

University of East London Institutional Repository: http://roar.uel.ac.uk

This paper is made available online in accordance with publisher policies. Please
scroll down to view the document itself. Please refer to the repository record for this
item and our policy information available from the repository home page for further
information.

To see the final version of this paper please visit the publisher’s website.
Access to the published version may require a subscription.

Author(s): Falcarin, Paolo; Venezia, Claudio.
Article title: Communication Web Services and JAIN-SLEE Integration Challenges
Year of publication: 2008
Citation: Falcarin, P. and Venezia, C. (2008) ‘Communication Web Services and
JAIN-SLEE Integration Challenges’ International Journal of Web Services Research
5 (4) 59-78
Link to published version:
http://www.infosci-journals.com/downloadPDF/pdf/ITJ4488_87d0GBTMON.pdf

http://roar.uel.ac.uk/
http://www.infosci-journals.com/downloadPDF/pdf/ITJ4488_87d0GBTMON.pdf

 1

Communication Web Services and JAIN-SLEE Integration

Challenges

Paolo Falcarin, Claudio Venezia

Politecnico di Torino (Italy), Telecom Italia (Italy)

Paolo.Falcarin@polito.it , Claudio.Venezia@telecomitalia.it

ABSTRACT:

Meshing up telecommunication and IT resources seems to be the real challenge for supporting the

evolution towards the next generation of Web Services.

In telecom world, JAIN-SLEE (JAIN Service Logic Execution Environment) is an emerging

standard specification for Java service platforms targeted to host value added services, composed

of telecom and IT services.

In this paper we describe StarSLEE platform which extends JAIN-SLEE in order to compose

JAIN-SLEE services with Web services and the StarSCE service creation environment which

allows exporting value added services as communication web services, and we analyze open

issues that must be addressed to introduce Web Services in new telecom service platforms.

KEY WORDS:
JAIN-SLEE, Telecom platform, Web Service Integration, Communication Web Service

INTRODUCTION

Nowadays telecom service providers are seeking new paradigms of service creation and

execution to reduce new services’ time to market and increase profitability. Furthermore,

convergence of networks, services and content is taking place at an increasing speed.

Convergence is increasingly speeding up the introduction of new and converged services.

New market opportunities like integration of voice, video and data services are emerging from

this trend; as a consequence, the main goal of telecom service providers is the development of

Value Added Services, or next generation services (Licciardi, 2003) that leverage both on the

Internet and on telephony networks, i.e. the convergence and integration of services offered by IT

providers with telecom operators ones.

The creation of appealing value added services seems to be a key feature to avoid an operator

being reduced to a “transport only” provider. The attractiveness of the service assortment offered

seems to be the key to attract customers, and to increase revenues (Schülke, 2006).

The reuse and integration of existing IT services in value added ones is even made difficult both

by the increasing software systems complexity and the different middleware standards used for

communication.

To overcome these constraints the current vertically integrated networks are currently migrating

to horizontally layered structures offering open and standard interfaces, i.e. a service platform,

based on shared services and network enablers, which can be easily composed in a loosely

coupled manner (Pollet, 2006).

Therefore, these goals pose new requirements on the software development process, on the

platforms hosting these services, and on the middleware enabling communication among services.

JAIN-SLEE (JAIN - Service Logic Execution Environment) standard specification (JSR-22, 2007)

is emerging as a new event-based service platform targeted to telecom domain, aiming at

overcoming the performance limitations of J2EE-like application server, mainly designed for

enterprise services, based on typical request-response interaction style.

 2

In fact, communication services have strong real-time requirements (e.g. high throughput, low

latency time), support mainly asynchronous interactions (e.g., voice-mail, call forwarding), and

leverage efficiently on native protocol capabilities.

Web Services standards are emerging as a new middleware standard for providing, composing

and integrating IT services (Chung, 2003), but their introduction in the telecom domain means

facing up with some open issues.

Generalizing telecom functionalities to more abstract standard interfaces, like Web Services

interfaces (WSDL, 2007), is often necessary to allow IT developers to reuse telecom services

without mastering all technical issues related to telecom protocols; thus exposing telecom

resources as Web Services means losing some of the technical details of the underlying

proprietary interface.

Based on the former ideas, a Communication Application Server (named StarSLEE) inspired to

the JAIN-SLEE specification has been developed, together with a graphical Service Creation

Environment (StarSCE) for helping IT-developers in creating Value Added Services and

Communication Web Services (Venezia, 2006).

The service lifecycle process is sped up by means of a Service Creation Environment (SCE) that

supports as much as possible the reuse and the composition of pre-existing consolidated

components deployed in the telecom platforms, and third-party Web Services.

A SCE must offer an intuitive interface enabling graphical composition and easy configuration of

value added services, and it must automatically deploy value added services in the shape of

service description languages which can be used to orchestrate and execute services running in a

service execution environment.

This paper aims at analyzing the current challenges encountered during a prototyping activity

carried on to provide an effective composition and integration of Web Services and Value Added

Services deployed on a JAIN-SLEE platform.

In the following sections we describe the JAIN-SLEE standard architecture, the issues regarding

the integration of Web Services in JAIN-SLEE, the problems of exporting a JAIN-SLEE value-

added service as a communication web service, and the current issues for moving such telecom

platform towards telecom service oriented architecture.

VALUE ADDED SERVICES IN JAIN-SLEE

A value added service aims at encompassing either communication or enterprise service

components (Glitho, 2003).

The following is an example of a simple information retrieval target service:

1. The user invokes the service using his/her mobile phone by sending an SMS (Short Message

Service) whose body contains the information needed to retrieve the closest merchant of a

particular category (e.g. restaurant, bar or cinema).

2. The service localizes the user, retrieves the information requested and replies with a SMS

containing the information retrieved.

3. Afterwards the user can send another SMS to be connected with the found merchant via an

audio call.

The former service combines a communication service (SMS) with an enterprise service, i.e. the

information retrieval services (Yellow Pages Web Service).

As communication services have particular performance and availability requirements, it is

difficult to realize such service integration using a typical application server, which architecture

has been mainly designed for enterprise services.

 3

In fact, enterprise services aim at business processes, which are typically transactional and

potentially long running.

Instead, communication services have strong real-time requirements and are based on

asynchronous interactions. Voice mail, call forwarding and ring back tone are typical examples

belonging to this service category.

Moreover while enterprise services are typically synchronous remote procedure calls (RPC)

characterized by coarse-grained events with low frequency, communication services are typically

asynchronous and characterized by fine-grained events with high frequency.

Within the communication domain, at the control layer, Session Initiation Protocol (Rosenberg,

2002) is considered the converging protocol for call and message signaling. Either fixed or

mobile networks will leverage on SIP for providing integrated capabilities. SIP will improve the

ability to build new services and will play the role that Web Services are playing in the IT world

(the universal glue).

Although they play a similar role in the respective realms, SIP and SOAP are profoundly different.

For example, a SIP based communication platform (Rosenberg, 2002) is made up of a set of

systems which interact through a service bus allowing information push based on a

publish/subscribe model.

This platform relies on a SIP Registry which collects relevant information from a SIP network,

stores and distributes it. This information regards both service and network elements descriptions.

The SIP Registry is available both for network resources (where services are running), service

managers (watching services behavior) and service users (interested in invoking services).

In contrast, next generation service platforms aim at realizing an effective coexistence between

enterprise and communication services.

In next sections we evaluate if Web Service technology can help reaching this objective.

JAIN-SLEE Architecture

JAIN SLEE (also known as JSLEE) aims at defining a new kind of application server designed

for hosting value added services. In particular, a JSLEE container is designed for hosting

communication applications while typical application servers have been designed for enterprise

applications: such applications typically invoke one another synchronously (e.g. via Remote

Procedure Call or Remote Method Invocation) and they usually do not consider high-availability

and performance concerns.

Instead, the JAIN-SLEE specification has been designed for communication applications, and a

JSLEE container relies on an event based model, with asynchronous interactions among

components.

The design of a JSLEE container must meet the requirements of a telecommunication services,

e.g. handling different kind of events with low latency, supporting lightweight transactions.

Furthermore, a service deployed on a JSLEE container has to be composed of lightweight

components with a short lifetime, which can be rapidly created, deleted and updated.

Another important feature of a JSLEE service is the ability of accessing multiple data sources

with high independence of network protocols elements.

Therefore, it must be possible to deploy applications in the SLEE application environment that

use diverse network resources and signaling protocols.

The integration of a new type of network element, or external system is satisfied by a Resource

Adaptor Framework that supports integration of network resources; for example, a SIP server for

voice-over-IP calls and instant messaging, a SMS (Short Message Service) gateway for

communicating with mobile phones.

 4

JAIN-SLEE specification requires that each telecom network resource is wrapped by a standard

Resource Adaptor interface, in order to be connected to the event bus of the JAIN-SLEE

container.

Figure 1 depicts the StarSLEE platform architecture, and a possible example scenario: the SIP

resource adaptor may trigger the platform with events originating from the underlying SIP

network; an event router dispatches these events to existing or new service instances; then a

service instance is composed by various components which interact by means of events.

Figure 1. StarSLEE communication server

JAIN SLEE provides a standard programming model that can be used by the Java developer

community. The programming model has been designed to simplify application development,

promoting software reuse, and ensure that robust services can be developed rapidly with

minimum configuration effort.

A standard JAIN-SLEE container should be able to clone application components between

processing nodes in the system as particular processes and nodes may fail; it has to manage

concurrent execution of application components, and allow application components to be

dynamically upgraded. JAIN SLEE defines its own component model, which specifies how

service logic has to be built, packaged, and executed, and how it interacts with external resources.

JAIN-SLEE Component Model

The JAIN-SLEE specification includes a component model for structuring the application logic of

communications applications as a set of object-oriented components, and for assembling these

components into higher level and more complex services.

The SLEE architecture also defines how these components interact and the container that will

host these components at run-time. The SLEE specification defines requirements of availability

and scalability of a SLEE platform, even if it does not suggest any particular implementation

strategy.

Applications may be written once, and then deployed on any application environment that

implements the SLEE specification. The system administrator of a JAIN SLEE controls the

lifecycle (including deployment, un-deployment and on-line upgrade) of a service.

 5

The atomic element defined by JAIN SLEE is the Service Building Block (SBB). An SBB is a

software component that sends and receives events and performs computations based on the

receipt of events and its current state.

Every SBB subscribes to a given type of event. Whenever such an event is triggered by the

network, or internally by some other SBB, StarSLEE container creates SBB instances, able to

manage those events by means of specific handlers.

The event router, specified by JAIN-SLEE specification, is the engine which routes event, either

created by action performed on SBB, or coming from Resource Adaptor (RA).

The RA architecture provides a standard way for enabling events on different networks to be

received and transmitted from the event processing engine that is the Service Logic Execution

Environment. The goal of the RA architecture is to allow Resource Adaptor implementations that

use and fulfill contracts defined in the JAIN-SLEE 1.1 specification to be deployed and run in

any compliant JAIN-SLEE application server.

The RA layer is useful to decouple the SLEE container from rest of the world in terms of other

protocols i.e. SIP protocol, SOAP protocol or others.

Each SBB is defined by its own SBB-descriptor, an XML file including information that

describes it (e.g. its name, vendor and version), the list of events it can fire and receive, and the

names of Java classes implementing the logic of the SBB itself.

In addition, StarSLEE the SBB descriptor contains:

 The list of SBB properties, e.g. the input action parameters;

 The list of SBB variables, e.g. the output set in the Activity Context;

 The list of SBB handlers, e.g. the events managed by SBB;

 The list of actions performed by SBB;

While SBB properties are input parameters for actions/operations performed by SBB, SBB

variables are the results of those operations. Actions are triggered by events, SBB properties can

be valued by SBB variables belonging to an Activity Context (AC), which is a portion of memory

shared by all SBB instances running in a service instance, and that is used to read and write

properties and variables of all SBB instances involved in the same service instance.

SBBs are stateful components since they can remember the results of previous computations and

those results can be applied in additional computations. SBBs perform logic based on events

received.

An event represents an occurrence that may require application processing. It contains

information that describes the occurrence, such as the source of the event. An event may

asynchronously originate from a number of different sources, for example an external resource

such as a communications protocol stack, from the SLEE itself, or from application components

within the SLEE.

Resources are external entities that interact with other systems outside of the SLEE, such as

network elements (Messaging Server, SIP Server...). A Resource Adaptor wraps the particular

interfaces of a resource into the interfaces required by the JAIN SLEE specification.

JAIN-SLEE specification does not define any particular service description language to be used

for composing different SBB instance.

Therefore, we defined StarSDL, a specific service description language for StarSLEE used for

describing an event-oriented service scenario, which well suits the telecommunication service

domain; in particular, the StarSDL must allow asynchronous activation of the service, and the

service session is typically open-ended and with long-duration, because it often involves different

services, and, of course, users.

 6

The language specification aims at satisfying the abovementioned requirements; hence it allows

developers to model asynchronous interactions to the service both for service activation or and for

other actors’ involvement, through the event router contained in the StarSLEE execution

environment.

As a set of SBB is available, the service developer can build service without worrying about

single SBB programming, only considering service composition, once he knows each SBB

interface, in terms of handlers, actions and properties.

Service Composition with StarSCE

The approach to service creation in telecom domain with Web Services infrastructure is driven by

the constraint of being able to address heterogeneous target execution environments, where the

technologies range from general Information Technology (IT) where, for example, Web Services

are one of the leading technology in Service Oriented Architectures (Baravaglio, 2005), to very

specific telecommunications ones, where an overabundance of protocols and standards are

available (e.g. SIP, IMS). What seems to be clear in telecom services is the need to integrate

many resources over different protocols and to be able to represent a set of interactions that are

not limited to the classic request/response paradigm. In such a heterogeneous environment, the

approaches to service creation should be as general as possible, supporting a stepwise approach

that drives the developer from abstract to concrete definitions targeting a specific service

execution environment.

Looking at the main challenges of the service creation process, the most important requirements

are:

 A service description language that allows the specification of a telecom/IT integrated

services

 Tools that support the graphical composition services and their deployment to a target Service

Execution Environment

 A Service Execution Environment that allows combining effectively different technologies.

In order to provide Value Added Services (VAS), the service platform must be enhanced with a

graphical service composition engine, i.e. a service creation environment which easily allows

building new services by means of a collection of internal components or third-party Web

Services. StarSCE allows the developer to choose the SBBs (Service Building Block) and link

them in a graph structure which is a graphical representation of the service. A Service Building

Block is either an External IT Web Service wrapper or a signaling network functionality provider.

In JAIN-SLEE component model variables and properties can be set for each SBB: StarSCE

allows to visually composing those SBBs in a service description diagram which can be translated

in StarSDL representation, which describes the service control flow and the usage of these

variables and properties.

In particular, starting from the WSDL interface of a Web Service, StarSCE consents to

automatically create the correspondent SOAP client wrapped in a new SBB.

The following figure (realized using the StarSCE graphical service creation environment) shows

an example of a simple service which can be deployed on the StarSLEE service platform.

Moreover given a set of Web Services wrapper SBB, StarSLEE can actually behave as a web

service orchestration engine.

 7

Figure 2 Example of graphical Service description

Once a service is graphically composed and the SBBs have been configured, StarSCE generates

an XML file, called service descriptor.

A service descriptor represents the control-flow graph of the service composed of different SBBs,

each one defined by its own SBB descriptor.

A service is made up of loosely coupled components, and it may provide different starting points,

i.e. different SBB instances, each one triggered by a different kind of event, coming from the

resource adaptors pool.

 Each service instance is then made up of different SBB instances and one activity context

holding shareable attributes that SBB instances want to share.

 Therefore the state of a service instance can be represented by attributes stored in an activity

context.

 Using StarSCE it is possible to manage the automatic configuration, dynamic deployment, and

publication of a Value Added Service in a JAIN-SLEE container.

Figure 3. Service deployment on StarSLEE

Figure 3 shows main entities of StarSLEE container: a XML service descriptor is sent through the

Service Bus to the Application Server Deployer, which creates the corresponding service instance

(e.g. TimerService): this service is then running and listening on the event router, waiting for

events coming from networks underlying the resource adaptors (e.g. HTTP, SIP).

StarSCE helps the developer in creating complex compositions of SBBs to be executed in a

JAIN-SLEE container, which use Resource Adaptors to abstract interfaces of telecom networks

resources, and it is not bounded abstracts and to represent the orchestration of such resources our

approach aims at extending JAIN-SLEE platform and related SCE in two directions:

1. To compose both JAIN-SLEE service building blocks and Web Services.

 8

2. To export JAIN-SLEE service as an asynchronous web service compliant to the WS-

Notification specification.

COMMUNICATION WEB SERVICES

Traditional communication services are usually triggered by signaling messages like a SIP

message (Rosenberg, 2002) or an instant message (IMS, 2006); instead Communication Web

Services (Baravaglio, 2005) are usually Web Service interfaces of common telecom

functionalities which are triggered by a SOAP message. They can also exploit different network

resources within the telecom domain and be published and used on the Internet.

For example, here is a list of telecom services which can be exposed as Communication Web

Services:

• Third party call: provides the capability to initiate a call between two actors generated and

managed by a third party.

• Multi media conference: provides the capability to initiate an audio/video conference with two

or more actors within a session.

• Messaging: a set of Web Services which provide the capability to send Instant Messages, SMS

and MMS

• Presence: provides the capability to retrieve user availability information in a network domain.

• Users’ provisioning: provides the capability to interact with a Data Provisioning DB System by

means of retrieving and storing user profiles information supporting various communication

protocols and devices.

Using standard Web Services to abstract telecom network capabilities, service providers can offer

to IT developers outside of the telecom industry, new possibilities for building innovative

services.

Web Services standards enable telecom operators to provide third parties with controlled, reliable

access to telecom network capabilities such as presence and call control.

Different international consortia have proposed standards for using Web Services in

telecommunications domain:

- Parlay X Standards (ETSI, 2007) are a set of simplified telecom APIs based on Web services

published by the Parlay Group and the European telecommunications Standards Institute

(ETSI); Parlay-X has been standardizing WSDL interfaces for the most common signaling

services, like Third Party Call, Call Notification, SMS, MMS, etc..

- Open Mobile Alliance (OMA, 2007) has proposed the OMA Web Services Enabler to define

the means by which OMA applications can be exposed, discovered and consumed using Web

Services technologies, and it specifies how mobile terminal can interact with Web Services.

- W3C (W3C, 2007) is providing WS-Addressing specification (WS-Addressing, 2007), which

provides transport-neutral mechanisms to address Web services and messages. Specifically,

this specification defines XML elements and namespaces to identify Web service endpoints

and to secure end-to-end endpoint identification in messages. This specification enables

messaging systems to support message transmission through networks that include processing

nodes such as brokers, firewalls, and gateways in a transport-neutral manner.

- OASIS consortium has defined a set of specifications like WS-Notification (WSN, 2007),

WS-ResourceFramework, and WS-ReliableMessaging (WS-ReliableMessaging, 2007) which

are important basis for developing communication Web Services.

In the following section we describe how StarSCE helps developers in transforming a JAIN-

SLEE value added service in a communication web service.

 9

From Value Added Service to Communication Web Service

Transforming a Value Added Service (in this context a JSLEE service) in a Communication Web

Service requires some enhancements to the JAIN-SLEE architecture.

First of all a Web Server must be added for hosting a SOAP Server (Apache Axis, 2007). Then,

for any service to be exposed, a Web Service implementation with related WSDL is provided and

it has to interact with the actual service deployed in the SLEE container.

Therefore, the JAIN-SLEE architecture must be extended adding a SOAP Resource Adaptor

(SOAP-RA), which acts as a communication bridge between a SLEE service and its

correspondent Web Service implementation.

An alternative design may be based on adding a service-specific resource adaptor for each service

to be exported as a web service, but this solution is not viable: in fact in JAIN-SLEE architecture

a resource adaptor is a wrapper of an external network entity, and it is designed to be service-

independent, because it must be unaware of which kind of services are deployed in the SLEE

container.

Figure 3 Extended JAIN-SLEE architecture

Once defined the new extended architecture (Figure 3), we can consider two different strategies

to export a SLEE service in a Web Service: a wrapping strategy and a reengineering strategy.

Using the wrapping approach means considering the service as a single “black-box” entity which

receives and sends events, while the reengineering approach consists in automatically modifying

some parts of the service in order to be exported as a Web Service.

Following the wrapping strategy implies that the SOAP-RA should be able to send events the

service is listening to; for example if the target service must be triggered by means of a SMS, the

SOAP-RA should be able to send this event. Under these assumptions, this kind of SOAP-RA

could send whichever kind of SLEE events, but this is in opposition to JAIN-SLEE design, where

each Resource Adaptor must only exchange events related to its own underlying network element.

The SOAP-RA can only send events related to its own underlying network protocol, thus a

SOAP-Event has been introduced to represent information coming from whichever Web Service

implementation.

As a consequence, our approach is based on reengineering the value added service in order to

automatically obtain its new web service version. Every service requires a root SBB which

represents the service entry point (e.g. the SBB on the left side in Figure 5). Only when a root

SBB is triggered a new service instance is created.

As the Value Added Service has been previously designed for listening to a particular event type,

adding a new root SBB becomes necessary, i.e. the ReceiveSOAP SBB. The SOAP request is

 10

received from the SOAP-client through the Web Service Implementation and forwarded by the

SOAP RA to a root SBB by means of a SOAP event.

 The new root SBB (ReceiveSOAP) is then the service entry point which extracts data from the

SOAP-Request and put them in the activity context.

Figure 4. ReceiveSOAP SBB

The introduction of a new ReceiveSOAP SBB in place of the former root is not enough. In fact,

reengineering a service by adding a new SBB requires a deeper analysis of service structure to

find out dependencies among SBBs, both at the control-flow level and at the data-flow one.

For example, looking at the service in figure 2, we can identify different types of SBBs. The

TPCC (Third-Party Call-Control) is a type of SBB representing the actual service logic

implementation (we can call it “core SBB”) and other SBBs whose main activity is the

communication with external entities, that we call “connector SBBs”. Among these ones we can

further distinguish SBB receiving data (i.e. the RecvSMS which receive an SMS coming from the

SMS-resource adaptor) from other ones sending out data (i.e. the SendSMS which sends an SMS

to the SMS-resource adaptor): the ones receiving data can be labeled “service heads”, because

they are typically performed at the beginning of service execution, while the others sending data

can be labeled “service tails”, because they are typically performed at the end of service

execution.

A service can be described by a direct cyclic graph, where a node corresponds to a SBB instance,

and there is an arc from node A to node B only if the same type of event is sent by A and received

by B.

Thus “service heads” are nodes with no incoming arcs, while “service tails” are nodes with no

outgoing arcs.

For example in the service of figure 5 there are three service heads (ReceiveIM_0, ReceiveIM_1,

and ReceiveIM_2) and two service tails (SendIM_0, and Echo_0).

Figure 5. Service heads and service tails

 11

On the other hand, the data-flow of a service instance can be deduced analyzing which attributes

are read from (or written in) the activity context. The content of the activity context instance

represents the state of the service instance at a particular time.

The attributes stored in the activity context by each SBB instance can be obtained from the XML

service descriptor file.

In practice, reengineering the service to be transformed in a Web Service means making some

design decisions:

1. Which service heads must be replaced by a ReceiveSOAP SBB.

2. Which service attributes in the activity context must be mapped to parameters of Web Service

operations.

3. Which interaction style to use between SOAP clients and the Communication Web Service.

4. Which service attributes in the activity context must be considered as a result to be sent back to

SOAP clients.

5. Depending on the chosen interaction style, how service results should be transferred to the

SOAP clients.

Once the developer makes these decisions, StarSCE can automatically generate the corresponding

WSDL interface, the Web Service Implementation Java code to be deployed on the Web

container, and the code of the ReceiveSOAP SBB.

Once a Communication Web Service has been deployed, it is provided with as many operations

as the number of the available service heads. Invoking an operation mapped to a root service head

means activating an instance of the corresponding service. The user can then interact with the

service instance by means of invoking operations mapped on any of the other service heads.

For example, in figure 6 the original service of figure 5 has been reengineered, applying the

following changes: the root SBB has been replaced by the SBB ReceiveSOAP_1, the other

service head ReceiveIM_1 has been replaced by another ReceiveSOAP SBB instance, the two

service tails have been substituted two SendSOAP SBBs.

Figure 6. New Service heads and tails

A SendSOAP SBB is used to send service results back to the SOAP-RA sending a SOAP

event containing attributes in the activity context, previously selected as service result.

 12

StarSLEE

SOAP RA

SIP RA

HTTP RA

Service Bus

AS Deployer

Event Router

Web Server

SOAP Server

Service

SOAP Client

RecSOAP
Timer

SendSOAP

Service

SOAP-Event

Request SOAP

SessionId

SessionId

StarSLEE

SOAP RA

SIP RA

HTTP RA

Service Bus

AS Deployer

Event Router

Web Server

SOAP Server

Service

SOAP Client

RecSOAP
Timer

SendSOAP

Service

SOAP-Event

SOAP-Event

Request SOAP
Request SOAP

SessionId

SessionId

SessionIdSessionId

Figure 7. Web Service Request and SLEE Dispatching

Figure 7 shows how a Communication Service is accessed via SOAP:

1. The SOAP client request reaches the Web Service implementation of the SLEE Service;

2. The Web Service collects the parameters and delivers them to the SOAP RA;

3. The SOAP RA in turn identifies the corresponding reengineered SLEE Service and triggers it

by generating the proper SOAP event, containing the service name and the parameters of the

invoked Web Service operation;

4. The root SBB (ReceiveSOAP) receives the SOAP event, creates the service instance, and

then it copies the operation’s parameters in the service activity context;

5. The service is executed and results are sent to the SOAP-RA with a SOAP event.

At this point, using a synchronous interaction style implies that SOAP-RA has to provide two

more operations: getStatus and getResult. Invoking the former operation, while a service instance

is running, allows SOAP clients to gain information on the state of its execution, polling on the

latter returns service results whenever available.
 Another important feature of SOAP RA is keeping a service session. In fact a session-ID is

created and delivered to the SOAP client and it has to provide it for any further operation

invocation. This session-ID is used to keep the link between the Web Service client and the

corresponding StarSLEE service instance.

JSLEE - WEB SERVICES INTEGRATION ISSUES

There are other implementations of JAIN-SLEE specification along with StarSLEE: the Rhino

(OpenCloud, 2007) and MobiCents open source project (MobiCents, 2007). While they both

provide a rich set of resource adaptors compliant to recent JAIN-SLEE specification, they do not

implement a SOAP Resource Adaptor, like in StarSLEE.

Moreover they do not specify a service description language for defining JSLEE service

descriptor, and, like in StarSLEE, they do not face with inter-communication between SBBs

deployed on different JSLEE containers.

In particular, main lacks of JAIN-SLEE specification are the following ones:

- SBB descriptor and Service descriptor are required to be based on XML, and to contain

some basic information like name, version, owner, but there is no XML-Schema to refer to.

 13

- There is no specification on how to implement the event bus, neither how to define events

namespaces, nor how this event bus can enable communications between SBBs deployed

in different JAIN-SLEE containers.

- There is no specification on how to define services whose SBBs are running on different

JAIN-SLEE containers, and how (i.e. with which middleware or protocol) these containers

have to communicate.

- The JAIN-SLEE specification does not specify a service description language but it just

suggest that SBB work-flow could be represented with a tree-structure, which limits the

composition possibilities.

In order to fill these gaps, StarSLEE has been developed to implement and extend the JAIN-

SLEE specification.

In this section we discuss important issues to be solved in order to obtain a smooth integration

between JAIN-SLEE and Web Services world. In particular we will discuss our approach and we

compare it with related work on service description languages, asynchronous interactions, and

service discovery.

Service Description Languages

Telecom domain offers several service description languages, but they have been designed for

domain specific applications and protocols (Licciardi, 2003); many languages have been

proposed to enable service programming on telecom networks, namely: Call Processing

Language (CPL) (Rosenberg, 1999), Service Creation Markup Language (SCML) (Bakker, 2002),

Language for End System Services in Internet Telephony (LESS) (Wu, 2003), CCXML (CCXML,

2007), Session Processing Language (SPL) (Burgy, 2006), XTML (eXtensible Telephone

Markup Language) (Pactolus, 2001).

The expressiveness of LESS and CPL have been intentionally limited to make them accessible to

end-users without programming expertise, while SCML and CCXML require more technical

knowledge and thus they target expert users.

SPL is a language which aims at raising the level of abstraction by introducing domain-specific

constructs, such as sessions and branches. SPL hides SIP protocol complexity into appropriate

language abstractions, and it makes programming telephony services accessible to more

programmers, but it is bound to SIP-based services, it does not foresee integration with Web

Services, and it still lacks a related service creation environment, able to automatically generate

code and configuration files.

Both LESS and SPL use program analysis to check particular properties on the designed service:

LESS use it to detect feature interactions, SPL to check for safety and robustness properties

exploiting the high-level domain-specific constructs of the language.

Most of existing scripting languages for programming telephony services are limited, because

they do not provide typical programming constructs such as loops and variables and they are

tightened to a specific telecom network protocol, like SIP.

Using a network-independent service platform like JAIN-SLEE requires the definition of a

service description language not coupled to the underlying network.

With respect to the service description and creation facets, JAIN-SLEE does not specify a

language to describe services. As a consequence the new StarSDL language for StarSLEE

platform has been defined to enable description of value added services less coupled to the

underlying network resources, thanks to JSLEE event-based architecture.

StarSDL is inspired to a well known standard language in IT world to define service

orchestrations, such as Business Process Execution Language (BPEL, 2003) for WS.

 14

Several BPEL4WS implementations (ActiveBPEL, 2007) consist in environments which allow

creating, deploying, executing and monitoring BPEL4WS services. Although these solutions

encompass almost all the functional requirement for creating communication Web Services they

still cannot fulfill essential telecom services requirements like low latency and high throughput

which implies that they do not easily scale for telecommunication Services environments.

Even if BPEL4WS language offers several workflow features, like Sequence, Parallel Split,

Synchronization, Exclusive Choice, Simple Merge, Multi Choice, Synchronizing Merge, and

Implicit Termination, it does not allow to define interactions based on publish-subscribe pattern:

as a consequence, it is not possible to activate several process instances with the same event

notification. In particular, StarSLEE execution environment requires to express and enact critical

workflow patterns, like arbitrary cycles and multi-merges, not supported by BPEL language and

related engines (Wohed, 2003).

Same limitations are observable in XPDL (XPDL, 2007), the standard language defined for

easing interchange among business process languages in the Workflow Management domain. The

goal of XPDL is more oriented to store and exchange the process diagram, in order to allow one

tool to model a process diagram, another to read and edit the diagram, and another to run the

process model on an XPDL-compliant engine.

The Web Services Choreography Description Language (WS-CDL, 2004) is an XML-based

language that describes collaborations among different Web Services by defining, from a global

viewpoint, their overall behavior, in order to achieve a common business goal.

While WS-BPEL represent the workflow orchestrated by a dominating entity (the BPEL engine

running the BPEL script), WS-CDL defines the same workflow as a protocol between services

which are independent peers working together to realize a collaboration: WS-CDL definition can

be decomposed in different BPEL scripts, each one executed by a peer in the collaboration.

Recently, two other languages have been proposed: SOAP Service Description Language

(Parastatidis, 2006) which enables contract specification on WSDL 2.0 and it is better suited to

precisely specify a web service interface than representing an orchestration language; Taverna

(Wolstencroft, 2005) is a data-centric workflow language which uses data dependencies to

describe a workflow of GRID processes.

Any of these XML-based languages is not so useful without a related service creation

environment, used to generate such languages from a high-level, possibly graphical,

representation

Regarding the service creation environment, WebSphere Studio Application Developer (IBM,

2007) and RapidFLEX Application Server (Pactolus, 2001) provide a graphical SCE easing the

service creation process of value added services.

The former strongly relies only on those telecom network resources exposed as Web Services

compliant to the Parlay-X specification.

The latter allows creating workflows of elements representing telecom resources exposing their

native interfaces or Java code snippets; such workflows are then represented with XTML files

which are executed by the proprietary application server. In this platform web service invocations

might be inserted manually in Java code snippets.

More specifically to JAIN-SLEE, Eclipslee (Eclipslee, 2007) is also available as a SCE for

MobiCents services, but it does not support any web service facilities, as its underlying platform

does not offer any SOAP Resource Adaptor.

 15

Facing with asynchronous interactions

The aim of overcoming the limitations of SOAP toolkits in addressing asynchronous interactions

with Web Services it is not just a Telecom Operator prerogative. Recent standard specification

like WS-Notification (WSN, 2007) defines how to apply publish-subscribe interaction pattern

among Web Services for implementing asynchronous interaction style among loosely coupled

services, relying on standard SOAP protocol; for this reason there are a few implementations

addressing these issues.

Apache Muse project (Muse, 2007) is a Java-based implementation of OASIS standard

specifications, like Web Services Resource Framework (WSRF, 2007), Web Services

Notification (WSN, 2007) and Web Services Distributed Management (WSDM, 2007).

Muse is a framework upon which developers can build web service interfaces for manageable

resources: it hides the complexity of dealing with the specifications cited above. Furthermore the

applications built with Muse can be deployed in both Apache Axis2 (Axis2, 2007) and OSGi

(OSGi, 2007) environments. Axis2 is a recent SOAP implementation which supports standards

like OASIS WS-ReliableMessaging (WS-ReliableMessaging, 2007) and W3C WS-Addressing

for providing asynchronous Web services.

The main requirement of a Communication Web Service Platform is to manage asynchronous

interactions with clients by means of a fully asynchronous WS management system. Along with

the synchronous SOAP solution described in the former section, we have implemented a full

asynchronous management of client-server interactions.

 This was obtained implementing an enhanced version of the SOAP resource adaptor in

accordance with WSN family of specifications. WSN defines a set of specifications that

standardize the way Web Services can interact using the Notification pattern, which specify a

way for consumers to subscribe to a producer for notifications whenever a particular event occurs.

This set of specifications includes WS-Base Notification (WSN, 2007), WS-Topics (WS-Topics,

2007), and WS-Brokered Notification (WS-Brokered Notification, 2007).

Web Services can act asynchronously as long as they make their own state persistent. This was

reached referring to the Web Service Resource Framework family of specifications (WSRF,

2007). WSRF defines a generic and open framework for modeling and accessing stateful

resources using Web Services. It provides mechanisms to describe views on the state, to support

management of the state through properties associated with the Web Service, and to describe how

these mechanisms are extensible to groups of Web services.

A SOAP server redirects inbound messages to the said SOAP resource adaptor which in turn

creates:

• A SOAP service context

• A client formal subscription to further outbound messages and

• A SOAP event to be dispatched by means of the event router.

On the other hand, whenever a service needs to contact back the client it triggers an event to the

SOAP RA which calls back the client.

In the following figure is shown what happens when a service instance in the SLEE container

terminates its execution: before the service instance is released it notifies the router with an End

of Service event which is forwarded to the SOAP RA. Then the SOAP RA looks for the related

SOAP service context, and the corresponding web service implementation is notified: at this point

the web service provider notifies the Service Requestor with a SOAP message, containing the

web service response.

 16

Figure 8. Web Service Response: SOAP Notification

Service Discovery

Service discovery and advertising are key facets in a telecom environment: for example, a SIP

network leverages on its native publish-subscribe model to “push” new services information to

clients belonging to a given network domain.

A communication service platform aiming at composing and integrating Web Services is fully

concerned with static and dynamic discovery of web-services. Furthermore the discovery process

has to sort candidate services that fulfils given functionality and quality parameters, and can be

combined in order to realize value added services.

Therefore, new processes, methods, and tools need to be provided to extend current software

development practices to support these requirements. Discovering Web Services dynamically

consists in identifying alternative services to replace services already participating in a given

composition that may become unavailable or fail to meet specific functional or quality

requirements during service execution. It is a challenging activity since it requires efficient

discovery of alternative services that precisely match the functional and quality requirements

needed and replacement of these services during run-time execution in an efficient and non-

intrusive way.

At its foundation, Universal Description Discovery and Integration (UDDI, 2007) is a group of

specifications that lets Web service providers publish information about their Web Services on a

public UDDI registry and it lets Web service discoverers or requesters search that information to

find a Web Service and run it.

UDDI specification is then focused on the information model that enables a suitable

categorization of the published services, but it does not address the following important

requirements in telecom domain:

 17

• Late binding: since service references are published as static data, Web Services are forced to be

up and running continuously on a given URL. No dynamic instantiation of services and

references is therefore possible.

• Personalization: UDDI does not support any form of personalization, i.e. the result of a specific

query is the same for any requestor.

• Authorization: there is no mechanism in UDDI that allows defining and enforcing complex

authorization policies for service requestors when inquiring the registry and retrieving the details

of the services.

• Reference validity: UDDI does not guarantee that the service reference returned to the

application (in response to a Get Service operation) really points to a Web Service.

In order to meet these requirements a “UDDI proxy” has been prototyped (see Figure 9). The

proxy routes queries from a client application to the UDDI registry and provides additional and

personalized capabilities, mediating the access to the actual UDDI registry.

The proxy can control the access to the information contained in the UDDI Registry

allowing/denying the access, basing on a Service Requestor’s Authorization Profile. The UDDI

proxy is also able to dynamically create the Web Services instances, guaranteeing the existence of

the Web Service, and to personalize the Web Service instances based on the Service Requestor

identity.

The proxy exposes standard UDDI interfaces to the applications, so that the interactions with it

are right the same as the ones with ordinary UDDI registry (i.e. UDDI clients use the same UDDI

API). The solution has minimal impact on the pre-existing architecture since it does not require

modifying the existing elements. In fact it only implies to add a separate node (the proxy),

reconfiguring the applications by providing the reference to the new node and by configuring the

UDDI registry to accept inquiries from the proxy.

Service

Requestor

UDDI

Proxy

Web

Service

Instance

WS

Factory

Service
Authorization

Server

Profiles

UDDI

Registry

Service Platform

n
ew

Figure 9. UDDI proxy architecture

CONCLUSIONS AND FUTURE WORK

There is an increasing interest in introducing Web Service technology in telecom service

platforms. On one hand it is an opportunity to enable new business models and reach new

markets, nevertheless it points out that to get to a successful applicability to telecom domain

many weaknesses have still to be overcome. A communication web service platform would be

 18

more familiar for Internet application developers, but it could imply some limitation in the usage

of the network capabilities in term of provided features.

The process of integrating Web Services in telecom platforms and services has shown that the

Web Service orchestration approach has some limitations: the critical requirement for publish-

subscribe interaction model is not supported, even if recent standards like WS-Notification (WSN,

2007) and recent W3C submissions like SOAP over JMS (SOAP-JMS, 2008) are improving Web

Service applicability to telecom platforms.

Meanwhile emerging event based containers (such as JAIN-SLEE) are designed for telecom

environment but may be extended to be capable of integrating Web Services.

Our work shows both benefits and drawbacks in supplying a telecom application server (inspired

to JAIN-SLEE) with Web Services facilities to enable Value Added Services composition and

execution. We defined StarSDL, a new service description language to cover the lacks of JAIN-

SLEE specification and we developed a SOAP resource adaptor (which is essential for exposing

JAIN-SLEE service as Web Services) able to forward SOAP requests both in the typical request-

response interaction style and in the emerging asynchronous one, based on the recent

implementation of WSN provided by Axis 2.

At the service creation level we defined in StarSCE service creation environment a semi-

automated way for generating SOAP-related SBBs, and for modifying automatically all service

descriptors, in order to interact with the SOAP resource adaptor.

The SCE, together with the StarSDL language, and JAIN-SLEE will ease IT and telecom service

integration, thanks to a new way of reusing components and Web Services to provide advanced

value added services which can also be exported as communication Web Services. This will ease

the service creation process reducing time-to-market for the new services.

Future work is focused on how to integrate recent WS standards and the rest of IT-research trends

in a value added service platform, namely: Web Services discovery, dynamic Web Services

composition, Web Services monitoring and management, Web Services security (Naedele, 2003),

and semantic Web Services.

ACKNOWLEDGMENTS

The authors want to thank Gianpiero Fici, Carlo Alberto Licciardi, Anna Picarella, Alessia

Salmeri, and Massimo Valla for their valuable contribution to this work. which has been partially

funded by the European Commission, under contract IST-2002-2.3.2.3, project SeCSE (Service

Centric Systems Engineering).

REFERENCES

ActiveBPEL (2007). Retrieved November 30, 2007, from ActiveBPEL project website: http://www.active-

endpoints.com/active-bpel-engine-overview.htm .

Apache Axis (2006). Retrieved November 30, 2007, from Apache AXIS project website:

http://ws.apache.org/axis/.

Apache Axis2 (2007). Retrieved November 30, 2007, from Apache AXIS2 project website:

http://ws.apache.org/axis2/.

Bakker, J.L., & Jain, R. (2002, April). Next generation service creation using XML scripting language. In

Proceedings of The IEEE International Conference on Communications (ICC2002), New York, USA

(pp. 2001-2007). Washington: IEEE Computer Society.

 19

Baravaglio, A., Licciardi, C.A., & Venezia, C. (2005, August). Web Service Applicability in

telecommunications Service Platforms. In Proceedings of the International Conference on Next

Generation Web Services Practices (NWeSP), Seoul, Korea (pp. 39-44). Washington: IEEE Computer

Society.

BPEL (2003). Business Process Execution Language for Web Services (Version 1.1). Retrieved December

5, 2007, from http://www.ibm.com/developerworks/library/specification/ws-bpel/.

Burgy, L., Consel, C., Latry, F., Lawall, J., Palix, N., & Reveillere, L. (2006, June). Language Technology

for Internet-Telephony Service Creation. In Proceedings of the IEEE International Conference on

Communications (ICC2006), vol. 4, Istanbul, Turkey (pp. 1795–1800). Washington: IEEE Computer

Society.

CCXML (2007). W3C, Voice Browser Call Control: CCXML version 1.0 specification. Retrieved

December 5, 2007, from http://www.w3.org/TR/ccxml/.

Chung, J.-Y., Lin, K.-J., & Mathieu, R.G. (2003). Web Services Computing: Advancing Software

Interoperability. IEEE Computer, 36(10), 35-37.

Eclipslee (2007). Retrieved December 30, 2007, from Eclipslee project website,

https://eclipslee.dev.java.net/

ETSI (2002), The ETSI OSA Parlay-X 3.0 Specifications. Retrieved December 5, 2007, from

http://portal.etsi.org/docbox/TISPAN/Open/OSA/ParlayX30.html.

Glitho, R.H., Khendek, F., & De Marco, A. (2003), Creating Value Added Services in Internet Telephony:

An Overview and a Case Study on a High-Level Service Creation Environment. IEEE Transactions on

Systems, Man, and Cybernetics - Part C: Applications and Review, 33(4), 446-457.

IBM (2007). WebSphere Telecom Web Services Server. Retrieved December 5, 2007, from http://www-

306.ibm.com/software/pervasive/serviceserver/.

IMS (2006). 3GPP TS 23.228: IP multimedia subsystem (Stage 2) standard specification. Retrieved

December 5, 2007, from http://www.3gpp.org/ftp/Specs/html-info/23228.htm

JSR-22 (2007). JAIN
TM

 SLEE API Specification. Retrieved December 5, from Java Community Process

website: http://jcp.org/aboutJava/communityprocess/final/jsr022/index.html.

Licciardi, C.A., & Falcarin, P. (2003). Analysis of NGN Service Creation Technologies. In IEC Annual

Review of Communications, 56 (pp. 537-551). Chicago: IEC (International Engineering Consortium).

MobiCents Project (2007). MobiCents: The Open Source VoIP Middleware Platform. Retrieved December

5, 2007, from https://mobicents.dev.java.net/

Muse (2007). Retrieved November 30, 2007, from Apache Muse project website:

http://ws.apache.org/muse/.

Naedele, M. (2003). Standards for XML and Web Services Security. IEEE Computer, 36(4), 96 – 98.

OMA (2007). Open Mobile Alliance. Retrieved December 5, 2007, from

http://www.openmobilealliance.org.

OpenCloud (2007). Rhino 2.0 Developer Preview Release. Retrieved December 5, 2007, from

http://www.opencloud.com/products/rhino-kit/dp1/docs/index.html.

OSGi (2007). OSGi™ - The Dynamic Module System for Java. Retrieved December 5, 2007, from

http://www.osgi.org/.

Pactolus (2001). RapidFLEX
TM

 Service Creation Environment. Retrieved December 5, 2007, from

http://www.pactolus.com/.

Parastatidis, S., Woodman, S., Webber, J., Kuo, D., & Greenfield, P. (2006). Asynchronous messaging

between Web services using SSDL. IEEE Internet Computing, 10(1), 26–39.

 20

Pollet, T., Maas, G., Marien, J., Wambecq, A. (2006, April). Telecom services delivery in a SOA. In

Proceedings of 20th International Conference on Advanced Information Networking and Applications

(AINA 2006), 2 (pp. 529-533). Los Alamitos: IEEE Computer Society.

Rosenberg, J., Lennox, J., & Schulzrinne, H. (1999). Programming Internet telephony services. IEEE

Network, 13(3), 42-49.

Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A., Peterson, J., Sparks, R., Handley, M., &

Schooler, E. (2002). SIP: Session Initiation Protocol, RFC 3261. Retrieved November 21, 2007, from

http://www.ietf.org/rfc/rfc3261.txt.

Schülke, A., Abbadessa, D., & Winkler, F. (2006, April). Service Delivery Platform: Critical Enabler to

Service Providers' New Revenue Streams. In Proceedings of World Telecommunications Congress

(WTC 2006), Budapest, Hungary .

SOAP (2007). Simple Object Access Protocol, version 1.2. Retrieved December 5, 2007, from

http://www.w3.org/TR/soap12-part0/.

UDDI (2007). UDDI Specification version 3.0.2. Retrieved December 5, 2007, from

http://uddi.xml.org/specification.

Valetto, G., Goix, L.W., & Delaire, G. (2005, October). Towards Service Awareness and Autonomic

Features in a SIP-enabled Network. In LNCS 3854: 2nd IFIP TC6 International Workshop on

Autonomic Communication (WAC 2005) , Athens, Greece, (pp. 202-213). Berlin: Springer-Verlag.

Venezia, C., & Falcarin, P. (2006, September). Communication Web Services Composition and

Integration. In Proceedings of International Conference on Web Services (ICWS-06), Chicago, USA

(pp.523-530). IEEE press.

Wohed, P., van der Aalst, W.M.P., Dumas, M., & ter Hofstede, A.H.M. (2003, October). Analysis of Web

Services Composition Languages: The Case of BPEL4WS. In Proceedings of the 22nd International

Conference on Conceptual Modeling (ER), Chicago, USA (pp. 200-215), Springer LNCS vol. 2813,

ISBN 3-540-20299-4.

Wolstencroft, K., Oinn, T., Goble, C., Ferris, J., Wroe, C., Lord, P., Glover, K., & Stevens, R. (2005,

December). Panoply of utilities in Taverna. In First International Conference on e-Science and Grid

Computing (e-science), Melbourne, Australia, (pp. 156-162). Washington: IEEE Computer Society.

WS-Addressing (2004). W3C WS-Addressing specification. Retrieved December 5, 2007, from

http://www.w3.org/Submission/ws-addressing/.

WS-Brokered Notification (2006). OASIS WS-Brokered Notification version 1.3 specification. Retrieved

December 5, 2007, from http://docs.oasis-open.org/wsn/wsn-ws_brokered_notification-1.3-spec-os.pdf.

WS-CDL (2005). Web Services Choreography Description Language Version 1.0. Retrieved December 5,

2007, from http://www.w3.org/TR/ws-cdl-10/.

WS-ReliableMessaging (2007). OASIS WS-Reliable Messaging version 1.1 standard. Retrieved December

5, 2007, from http://docs.oasis-open.org/ws-rx/wsrm/200702/wsrm-1.1-spec-os-01.pdf.

WS-Topics (2006). OASIS Web Services Topics version 1.3 specification. Retrieved December 5, 2007,

from http://docs.oasis-open.org/wsn/wsn-ws_topics-1.3-spec-os.pdf.

WSDL (2007). Web Service Description Language version 1.1 specification. Retrieved December 5, 2007,

from http://www.w3.org/TR/wsdl.

WSDM (2006). OASIS Web Services Distributed Management standard specification. Retrieved December

5, 2007, from http://www.oasis-open.org/committees/wsdm/.

WSN (2007). OASIS Web Service Notification specifications version 1.3. Retrieved December 5, 2007,

from http://www.oasis-open.org/committees/wsn.

WSRF (2007). OASIS Web Service Resource Framework standard specification. Retrieved December 5,

2007, from http://www.oasis-open.org/committees/wsrf.

 21

Wu, X., & Schulzrinne, H. (2003, May). Programmable end system services using SIP. In Proceedings of

The IEEE International Conference on Communications (ICC 2003), Anchorage, Alaska, USA (pp. 789-

793). IEEE press.

XML (2006). Extensible Mark-up Language specification 1.0 (4th Edition). Retrieved December 5, 2007,

from http://www.w3.org/XML/.

XPDL (2007). Workflow Management Coalition: XML Process Description Language, version 2.0

standard. Retrieved December 5, 2007, from http://www.wfmc.org/standards/xpdl.htm .

ABOUT THE AUTHORS

Paolo Falcarin is research assistant in the Software Engineering Group at the Department of Computer

Science and Automation of Politecnico di Torino, one of the leading engineering universities in Italy. He

received his M.S. degree in Computer Science Engineering in 2000, and his Ph.D in Software Engineering,

in 2004, from Politecnico di Torino.

He is involved in European projects, part of the FP6 EU research program on service engineering, working

on service creation technologies and service description languages. His current research interests include

automated software engineering, service engineering, software modeling, Aspect-Oriented Programming,

and Rule-based Programming.

Claudio Venezia is researcher at Telecom Italia Lab since 2002. He received a degree in Economics with

an experimental addressing in computer science along with further computer science certifications from

University of Turin (Italy) in July 1998. He worked for three years in Ernst and Young critical technologies

in several domains (Banking, Automotive, and E-commerce). He has been contributing to standardization

activities (JAIN-SLEE, W3C) and internal and international Projects. His research interests include

enhanced SOA paradigms meshing up IT and telecom capabilities, (Semantic) Web Services technologies

and XML-based languages towards Web 2.0.

	IJWSR 2008 cs
	JWSR-2008 edited

