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Abstract
Onlinemonitoring of electroencephalogram (EEG) signals is challenging due to the high volume of
data and power requirements. Compressed sensing (CS)may be employed to address these issues.
Compressed sensing using a sparse binarymatrix, owing to its low power features, and reconstruc-
tion/decompression using spatiotemporal sparse Bayesian learning have been shown to constitute a
robust framework for fast, energy efficient and accuratemultichannel bio-signalmonitoring. EEG
signal, however, does not show a strong temporal correlation. Therefore, the use of sparsifying
dictionaries has been proposed to exploit the sparsity in a transformed domain instead. Assuming
sparsification adds values, a challenge, therefore, in employing this CS framework for the EEG signal,
is to identify the suitable dictionary. Using realmultichannel EEGdata from15 subjects, in this paper,
we systematically evaluate the performance of the frameworkwhen using various wavelet bases while
considering their key attributes namely number of vanishingmoments and coherencewith sensing
matrix.We identified Beylkin as thewavelet dictionary leading to the best performance. Using the
same dataset, we then compared the performance of Beylkinwith the discrete cosine basis, often used
in the literature, and the alternative of not using a sparsifying dictionary.We further demonstrate that
using dictionaries (Beylkin andDiscrete Cosine Transform (DCT))may improve performance
tangibly only for a high compression ratio (CR) of 80% andwith smaller block sizes, as compared to
using no dictionaries.

1. Introduction

The dynamic nature of biomedical signals such as
electroencephalographic (EEG) and electrocortico-
graphic (ECoG) traces results in a wide variation in
normal and pathologic features in different indivi-
duals. The use of manually extracted features for
prediction of pathological events is impractical with a
large volume of data, even for a small number of
electrodes, leading to large processing delays. Thus,
automated feature extraction and signal processing
methods are necessary for real time and clinically
useful implementation in such applications. Real-time
processing can be facilitated using cloud computing,
Internet of Things (IoT) and deep learning, to
effectively monitor and predict seizures using EEG
signal [1], which requires high data volume transmis-
sion of the acquired bio-signals. In addition, remote

online monitoring and diagnosis using EEG signals
can reduce the frequency of patient visits to hospitals
[2–5].

Energy consumption and high volume of data are
major constraints in transmission of EEG signal due to
limited battery life and processing capability of sensor
nodes. Recent efforts aiming to increase battery life
focus on reducing the power of transmission and data
rate with compressed sensing (CS) [6, 7]. As CS can lead
to significant computational savings for on-chip imple-
mentation with relatively low sampling rates, recently it
has been viewed with considerable interest as a viable
technique for the transmission of large data volumes
andhigh data rate signals [5]. InCSdata is projected into
a compressed format non-adaptively upon acquisition
using a sensing matrix, which differs from conventional
compression techniques where data is acquired then
compressed and indices are stored.
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A requirement of conventional CS is that the signal
must be sparse in the domain where it is compressed
[7]. EEG signal, however, is not sparse in time or the
frequency domains [5]. A challenge, therefore, in
employing conventional CS for the EEG signal, is to
identify the domain known as the dictionary in which
the EEG signal is sufficiently sparse. This leads to
another sufficient requirement for CS which is the
incoherence between the dictionary and the sensing
basis matrix i.e., the level of dissimilarity between the
two. For an accurate reconstruction of the original sig-
nal, the dictionary and sensing matrix must be highly
incoherent. For EEG signals, the accuracy of recon-
struction of the signal with CS depends on a suitable
dictionary that is maximally incoherent with the sen-
sing basis [8]. Various dictionaries have been devel-
oped and investigated to enable sparse representation.
These include Gabor transforms (GT), discrete wave-
let transforms (DWT), spline and discrete cosine
transforms (DCT) [5, 9]. Results in these techniques
indicate accurate reconstructions with less error, how-
ever, the specific features that make these appropriate
or suitable dictionaries, have not been investigated or
explained. Selecting a specific DWT for a given appli-
cation to ensure an accurate reconstruction of the
compressed signal is challenging. In most applications
(other than EEG with CS), a key feature employed in
selection of a DWT is the number of vanishing
moments, which determines its ability to represent
complex signals efficiently or more sparsely. Accord-
ing to the Strang-Fix condition (as a special case) the
approximation order of a DWT increases with the
number of vanishing moments up to the smoothness
index (Hölder regularity) of the approximated signal
[10]. That is, the sparseness of the wavelet-trans-
formed signal is in general higher for longer wavelets.
An equal number of vanishing moments for the DWT
can also be viewed as all doing ‘similar amounts of
work’ [11].

For reconstruction, block sparse Bayesian learning
(BSBL)may be employed to exploit the block sparsity
of bio-signals. Current motivations in employing CS
include low hardware complexity with optimization
algorithms, and novel BSBL approaches to reduce
latency.

The authors in [5] propose a novel method to use
the BSBL framework to compress/reconstruct non-
sparse raw FECG recordings. Experimental results
show that the framework can reconstruct the raw
recordings with higher quality as compared to other
BSBL and CS DWT based methods. The authors in [8]
depart from previous CS-based approaches and for-
mulate signal recovery from under-sampled measure-
ments. In [9] the authors compare and detail
performance of various dictionaries for CS in EEG and
ECG signals in order to come up with an optimal dic-
tionary and its suitability for deployment in embedded
hardware. However, the authors do not reflect on
prior analysis of dictionary properties such as

incoherency and vanishing moments for the choice of
the dictionaries. A novel BSBL approach is given in
[12] and the DCT is employed for increasing sparsity
with the results presented for both ECG and EEG sig-
nals but does not relate to the choice of selecting the
DCT [12]. In [13] an explanation in terms of incoher-
ency is given for the choice of dictionary followed by
an optimization algorithm leading to the optimal
selection of the dictionary, based on a pre-selected
class of dictionaries. The work detailed in [14] is on
hardware implementation, no novel properties of the
dictionaries are discussed. Other variations of BSBL
include the spatiotemporal sparse Bayesian learning
(STSBL) that exploits signal correlation [15]. Thework
in [15] offers a novel computational improvement
over the BSBL methods and is not aimed at high-
lighting the attributes of DWTs for an optimal dic-
tionary choice. The approach in [16] compares the
accuracy of reconstruction for various dictionaries. It
does not mention the choice or selection of wavelet in
terms of the properties of incoherence and vanishing
moments.

In this paper, we primarily aim to evaluate the use-
fulness of using a sparsifying dictionary with a sparse
binarymatrix (SBM) used as a sensingmatrix for CS of
multichannel EEGwhile STSBL is used for reconstruc-
tion\decompression. In doing so we arrive at the fol-
lowing novel contributions not reported in earlier
literature:

We first investigate various DWT bases while con-
sidering their key attributes of incoherence with SBM,
an important feature in basic CS methods, together
with vanishing moments of DWT dictionaries, a
defining feature of wavelet functions. Our results indi-
cate that both features should be considered at the
same timewhen selecting the dictionary.

We, also, provide clear evidence that Beylkin
(highly incoherent with SBM and with relatively high
number of vanishing moments) leads to the best per-
formance amongst DWT dictionaries evaluated in this
paper.

We then compare the performance of the frame-
work while implementing Beylkin as the sparsifying
matrix with the case of using DCT and using no dic-
tionary at all for various compression ratios (CR) and
block sizes. It is shown that in terms of reconstruction
time and accuracy using sparsifying dictionary pro-
vides added value in this framework, but only for spe-
cific levels of compression and under specific settings.

The paper will be useful for finalizing a framework
for online EEG monitoring systems with CS that
includes dictionary selection, CRs, block sizes and
reconstruction time.

A brief introduction to the theory of CS and STSBL
algorithm is in section 2. Materials and methods are
presented in section 3, followed by the associated
results in section 4, discussions in section 5 and con-
cluding remarks in section 6.
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2. Theory

2.1. CS, BSBL and STSBL
In this section, after briefly explaining the basic CS
theory irrespective of block sparsity, key formulations
regardingBSBL and itsmodifications leading to STSBL
for CSwill be discussed.

In CS, a signal of lengthN, denoted by Î ´x ,N 1

is linearly compressed by a sensing matrix denoted by
F Î ´ ,M N to yield y (noting M<N, hence the
word compressed, where N could be the number of
samples corresponding to Nyquist rate), which is the
measured signal and is given by:

F= +y x v, 1( )

where v is vector representing compression error or
CS system noise. x also may contain noise and may be
represented as = +x u n,whereu is the clean signal
and n is the signal noise and, subsequently, it is trivial
to show:

F= +y u w, 2( )

where F=w n [17].
Under certain conditions, described later in this

section, this ill-conditioned problem may be solved
and signal xmay be reconstructed. A key concept inCS
is the sparsity of x, defined as having only a few non-
zero elements. Even if x is not sparse, one may repre-
sent it in a suitable domain in which it exhibits spar-
sity. This domain may be represented by a dictionary
matrix, denoted by Y Î ´ .N N Thus, x can be
represented as:

Y=x z 3( )

where z contains the coefficients of x in Y domain.
Assume x is K-sparse in this domain (i.e., z has only
K<N non-zero elements; in practice zmay containK
relatively large elements whilst the restmay be ignored,
in which case the signal is compressible in this domain).
Ignoring v, from (1) and (3)wehave:

FY Q= =y z z. 4( )

Therefore, for reconstructing the original signal,
CS algorithms need to reconstruct z first using y and
Q; subsequently, the original signal x can be recon-
structed at the receiver end.

For successful reconstruction, Q should follow a
condition referred to as restricted isometry property
(RIP). RIPmay be achieved with high probability if the
sensing matrix is random [7]. A condition related to
RIP is the incoherence that denotes rows of F, f ,k{ }
and columns of Y, yj{ } should not be correlated. It is
noted that M should be sufficiently large. Coherence
(μ) is quantified as shown in (5).

ym fF Y =
 

, N max , . 5j
1 k,j N

k( ) ∣ ∣ ( )

A smaller m indicates a lower level of similarity
between the elements of the two bases, i.e., F and Y
are highly incoherent. The value of m is between 1 and
N [7]. The reconstruction performance of CS

depends on the level of incoherence between F and
Y [8].

The choice of F is directed towards minimal
power usage in the hardware in this application and
SBM is often used since it consumes very low power
[5, 18]. This is because SBM has very few of its entries
as ones andmost entries are zeros [5]. This reduces the
complexity and power requirements as it simplifies the
hardware implementation, which is crucial for the
design of low-power and efficient transmitters.

The original N datapoints may then be recon-
structed from M measurements in CS framework
using methods such as basis pursuit with L1 norm
minimization [7], which relies on sparsity; thus, as
EEG is not sparse in time domain or frequency
domain [8], it would be essential to find a suitable Y
for sparsity while ensuring that it is maximally inco-
herent with the selected F [19]. BSBL based methods,
which are of interest in this paper, exploit the block
sparsity of signal. A block structured signal x may be
represented as in (6)where g blocks are shown.

= ¼ ¼ ¼+-x x , , x , , x , , x . 6T
1 d d 1 d1 g 1 g[ ] ( )

For a block sparse signal, only K g blocks are
non-zero. If the signal is not block sparse in the origi-
nal domain, by transforming it into a domain in which
it is sparse, block sparsity may ensue. Assuming the
EEG signal is transformed using a dictionary in which
the signal is sparse or compressible, the coefficient vec-
tors form a concatenation of a number of blocks, only
a few of which are non-zero or relatively large and the
rest are all zeros or negligible.

The bound optimization method, BSBL-BO, can
be employed that assumes the vector it operates on
consists of some non-overlapping blocks. The block
size can be chosen arbitrarily when using a sparsifying
dictionary, and it is not necessary that the block parti-
tion of the signal has a clear block structure [5, 20].
Although BSBL-BO is employed successfully for
reconstructing single channel EEG signals, for multi-
channel signals, signal reconstruction is channel by
channel which is time consuming. This increases
latency and is not suitable for on-line health monitor-
ing applications. BSBL-BO exploits only the intra-
channel correlation of the signal instead of exploiting
the inter-channel correlation of the signals from dif-
ferent channels. For exploiting both the intra-channel
and inter-channel correlation of the signals, a STSBL
method has been proposed in [15]. STSBL recon-
structsmultichannel EEG signals simultaneously. This
exploits temporal correlation in each channel signal
and additionally also the spatial correlation among

3
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signals of different channels. Thereby, its computa-
tional complexity does not increase with the number
of channels [15].

2.2.Wavelet dictionaries
The number of vanishing moments is related to the
order, decay rate and smoothness of wavelets. A
continuous wavelet (CW), j, has p vanishing
momentswhen:

ò j =  t t dt k p0, for 0 7k ( ) ( )

and for theDWTwithfilter coefficients h

å = = ¼ -k h k n p0, for 0, 1, , 1 . 8
k

n ( ) ( )

The number of vanishing moments is the differ-
entiability or a measure of the smoothness of func-
tions. DWThas two functions, called scaling functions
and wavelet functions, which are associated with low-
pass and highpass filters, respectively. The decomposi-
tion of the signal into different frequency bands is
obtained by successive highpass and lowpass filtering
of the time domain signal. DWT has p vanishing
moments if and only if the wavelet function can gen-
erate polynomials up to degree p-1. The ‘vanishing’
part means that the wavelet coefficients are zero for
polynomials of degree at most p-1. A higher value of p
implies that the wavelet filter is able to filter out high
frequency components of the signal accurately from
any of the low-frequency or long-term data variations.
This accordingly leads to an accurate reconstruction of
the signal. CWs andDWTswith a higher value of p can
representmore complex functions.

A higher p also increases sparsity of a large class of
signals being represented by the DWTs. In most cases,
the DWT name is suffixed by its order n. The Daube-
chies-n and Symlet-n DWTs both have p=n vanish-
ing moments. The number of filter coefficients nc for
the DWTs is 2p. Their difference lies wherein Symlet
filters are as symmetrical as possible as compared to
the Daubechies filters which are highly asymmetrical.
The Coiflet-n DWT has p=2n vanishing moments
with nc =6n. The Battle-Lemarie also known as Bat-
tle-nDWT generates spline orthogonal wavelet filters,
where n is the degree of spline. The Battle-n DWTs
have p=n+1. The Battle-n have infinite support
but with an exponential decay, and filter coefficients
below 10−4 are neglected in this paper, giving nc =12
and 21 for Battle-1 and Battle-3, respectively. The
Beylkin is optimised for placement of additional zeros
close to half the sampling frequency to for obtaining
higher attenuation of high-frequency components for
the scaling filter and close to DC for attenuation of the
low-frequency components. It has fixed number of fil-
ter coefficients nc=18 and although it has three zeros
at z=−1 and 1, it has p∼9. The Vaidyanathan
DWT is optimised for speech coding with nc=24
with additional zeros close to high frequency and DC
for the scaling and wavelet filters. It offers accurate

reconstruction of the decomposed signal just as in case
of other DWTs including Beylkin but does not satisfy
any moment condition. The Haar DWT is the least
complex to implement as it has nc=2, has one zero at
z=−1 and 1 for the scaling and wavelet function
indicating p=1.

3.Materials andmethods

3.1. Incoherence of SBMwithwavelet dictionaries
As the first step, the number of non-zero entries of the
SBM that would lead to amoderate incoherence for all
the wavelet dictionaries to be used was identified by
calculating the coherence of randomly generated SBM
with each dictionary for a varying number of non-zero
entries. The fifteen DWT basis considered are Daube-
chies-3, Daubechies-4, Daubechies-8, Daubechies-10,
Symmlet-10, Vaidyanathan, Coiflet-1, Coiflet-2, Coif-
let-3, Coiflet-4, Coiflet-5, Harr, Battle-1, Battle-3 and
Beylkin of size 256×256 as the Y matrix. The result
is shown in figure 1. Subsequently, the number of
nonzero entries selectedwas 30.

3.2. Reconstruction usingwavelet dictionaries
The simulations were undertaken inMatlab®2017a on
EEG data of 15 subjects involving 10 epileptic and 5
non-epileptic datasets from the Temple University
Hospital EEG data corpus [21] with 23 channels
containing EEG data selected sampled at 250 samples
per second. The signal amplitude typically ranges from
about 1 μV to 100 μV and frequency ranges between 1
Hz – 100 Hz as shown in the fast Fourier spectra of
normalised aggregate signal shown in figure 2. To
form the spectra shown in figure 2, data points of all 23
channels at a given time were summed to demonstrate
the spectra of all channels at the same time. The signals
exhibit non-linear, uncorrelated properties and ran-
dom nature. In processing EEG data in this paper, we
considered 256 samples as an epoch. This led to 117
epochs for each subject. The block size used was set to
24 similar to [5].

The reconstruction quality of EEG signals using
different DWT dictionary (Daubechies-3, -4, -8, -10,
Symlet-10, Vaidyanathan, Coiflet-1, -2, -3, -4, -5,
Harr, Battle-1, Battle-3, Beylkin) were compared here
using two performance indicators. One is the normal-
isedmeans square error (NMSE), defined as

-x x x 92
2

2
2ˆ ( )   /

where x̂ is the estimate of the original signal x. The
second is the structural similarity index (SSIM), which
measures the similarity between the reconstructed
signal and the original signal [6]. Higher value of SSIM
indicates better reconstruction. When the recon-
structed signal and the original signal are same,
SSIM=1. To compare the performance of the
dictionaries in the first instance a 50% CR defined as

´- 100N M

N( ) was used.
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The median of NMSE and SSIM for all the epochs
associated with a subject was calculated as themeasure
of center due to the skewed distribution of values
across the 117 epochs. The mean and standard devia-
tion of the center were subsequently calculated across
the 15 subjects.

3.3. Beylkin,DCT andnodictionary
As will be demonstrated in section 4.1 the best
performance is associated to Beylkin dictionary
amongst the DWT dictionaries assessed in the paper.
The performance was compared with the DCT dic-
tionary as well as the case of using no sparsifying
dictionary for different CR values ranging from 50% –

90% and different block sizes (16, 32 and 64) in terms
of NMSE, SSIM and reconstruction time. Further-
more, the effect of number of non-zero elements in

SBM on the performance of the framework when
using no dictionarywas evaluated.

4. Results

4.1. Reconstruction usingwavelet dictionaries
Figures 3 and 4 show NMSE and SSIM (bar indicating
the mean and error bar showing the standard devia-
tion) of the reconstructed signal (CR=50%) for all
the subjects and for all the 15 DWT dictionaries. Both
the NMSE and SSIM indicate a superior performance
by Beylkin. Figure 5 shows the scatter plot of
coherence versus vanishing moments for all the
dictionaries and indicate the correlation these features
have (μ and p) with the reconstruction performance
(mean of NMSE). The results indicate that those
dictionaries that tend to have both high incoherence

Figure 1.Coherence between F and Y.

Figure 2. Frequency spectra of aggregate EEG signal for all subjects.

5

Biomed. Phys. Eng. Express 6 (2020) 065024 MRDey et al



Figure 3.NMSE for themultichannel EEG signal reconstruction.

Figure 4. SSIM for themultichannel EEG signal reconstruction.

Figure 5.Demonstrating the relationship between coherence and vanishingmoments for the 15DWTdictionaries studied here. Also,
the correlations between vanishingmoment and coherencewith reconstruction performance for all the dictionaries are shown.

6
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and vanishing moments tend to perform better. These
show the effect of coherence is more significant when
comparing Beylkin with Symlet or Coiflet. That is,
Beylkin has higher incoherence with SBM but lower
number of vanishing moments compared to these two
but the overall performance associated with Beylkin is
better.

4.2. Beylkin,DCT andnodictionary
Figure 6 shows an example of aggregate EEG signals
(original and reconstructed using different CRs)
associated with using Beylkin and DCT as the

dictionaries and using no dictionary at all when the
block size was set to 64. It is noted that the reconstruc-
tion quality as qualitatively evaluated, based on this
figure, appears to be the same for all three cases.

Figure 7 shows NMSE, SSIM and reconstruction
time for the three cases of using Beylkin, DCT and no
dictionary for various CRs and different block sizes.
Larger block size appears to lead to higher errors in
reconstruction for Beylkin and DCT for CR<90%
while when no dictionary is used changing block size
does not affect the result. For a block size of 64, the
reconstruction time demonstrates a degree of

Figure 6.Examples of normalised aggregate EEG signal (addition of all 23 channels at a given time) of the original and reconstructed
for different values of CR for Beylkin, discrete cosine and the case of using no discrete dictionary for block size equal to 64. The blue
traces show the original while the green traces are the reconstructed.

Figure 7.NMSE, SSIMand reconstruction times as a function of CRwhen using Beylkin, DCT and no dictionary for different block
sizes (16, 32 and 64). As before, data points show themean and error bars show the standard deviation across 15 subjects.

7
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nonlinearity with respect to CR. Figure 8 compares the
effect of changing the number of non-zero elements (2
and 30) in SBM when using no sparsifying dictionary.
It is clear that NMSE and SSIM are not affected by the
number of non-zero elements in SBM in this case.

5.Discussion

In recent years, CS has gained considerable attention
as a key enabler for transfer of large data rate and
volume signals over a sensor network, primarily driven
by emerging technologies such as the IoT. The choice
of theDWT is normally based on its ability to represent
complex signals given by the number of vanishing
moments. A higher number of vanishing moments
increases sparsity of a large class of signals being
represented by the DWTs. However, incoherence with
the sensingmatrix also needs to be considered as it can
affect the quality of reconstructed signal. A high level
of incoherence with the sensing matrix is required for
accurate reconstruction of the EEG signal with mini-
mal error. The Debaucchies DWT is widely employed
for most applications as it has a high number of
vanishing moments. While Debaucchies-10 has an
equal number of vanishing moments to Beylkin,
Symlet-10 and Coiflet-5, it has one of the lowest
incoherence levels with the sensing matrix. The
Debaucchies-10 DWT produces a lower quality of
reconstructed signal with higher errors and lower
accuracy in comparison. Although a high number of
vanishing moments may indicate an increase in
sparsity of a large class of signals, incoherence of the
DWT with the sensing matrix is often the only
consideration for accurate reconstruction of the EEG
signal. To reduce the complexity of implementation
among those having similar values of incoherence and
vanishing moments, dictionaries with a lower number
of filter coefficients can be implemented to minimize

the order of complexity with a view to reducing the
power requirements in EEGdata transmission.

An interesting demonstration in this paper is that
Beylkin andDCT lead to a similar performance quality
(DCT only slightly better). Furthermore, using a dic-
tionary only offers tangible improvement for
CR=80% and smaller block sizes. At CR=90% the
error levels and dissimilarity are high to a level that all
the plots converge irrespective of block size and whe-
ther or not a dictionary is used. Looking at the example
data in figure 6, at higher CR levels more high fre-
quency content is lost. Therefore, while NMSE and
SSIM gave stringent figures to compare different cases,
this comparison cannot necessarily be extended to
evaluating clinical outcome. Some applications may
only be interested in low frequency events, in which
case CR>80%may lead to an acceptable outcome.

6. Conclusion

In this study we proposed a framework for the selection
of a DWT dictionary used in tandem with SBM as the
sensingmatrix and STSBLmethod as the reconstruction
algorithm. It was demonstrated that in selecting the
dictionary its incoherencewith the sensingmatrix aswell
as its number of vanishing moments should be consid-
ered at the same time.Amongst theDWTdictionarieswe
studied, Beylkin led to the best performance. This
indicates that incoherence presumably has a slightly
stronger impact on the outcome based on the methods
used in this paper. It was shown in comparing Beylkin,
DCTandusingnodictionary at all that using adictionary
only leads to improved performance for CR=80% and
for smaller block sizes. Further work could be directed at
identifying the exact clinical implications based on
specific pathologies. In addition, there have been efforts
to develop data-driven schemes for learning the best
sparsifying dictionaries as well as using a deep neural
network for reconstructing the compressed signals
[22–25]. Considering these methods for further bench-
marking could be a promising direction for future
research.
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