be
active participants in maintenance where possible.
For a lightly staffed research project, merely
telling the developers “This does not work” is
insufficient. Completing bug reports is necessary
although the time developers can spend tracking
down problems is necessarily limited.

Conclusions
Despite the problems above the final release of
OSCAR was usable, though feature-reduced. The
problem areas discussed have been noted and
will be used to redirect research development to
avoid them in the future.
The issues peculiar to the GENESIS project:

•Geography exacerbated communication &
collaboration problems

• Failure to recognise poor quality of a key
component

Issues common to all academic projects, on which
agreement should be reached early in the project:

•Common platform, component selection and
appropriate tool support

•Balancing research and software development
•Dealing with collaboration issues
•High staff turnover
•Documentation and data organisation

The short-term nature of modern research
projects appears to be the factor exacerbating all
these problems as there is little or no time to
recover from mistakes. Consequently, a strong
risk-management strategy appears to be the most
important preventative measure.

References

[1] C. Boldyreff and J. Brittle. Self-organizing maps applied in
visualising large software collections. In A. V. Deursen, C. Knight,
J. I. Maletic, and M.-A. Storey, editors, Proceedings of the 2nd IEEE
Workshop on Visualising Software for Understanding and Analysis,
pages 99–104. IEEE, September 2003.

[2] D. Nutter, C. Boldyreff, and S. Rank. Communication and conflict
issues in collaborative software research projects. In Proc. of the 4th
Workshop on Open Source Software Engineering, Edinburgh, May
2004. IEEE.

[3] D. Nutter, S. Rank, and C. Boldyreff. Architectural requirements
for an Open Source Component and Artefact Repository System
within GENESIS. In Proceedings of the Open Source Software
Development Workshop, pages 176–196. University Of Newcastle,
February 2002.

[4] P. Ritrovato. Generalised enviroment for process management in
cooperative software engineering. In Workshop on Cooperative
Supports for Distributed Software Engineering Processes, Proceedings of
COMPSAC2002, pages 1049–1053. IEEE, August 2002.


