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Abstract—With the fast progression of the speech enhancement
field after the introduction of deep learning techniques, there
is a need to consider the adjustments needed to employ these
techniques for real-life applications. In this work, we present
an optimised deep learning speech enhancement architecture for
automatic speech recognition and hearing aids, two key speech
enhancement applications. A speech enhancement architecture
with a signal-to-noise ratio switch is presented for automatic
speech recognition systems, to avoid denoising artifacts that cause
performance degradation in the case of clean or high signal-to-
noise speech. Moreover, a smart speech enhancement architecture
is presented for hearing aids to retain important emergency noise
in the audio signal. The presented work achieved 13.9% reduction
in the word error rate of an automatic speech recognition system.
Additionally, the smart speech enhancement architecture resulted
in 0.18 improvement in HAAQI audio quality metric.

Index Terms—Automatic speech recognition, convolutional
classifiers, deep learning, hearing aids, speech enhancement

I. INTRODUCTION

Recent deep learning-based speech enhancement (SE) archi-
tectures have shown a great ability to generate estimated clean
speech signals with high quality and intelligibility [1]–[3].
This allows these architectures to be employed for real-life SE
applications, including Automatic Speech Recognition (ASR)
[4], [5] and hearing aids [6], [7]. However, when applying
SE architectures to these applications, other factors should be
taken into consideration.

On the one hand, SE is not always useful for applications
such as ASR, because the artifacts added by the distortion
caused by the enhancement networks sometimes result in
worse Word Error Rates (WERs) [4], [8]. To solve this issue,
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two-stage SE networks can be implemented to minimize dis-
tortion [3], [9]. Another idea is the joint training of the SE net-
work and ASR system, which also shows better performance
[4]. Although these solutions result in improving the WER,
the SE network should only be turned on when necessary.
This is to keep these distortion artifacts to a minimum and
to avoid clean speech processing, which increases processing
time without any performance gain. The decision of switching
on or off the SE network can be performed based on the
Signal-to-Distortion (SDR) ratio of the enhanced speech [10].
Alternatively, a deep neural network (DNN) can be trained to
decide whether to perform SE or not, using the WER of the
ASR system under testing for the enhanced speech and clean
speech [11]. However, these solutions are based on making the
decision based on the enhanced speech signal, which means
SE processing is always required, and this increases processing
time.

On the other hand, it is crucial to enhance emergency noise
along with speech, known as Smart Speech Enhancement
(SSE) [12], especially for applications such as hearing aids,
where the users have reduced hearing ability. As presented
in the literature [12], [13], having a SE and alert system in
one SSE architecture can replace the need to install separate
alert systems [14] for hearing aid users. This idea is based on
adding a frontend noise classifier to detect emergency noise
and runs an audio enhancement network, trained to output
speech and emergency noise. However, based on the reported
results, this can negatively affect the performance of the SE
module, especially for highly intrusive noise environments,
where it is very challenging for one network to perform speech
and emergency noise enhancement simultaneously [12].

In this work, we present two improved implementations
of the two-stage Deep Encoder-Convolution Autoencoder De-



noiser (DE-CADE), proposed in [9] and shown in Fig. 1,
one for ASR systems and another for hearing aids. The
architectures fill the gaps in the literature through the following
contributions.

• A SE architecture is presented for ASR systems that
significantly reduces the WER in noisy environments, and
minimizes clean speech distortion through the usage of
a signal-to-noise (SNR) based switch, which also avoids
extra processing time when SE is not required.

• A new SSE architecture is presented, where the emer-
gency noise and speech are enhanced separately using a
second stage network, to improve performance.

The following sections are organized as follows. In Section
II, the developed DNNs will be explained. Section III defines
the problems under investigation. Experimental setup is given
in Section IV. Results and discussions are presented in Section
V. Finally, Section VI provides the conclusion.

II. THE DEVELOPED ARCHITECTURES

For both ASR systems and hearing aids, the developed
architecture consists of a frontend binary classifier and a two-
stage SE network, as shown in Fig. 2.

For ASR, the classifier was trained to classify low and high
SNRs, as shown in Fig. 2(a). In our implementation, SNR
values that are less than or equal to 15 dB belong to class
1 (low SNR), while SNR values that are greater than 15 dB
belong to class 0 (high SNR). If the noisy speech is of low
SNR, the classifier switches on the two-stage SE network,
and then the enhanced speech by the network is fed to the
ASR system to generate the transcription. While for high SNR,
the unprocessed speech is directly fed to the ASR system,
without performing SE, to avoid the artifacts generated by the
SE network.

For hearing aids, the frontend classifier was trained to detect
emergency noise in noisy speech, as shown in Fig. 2(b). The
classifier outputs 1 if emergency noise accompanies the speech
signal and 0 otherwise. If emergency noise is detected, two
second stage DE-CADE architectures will run, one performs
speech reconstruction, and the other performs emergency noise
enhancement. Otherwise, the standard SE procedure is applied,
in which the network enhances the speech signal only.

The following subsections describe the implementation of
the classifier and SE network separately.

A. The CNN Classifier

A binary one-dimensional (1D) convolution-based classifier
was implemented [12] that consists of three convolution layers
with Parametric Rectified Linear Unit (PReLU) activations,
stride of size 2, and kernel of size 10. The convolution layers
are followed by two dense layers for prediction. The first dense
layer has 512 units and Rectified Linear Units (ReLU), while
the second dense layer generates the output using a Sigmoid
activation.

The classifier accepts five frequency domain-based features
that were proven to be effective for audio classification [15],
[16]. These features are then concatenated together to generate

an input feature vector that is fed to the classifier network, Ci.
This feature vector can be represented as in Equation 1:

Ci = yMFCC ⊕ yMel ⊕ ySC ⊕ yChroma ⊕ yT , (1)

where yMel is the Mel-Spectrogram, yMFCC is the Mel-
Frequency Cepstral Coefficients (MFCCs), YSC is the Spectral
Contrast, YChroma is the Chromagram, and YT is the Tonnetz
[16].

B. The Deep Encoder-Convolution Autoencoder Denoiser
(DE-CADE)

The SE DE-CADE [9], shown in Fig. 1, performs a first
denoising stage in the frequency domain and a second recon-
struction stage in the time domain. The architecture is a fully
convolution encoder/decoder-based implementation, where the
encoder is deeper than the decoder, to improve performance
and minimize network complexity. The noisy speech is first
processed by the frequency domain-based DE-CADE, where
aggressive noise removal is performed, generating a highly
denoised but distorted speech. The output of the first stage is
then processed by the second stage time domain-based DE-
CADE, which performs speech reconstruction and outputs the
enhanced speech.

When implementing the architecture to perform SSE for
hearing aids, the second reconstruction stage was trained
twice: the first to reconstruct speech and the second to enhance
emergency noise. This will result in having an enhanced
speech and emergency noise signals as outputs, as shown in
Fig. 2(b).

III. PROBLEM DEFINITION

As this work presents an improved SE architecture for
two different applications: ASR systems and hearing aids,
the description of the problem for each application will be
presented separately in the following two subsections. It is
also represented in Fig. 2

A. Speech Enhancement for ASR

The time domain noisy speech signal can be expressed as
in Equation 2:

y(k) = s(k) + n(k), (2)

where, y is the noisy speech, s and n are the speech and noise
signals, and k is the time index.

In deep learning-based SE, the noisy speech y is processed
by a DNN to generate an estimate to the clean speech signal,
ŝ. As proved in [4], [8], the SE process adds some unwanted
artifacts that negatively affects the enhanced speech signal,
as it causes speech distortion. Considering the effect of these
artifacts, the time domain enhanced speech signal, ŝ2, that is
generated by the second stage DE-CADE network, shown in
Fig. 1, can be defined as in Equation 3:

ŝ2(k) = s(k) + αn(k) + z(k), (3)

where α is a scaling factor to the noise signal, describing the
decrease in noise intensity due to the noise removal process,



Fig. 1. The two-stage Deep Encoder-Convolution Autoencoder Denoiser (DE-CADE) [9]

Fig. 2. The proposed architectures: speech enhancement for ASR (Sub-figure a) and smart speech enhancement for hearing aids (Sub-figure b)

and z is the signal that represents the added artifacts by the
DNN.

By observing the performance of the ASR system used
for testing using different noisy speech data at many SNR
levels, we noticed that the ASR system can generate a tran-
scription for the noisy speech of SNR value greater than 15
dB with lower WER without performing SE than the case
of transcribing the enhanced speech. This means that the
artifacts generated by the enhancement network in this case
outweigh the advantages of the denoising process. Therefore,
the negative effect of z is greater than n in the case of high
SNR values (more than 15 dB in our system), leading to
higher WERs if SE is applied before ASR. As a result, 15
dB was set as the threshold value of the SNR classifier in
our implementation, shown in Fig. 2(a), which means that the
classifier will activate the SE network only if 15 dB or less
SNR value was detected.

B. Smart Speech Enhancement for Hearing Aids

When applying SSE, as proposed in [12], the noise signal
in Equation 2 is redefined to represent emergency noise and
any other unimportant noise as two separate signals. This can
be represented by Equation 4:

y(k) = s(k) + ne(k) + nu(k), (4)

where, ne and nu represent emergency and unimportant noise,
respectively. To retain the emergency noise while maintaining

a good SE performance, the idea proposed in this work is
based on restoring an estimate to the noise signals, n̂, from
the first stage enhanced speech by the DE-CADE, ŝ1, and the
original noisy speech signal, y, using a subtraction process.
This can be described by Equation 5:

n̂(k) = y(k)− ŝ1(k). (5)

Each of the estimated noise and speech signals are then
fed separately to the second stage DE-CADE network for
signal reconstruction, as the second DE-CADE stage in our
implementation was trained twice. Once to perform speech
reconstruction to the enhanced speech by the first DE-CADE
network, and a second time to perform emergency noise
enhancement, where the unimportant noise is removed and the
emergency noise is reconstructed. The output from the second
stage DE-CADE networks will be then added to generate the
final speech and emergency noise signal, x. This is shown in
Fig. 2(b) and can be represented as in Equation 6:

x̂(k) = n̂e(k) + ŝ2(k), (6)

where, n̂e is the estimated emergency noise by the second
stage DE-CADE. By applying this idea, the negative effect
of the audio enhancement mode, described in [12], on the
SE process will be minimized, as here the emergency noise
and speech are processed using two independent networks.
Moreover, this processing separation facilitates the generation
of speech and emergency noise with better quality.



IV. EXPERIMENTAL SETUP

The Deep Noise Suppression (DNS) challenge dataset was
used in the training process. This dataset consists of 500 hours
of clean speech and 181 hours of unimportant noise data. For
the SE network for ASR, all the clean speech utterances were
corrupted by the noise data at different SNR levels (0 dB to
20 dB with a step of 1), to form 65,000 noisy utterances that
were used to train the SE network and the SNR classifier.

While for the SSE network for hearing aids, besides the
above-described speech and unimportant noise data, emer-
gency noise utterances were collected from different sources:
240 from the ESC-50 dataset [17], 800 from UrbanSound8K
database [18], 400 from Donate-a-Cry corpus [19], and 38
from Mixkit website [20]. This makes a total of 1,478 audio
samples for five emergency noises: 118 alarm audio samples,
including fire alarms, door bells, and alarm clocks; 440 car
horn audio samples; 440 car siren audio samples; 440 baby
crying audio samples; and 40 footstep audio samples. The
emergency noise data was first randomly mixed with 50%
of the clean speech data at 0 dB SNR, as using 0 dB SNR
value for the two target signals was found to help in network
training. The speech and emergency noise mixture and the
remaining 50% of clean speech data were then corrupted by
the unimportant noise data at a range of SNR levels (0-20 dB).
This makes a total of 65,000 noisy utterances, which are used
to train the SSE network and the noise classifier.

In all training procedures, the data was divided into 90%
for training and 10% for validation.

For testing, the Librispeech corpus [21] was used, where
100 clean speech utterances for 5 male and 5 female speakers
were corrupted by 10 unseen unimportant noise environments
from the 100 Nonspeech Environmental Sounds dataset [22]:
9 crowd noises, including babble noise, and an Additive White
Gaussian Noise (AWGN). Four testing SNRs were used: 0 dB
(low SNR), 5 dB (low SNR), 15 dB (classifier threshold), and
20 dB (high SNR). This data forms the test set for the SE
network for ASR; denoted by ASR Test Set.

In order to create the test set for the SSE network for hearing
aids, we randomly selected five audio samples, one for each
of the emergency noise types used in the training. These five
audio samples were collected from the Mixkit website and
they were not seen during training. These emergency noise
audios were first mixed with the 100 testing clean speech
utterances, and then the mixture was corrupted by the 10
unimportant testing noise environments, described above, at -5
dB, 0 dB, and 5dB SNRs; this test set will be denoted by SSE
Test Set. The clean speech utterances were also corrupted by
the unimportant testing noise environments at the same SNR
levels, to create the SE Test Set, which is used to evaluate the
SE performance of the network. This test setting is similar to
the one used in this work [12], to make a fair comparison.

Regarding training hyperparameters, 16 kHz is the sampling
frequency used. Binary Cross Entropy (BCE) loss function was
used to train the classifiers, while Mean Square Error (MSE) is
the loss function used for the first and second stage DE-CADE.

The Adam optimizer was used, learning rate = 0.0001, β1 =
0.1, β2 = 0.999. The networks were trained until convergence
and the best weights were taken based on the validation data.

V. RESULTS AND DISCUSSION

A. Automatic Speech Recognition Performance

The performance of the SE architecture for ASR was
evaluated using the WER for the ASR Test Set, and these
results are presented in Table I. The results show the WER
of the unprocessed audio; WERUnproc, first SE stage output;
WERSE1, second SE stage output; WERSE2, and the output
of the two-stage SE network with the frontend classifier,
WERC+SE .

It is clear from the results in Table I that the SE networks
significantly improves ASR performance for low SNR values,
where 13.9%, 11%, and 7% reduction in WER were shown for
0 dB, 5 dB, and 15 dB SNRs, respectively. The negative effect
added by the SE network artifacts starts to be clear at high
SNR and for clean speech, where 0.4% and 0.5% degradation
in the WER were caused after processing the 20 dB and clean
speech audio with the SE network, respectively. The addition
of the frontend SNR classifier reduces this negative effect,
where 0.2% and 0.4% reduction in the WER were shown
for 20 dB and clean speech, respectively, compared to the
case of the SE network only without the SNR classifier. The
classifier accuracy is 100% for both 0 dB and 5 dB noisy
speech utterances, 96.5% and 93% for clean speech and 20
dB noisy speech utterances, respectively, and 88% for 15 dB
noisy speech utterances. It should be mentioned here that the
low accuracy for 15 dB SNR is due to the fact this is the most
challenging SNR value for the classifier, as it was chosen as
the classification boundary that differentiates between high and
low SNR values. This explains the slight increase in the WER
at 15 dB SNR after adding the classifier.

B. Smart Speech Enhancement Performance

The performance of the SSE network for hearing aids was
evaluated using different speech quality metrics. For normal
listeners, we used the Perceptual Evaluation of Speech Quality
(PESQ) [23] (from -0.5 to 4.5) and the Short Time Objective
Intelligibility (STOI) [24] (from 0 to 100), to assess speech
quality and intelligibility, respectively. For hearing-impaired
listeners, we used the Hearing-Aid Speech Quality Index
(HASQI) [25] (from 0 to 1) and the Hearing-Aid Speech Per-
ception Index (HASPI) [26] (from 0 to 1) to measure speech
quality and intelligibility, respectively. While to measure the
quality of the speech with emergency noise audio, we used the
Hearing-Aid Audio Quality Index (HAAQI) [27] (from 0 to
1). These measures are presented for two hearing loss degrees:
Mild hearing loss (HL1) and Moderate hearing loss (HL2).
50 values for each hearing loss degree were taken for 100
workers, 50 males and 50 females, from the real Occupational
Hearing Loss (OHL) Worker Surveillance Data [28].

The SE performance of the proposed architecture was first
tested using the SE Test Set, which contains unimportant noise
only, to show the effect of adding the SSE processing. The



frontend noise classifier accuracy for this test set is 90%.
These results are shown in Table II, where comparison was
made with another architecture in the literature, DCRN [12].
The subscripts SE and SSE denote the performance when the
network enhances speech only and when enhancing speech
and emergency noise, respectively. The presented architecture
shows better SE performance compared to the DCRN, in terms
of all the evaluation metrics. Moreover, the negative effect
of adding the emergency noise enhancement processing is
also decreased for our network, as the difference between SE
network, DE-CADESE , and the SSE network, DE-CADESSE

is less than that of the DCRN architecture.
Table III shows the performance of the SSE network us-

ing the SSE Test Set, which contains emergency noise. The
frontend noise classifier accuracy for this test set is 97%. The
proposed architecture generated speech and emergency noise
with better audio quality for the two hearing loss degrees,
compared to the SSE DCRN architecture in the literature.

TABLE I
AUTOMATIC SPEECH RECOGNITION PERFORMANCE USING THE ASR TEST

SET

SNR Clean 20 dB 15 dB 5 dB 0 dB Ave
WERUnproc. 25.3 26.7 32.5 46.5 58 37.8

WERSE1 25.8 27.2 27.5 40.3 50.9 34.3
WERSE2 25.8 27.1 25.5 35.5 44.1 31.6

WERC+SE 25.4 26.9 25.6 35.5 44.1 31.5

TABLE II
SPEECH ENHANCEMENT AND SMART SPEECH ENHANCEMENT

PERFORMANCE COMPARISON FOR NORMAL AND HEARING-IMPAIRED
LISTENERS USING THE SE TEST SET

Metric
Normal Hearing Hearing Loss

PESQ STOI% HASQI HASPI
HL1 HL2 HL1 HL2

Unprocessed 1.57 70 0.37 0.24 70 65
DCRNSE 2.12 77 0.57 0.38 76 70

DE-CADESE 2.36 79 0.67 0.48 77 69
DCRNSSE 2.00 76 0.56 0.36 75 68

DE-CADESSE 2.34 78.8 0.66 0.47 76.6 68.7

TABLE III
SMART SPEECH ENHANCEMENT PERFORMANCE USING THE SSE TEST SET

Metric HAAQI
HL1 HL2

Unprocessed 0.21 0.16
DCRNSSE 0.44 0.34

DE-CADESSE 0.62 0.55

VI. CONCLUSIONS

This paper presents two improved SE architectures for
ASR and hearing aids applications. For ASR, the architecture
minimizes the negative effect of the denoising artifacts by
applying SE only when required, based on the decision of
an SNR classifier. While a SSE architecture was designed

for hearing aids, to perform speech and emergency noise
enhancement. The results show better SE performance after the
adjustments made for each application, and in comparison to
other works in the literature. Future work is needed to improve
the accuracy of the SNR classifier for ASR at the boundary
SNR value.
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