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ABSTRACT: 

 
Meshing up telecommunication and IT resources seems to be the real challenge for supporting the 

evolution towards the next generation of Web Services.  

In telecom world, JAIN-SLEE (JAIN Service Logic Execution Environment) is an emerging 

standard specification for Java service platforms targeted to host value added services, composed 

of telecom and IT services. 

In this paper we describe StarSLEE platform which extends JAIN-SLEE in order to compose 

JAIN-SLEE services with Web services and the StarSCE service creation environment which 

allows exporting value added services as communication web services, and we analyze open 

issues that must be addressed to introduce Web Services in new telecom service platforms.  
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INTRODUCTION 
 
Nowadays telecom service providers are seeking new paradigms of service creation and 

execution to reduce new services’ time to market and increase profitability. Furthermore, 

convergence of networks, services and content is taking place at an increasing speed. 

Convergence is increasingly speeding up the introduction of new and converged services.  

New market opportunities like integration of voice, video and data services are emerging from 

this trend; as a consequence, the main goal of telecom service providers is the development of 

Value Added Services, or next generation services (Licciardi, 2003) that leverage both on the 

Internet and on telephony networks, i.e. the convergence and integration of services offered by IT 

providers with telecom operators ones. 

The creation of appealing value added services seems to be a key feature to avoid an operator 

being reduced to a “transport only” provider. The attractiveness of the service assortment offered 

seems to be the key to attract customers, and to increase revenues (Schülke, 2006). 

The reuse and integration of existing IT services in value added ones is even made difficult both 

by the increasing software systems complexity and the different middleware standards used for 

communication. 

To overcome these constraints the current vertically integrated networks are currently migrating 

to horizontally layered structures offering open and standard interfaces, i.e. a service platform, 

based on shared services and network enablers, which can be easily composed in a loosely 

coupled manner (Pollet, 2006). 

Therefore, these goals pose new requirements on the software development process, on the 

platforms hosting these services, and on the middleware enabling communication among services. 

JAIN-SLEE (JAIN - Service Logic Execution Environment) standard specification (JSR-22, 2007) 

is emerging as a new event-based service platform targeted to telecom domain, aiming at 

overcoming the performance limitations of J2EE-like application server, mainly designed for 

enterprise services, based on typical request-response interaction style. 
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In fact, communication services have strong real-time requirements (e.g. high throughput, low 

latency time), support mainly asynchronous interactions (e.g., voice-mail, call forwarding), and 

leverage efficiently on native protocol capabilities. 

Web Services standards are emerging as a new middleware standard for providing, composing 

and integrating IT services (Chung, 2003), but their introduction in the telecom domain means 

facing up with some open issues. 

Generalizing telecom functionalities to more abstract standard interfaces, like Web Services 

interfaces (WSDL, 2007), is often necessary to allow IT developers to reuse telecom services 

without mastering all technical issues related to telecom protocols; thus exposing telecom 

resources  as Web Services means losing some of the technical details of the underlying 

proprietary interface. 

Based on the former ideas, a Communication Application Server (named StarSLEE) inspired to 

the JAIN-SLEE specification has been developed, together with a graphical Service Creation 

Environment (StarSCE) for helping IT-developers in creating Value Added Services and 

Communication Web Services (Venezia, 2006). 

The service lifecycle process is sped up by means of a Service Creation Environment (SCE) that 

supports as much as possible the reuse and the composition of pre-existing consolidated 

components deployed in the telecom platforms, and third-party Web Services. 

A SCE must offer an intuitive interface enabling graphical composition and easy configuration of 

value added services, and it must automatically deploy value added services in the shape of 

service description languages which can be used to orchestrate and execute services running in a 

service execution environment. 

This paper aims at analyzing the current challenges encountered during a prototyping activity 

carried on to provide an effective composition and integration of Web Services and Value Added 

Services deployed on a JAIN-SLEE platform. 

In the following sections we describe the JAIN-SLEE standard architecture, the issues regarding 

the integration of Web Services in JAIN-SLEE, the problems of exporting a JAIN-SLEE value-

added service as a communication web service, and the current issues for moving such telecom 

platform towards telecom service oriented architecture. 

 

 

 

VALUE ADDED SERVICES IN JAIN-SLEE 
 
A value added service aims at encompassing either communication or enterprise service 

components (Glitho, 2003). 

The following is an example of a simple information retrieval target service: 

1. The user invokes the service using his/her mobile phone by sending an SMS (Short Message 

Service) whose body contains the information needed to retrieve the closest merchant of a 

particular category (e.g. restaurant, bar or cinema).   

2. The service localizes the user, retrieves the information requested and replies with a SMS 

containing the information retrieved.  

3. Afterwards the user can send another SMS to be connected with the found merchant via an 

audio call. 

The former service combines a communication service (SMS) with an enterprise service, i.e. the 

information retrieval services (Yellow Pages Web Service). 

As communication services have particular performance and availability requirements, it is 

difficult to realize such service integration using a typical application server, which architecture 

has been mainly designed for enterprise services. 
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In fact, enterprise services aim at business processes, which are typically transactional and 

potentially long running. 

Instead, communication services have strong real-time requirements and are based on 

asynchronous interactions. Voice mail, call forwarding and ring back tone are typical examples 

belonging to this service category. 

Moreover while enterprise services are typically synchronous remote procedure calls (RPC) 

characterized by coarse-grained events with low frequency, communication services are typically 

asynchronous and characterized by fine-grained events with high frequency.  

Within the communication domain, at the control layer, Session Initiation Protocol (Rosenberg, 

2002) is considered the converging protocol for call and message signaling. Either fixed or 

mobile networks will leverage on SIP for providing integrated capabilities. SIP will improve the 

ability to build new services and will play the role that Web Services are playing in the IT world 

(the universal glue). 

Although they play a similar role in the respective realms, SIP and SOAP are profoundly different. 

For example, a SIP based communication platform (Rosenberg, 2002) is made up of a set of 

systems which interact through a service bus allowing information push based on a 

publish/subscribe model.  

This platform relies on a SIP Registry which collects relevant information from a SIP network, 

stores and distributes it. This information regards both service and network elements descriptions. 

The SIP Registry is available both for network resources (where services are running), service 

managers (watching services behavior) and service users (interested in invoking services). 

In contrast, next generation service platforms aim at realizing an effective coexistence between 

enterprise and communication services.  

In next sections we evaluate if Web Service technology can help reaching this objective.  

 

 
JAIN-SLEE Architecture 

 
JAIN SLEE (also known as JSLEE) aims at defining a new kind of application server designed 

for hosting value added services. In particular, a JSLEE container is designed for hosting 

communication applications while typical application servers have been designed for enterprise 

applications: such applications typically invoke one another synchronously (e.g. via Remote 

Procedure Call or Remote Method Invocation) and they usually do not consider high-availability 

and performance concerns. 

Instead, the JAIN-SLEE specification has been designed for communication applications, and a 

JSLEE container relies on an event based model, with asynchronous interactions among 

components. 

The design of a JSLEE container must meet the requirements of a telecommunication services, 

e.g. handling different kind of events with low latency, supporting lightweight transactions. 

Furthermore, a service deployed on a JSLEE container has to be composed of lightweight 

components with a short lifetime, which can be rapidly created, deleted and updated.  

Another important feature of a JSLEE service is the ability of accessing multiple data sources 

with high independence of network protocols elements. 

Therefore, it must be possible to deploy applications in the SLEE application environment that 

use diverse network resources and signaling protocols. 

The integration of a new type of network element, or external system is satisfied by a Resource 

Adaptor Framework that supports integration of network resources; for example, a SIP server for 

voice-over-IP calls and instant messaging, a SMS (Short Message Service) gateway for 

communicating with mobile phones. 
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JAIN-SLEE specification requires that each telecom network resource is wrapped by a standard 

Resource Adaptor interface, in order to be connected to the event bus of the JAIN-SLEE 

container. 

Figure 1 depicts the StarSLEE platform architecture, and a possible example scenario: the SIP 

resource adaptor may trigger the platform with events originating from the underlying SIP 

network; an event router dispatches these events to existing or new service instances; then a 

service instance is composed by various components which interact by means of events. 

 

 

 

Figure 1. StarSLEE communication server 

 

JAIN SLEE provides a standard programming model that can be used by the Java developer 

community. The programming model has been designed to simplify application development, 

promoting software reuse, and ensure that robust services can be developed rapidly with 

minimum configuration effort. 

A standard JAIN-SLEE container should be able to clone application components between 

processing nodes in the system as particular processes and nodes may fail; it has to manage 

concurrent execution of application components, and allow application components to be 

dynamically upgraded. JAIN SLEE defines its own component model, which specifies how 

service logic has to be built, packaged, and executed, and how it interacts with external resources. 

 
JAIN-SLEE Component Model 

 
The JAIN-SLEE specification includes a component model for structuring the application logic of 

communications applications as a set of object-oriented components, and for assembling these 

components into higher level and more complex services.  

The SLEE architecture also defines how these components interact and the container that will 

host these components at run-time. The SLEE specification defines requirements of availability 

and scalability of a SLEE platform, even if it does not suggest any particular implementation 

strategy.  

Applications may be written once, and then deployed on any application environment that 

implements the SLEE specification. The system administrator of a JAIN SLEE controls the 

lifecycle (including deployment, un-deployment and on-line upgrade) of a service. 
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The atomic element defined by JAIN SLEE is the Service Building Block (SBB). An SBB is a 

software component that sends and receives events and performs computations based on the 

receipt of events and its current state.  

 

Every SBB subscribes to a given type of event. Whenever such an event is triggered by the 

network, or internally by some other SBB, StarSLEE container creates SBB instances, able to 

manage those events by means of specific handlers.  

The event router, specified by JAIN-SLEE specification, is the engine which routes event, either 

created by action performed on SBB, or coming from Resource Adaptor (RA). 

The RA architecture provides a standard way for enabling events on different networks to be 

received and transmitted from the event processing engine that is the Service Logic Execution 

Environment. The goal of the RA architecture is to allow Resource Adaptor implementations that 

use and fulfill contracts defined in the JAIN-SLEE 1.1 specification to be deployed and run in 

any compliant JAIN-SLEE application server. 

 

The RA layer is useful to decouple the SLEE container from rest of the world in terms of other 

protocols i.e. SIP protocol, SOAP protocol or others.  

Each SBB is defined by its own SBB-descriptor, an XML file including information that 

describes it (e.g. its name, vendor and version), the list of events it can fire and receive, and the 

names of Java classes implementing the logic of the SBB itself.  

In addition, StarSLEE the SBB descriptor contains: 

 The list of SBB properties, e.g. the input action parameters; 

 The list of SBB variables, e.g. the output set in the Activity Context; 

 The list of SBB handlers, e.g. the events managed by SBB; 

 The list of actions performed by SBB; 

 

While SBB properties are input parameters for actions/operations performed by SBB, SBB 

variables are the results of those operations. Actions are triggered by events, SBB properties can 

be valued by SBB variables belonging to an Activity Context (AC), which is a portion of memory 

shared by all SBB instances running in a service instance, and that is used to read and write 

properties and variables of all SBB instances involved in the same service instance. 

SBBs are stateful components since they can remember the results of previous computations and 

those results can be applied in additional computations. SBBs perform logic based on events 

received.  

An event represents an occurrence that may require application processing. It contains 

information that describes the occurrence, such as the source of the event. An event may 

asynchronously originate from a number of different sources, for example an external resource 

such as a communications protocol stack, from the SLEE itself, or from application components 

within the SLEE. 

Resources are external entities that interact with other systems outside of the SLEE, such as 

network elements (Messaging Server, SIP Server...). A Resource Adaptor wraps the particular 

interfaces of a resource into the interfaces required by the JAIN SLEE specification. 

JAIN-SLEE specification does not define any particular service description language to be used 

for composing different SBB instance. 

Therefore, we defined StarSDL, a specific service description language for StarSLEE used for 

describing an event-oriented service scenario, which well suits the telecommunication service 

domain; in particular, the StarSDL must allow asynchronous activation of the service, and the 

service session is typically open-ended and with long-duration, because it often involves different 

services, and, of course, users. 
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The language specification aims at satisfying the abovementioned requirements; hence it allows 

developers to model asynchronous interactions to the service both for service activation or and for 

other actors’ involvement, through the event router contained in the StarSLEE execution 

environment.  

As a set of SBB is available, the service developer can build service without worrying about 

single SBB programming, only considering service composition, once he knows each SBB 

interface, in terms of handlers, actions and properties. 

 

 

 

Service Composition with StarSCE 

 
 

The approach to service creation in telecom domain with Web Services infrastructure is driven by 

the constraint of being able to address heterogeneous target execution environments, where the 

technologies range from general Information Technology (IT) where, for example, Web Services 

are one of the leading technology in Service Oriented Architectures (Baravaglio, 2005), to very 

specific telecommunications ones, where an overabundance of protocols and standards are 

available (e.g. SIP, IMS ). What seems to be clear in telecom services is the need to integrate 

many resources over different protocols and to be able to represent a set of interactions that are 

not limited to the classic request/response paradigm. In such a heterogeneous environment, the 

approaches to service creation should be as general as possible, supporting a stepwise approach 

that drives the developer from abstract to concrete definitions targeting a specific service 

execution environment. 

Looking at the main challenges of the service creation process, the most important requirements 

are: 

 A service description language that allows the specification of a telecom/IT integrated 

services 

 Tools that support the graphical composition services and their deployment to a target Service 

Execution Environment 

 A Service Execution Environment that allows combining effectively different technologies. 

 

In order to provide Value Added Services (VAS), the service platform must be enhanced with a 

graphical service composition engine, i.e. a service creation environment which easily allows 

building new services by means of a collection of internal components or third-party Web 

Services. StarSCE allows the developer to choose the SBBs (Service Building Block) and link 

them in a graph structure which is a graphical representation of the service. A Service Building 

Block is either an External IT Web Service wrapper or a signaling network functionality provider. 

In JAIN-SLEE component model variables and properties can be set for each SBB: StarSCE 

allows to visually composing those SBBs in a service description diagram which can be translated 

in StarSDL representation, which describes the service control flow and the usage of these 

variables and properties. 

In particular, starting from the WSDL interface of a Web Service, StarSCE consents to 

automatically create the correspondent SOAP client wrapped in a new SBB.     

The following figure (realized using the StarSCE graphical service creation environment) shows 

an example of a simple service which can be deployed on the StarSLEE service platform. 

Moreover given a set of Web Services wrapper SBB, StarSLEE can actually behave as a web 

service orchestration engine. 
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Figure 2 Example of graphical Service description 

 

Once a service is graphically composed and the SBBs have been configured, StarSCE generates 

an XML file, called service descriptor. 

A service descriptor represents the control-flow graph of the service composed of different SBBs, 

each one defined by its own SBB descriptor. 

A service is made up of loosely coupled components, and it may provide different starting points, 

i.e. different SBB instances, each one triggered by a different kind of event, coming from the 

resource adaptors pool.  

  Each service instance is then made up of different SBB instances and one activity context 

holding shareable attributes that SBB instances want to share. 

  Therefore the state of a service instance can be represented by attributes stored in an activity 

context. 

    Using StarSCE it is possible to manage the automatic configuration, dynamic deployment, and 

publication of a Value Added Service in a JAIN-SLEE container. 
 

 

Figure 3. Service deployment on StarSLEE 

 
Figure 3 shows main entities of StarSLEE container: a XML service descriptor is sent through the 

Service Bus to the Application Server Deployer, which creates the corresponding service instance 

(e.g. TimerService): this service is then running and listening on the event router, waiting for 

events coming from networks underlying the resource adaptors (e.g. HTTP, SIP). 

StarSCE helps the developer in creating complex compositions of SBBs to be executed in a 

JAIN-SLEE container, which use Resource Adaptors to abstract interfaces of telecom networks 

resources, and it is not bounded abstracts and to represent the orchestration of such resources our 

approach aims at extending JAIN-SLEE platform and related SCE in two directions: 

1. To compose both JAIN-SLEE service building blocks and Web Services. 
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2. To export JAIN-SLEE service as an asynchronous web service compliant to the WS-

Notification specification. 

 

 

 

COMMUNICATION WEB SERVICES 
 
Traditional communication services are usually triggered by signaling messages like a SIP 

message (Rosenberg, 2002) or an instant message (IMS, 2006); instead Communication Web 

Services (Baravaglio, 2005) are usually Web Service interfaces of common telecom 

functionalities which are triggered by a SOAP message. They can also exploit different network 

resources within the telecom domain and be published and used on the Internet. 

For example, here is a list of telecom services which can be exposed as Communication Web 

Services: 

• Third party call: provides the capability to initiate a call between two actors generated and 

managed by a third party. 

• Multi media conference: provides the capability to initiate an audio/video conference with two 

or more actors within a session. 

• Messaging: a set of Web Services which provide the capability to send Instant Messages, SMS 

and MMS 

• Presence: provides the capability to retrieve user availability information in a network domain. 

• Users’ provisioning: provides the capability to interact with a Data Provisioning DB System by 

means of retrieving and storing user profiles information supporting various communication 

protocols and devices. 

Using standard Web Services to abstract telecom network capabilities, service providers can offer 

to IT developers outside of the telecom industry, new possibilities for building innovative 

services. 

Web Services standards enable telecom operators to provide third parties with controlled, reliable 

access to telecom network capabilities such as presence and call control.  

Different international consortia have proposed standards for using Web Services in 

telecommunications domain: 

- Parlay X Standards (ETSI, 2007) are a set of simplified telecom APIs based on Web services 

published by the Parlay Group and the European telecommunications Standards Institute 

(ETSI); Parlay-X has been standardizing WSDL interfaces for the most common signaling 

services, like Third Party Call, Call Notification, SMS, MMS, etc.. 

- Open Mobile Alliance (OMA, 2007) has proposed the OMA Web Services Enabler to define 

the means by which OMA applications can be exposed, discovered and consumed using Web 

Services technologies, and it specifies how mobile terminal can interact with Web Services. 

- W3C (W3C, 2007) is providing WS-Addressing specification (WS-Addressing, 2007), which 

provides transport-neutral mechanisms to address Web services and messages. Specifically, 

this specification defines XML elements and namespaces to identify Web service endpoints 

and to secure end-to-end endpoint identification in messages. This specification enables 

messaging systems to support message transmission through networks that include processing 

nodes such as brokers, firewalls, and gateways in a transport-neutral manner. 

- OASIS consortium has defined a set of specifications like WS-Notification (WSN, 2007), 

WS-ResourceFramework, and WS-ReliableMessaging (WS-ReliableMessaging, 2007) which 

are important basis for developing communication Web Services. 

 

In the following section we describe how StarSCE helps developers in transforming a JAIN-

SLEE value added service in a communication web service. 
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From Value Added Service to Communication Web Service 

 
Transforming a Value Added Service (in this context a JSLEE service) in a Communication Web 

Service requires some enhancements to the JAIN-SLEE architecture. 

First of all a Web Server must be added for hosting a SOAP Server (Apache Axis, 2007). Then, 

for any service to be exposed, a Web Service implementation with related WSDL is provided and 

it has to interact with the actual service deployed in the SLEE container. 

Therefore, the JAIN-SLEE architecture must be extended adding a SOAP Resource Adaptor 

(SOAP-RA), which acts as a communication bridge between a SLEE service and its 

correspondent Web Service implementation.  

An alternative design may be based on adding a service-specific resource adaptor for each service 

to be exported as a web service, but this solution is not viable: in fact in JAIN-SLEE architecture 

a resource adaptor is a wrapper of an external network entity, and it is designed to be service-

independent, because it must be unaware of which kind of services are deployed in the SLEE 

container. 
 

 

Figure 3 Extended JAIN-SLEE architecture 
 

Once defined the new extended architecture (Figure 3), we can consider two different strategies 

to export a SLEE service in a Web Service: a wrapping strategy and a reengineering strategy. 

Using the wrapping approach means considering the service as a single “black-box” entity which 

receives and sends events, while the reengineering approach consists in automatically modifying 

some parts of the service in order to be exported as a Web Service. 

Following the wrapping strategy implies that the SOAP-RA should be able to send events the 

service is listening to; for example if the target service must be triggered by means of a SMS, the 

SOAP-RA should be able to send this event. Under these assumptions, this kind of SOAP-RA 

could send whichever kind of SLEE events, but this is in opposition to JAIN-SLEE design, where 

each Resource Adaptor must only exchange events related to its own underlying network element. 

The SOAP-RA can only send events related to its own underlying network protocol, thus a 

SOAP-Event has been introduced to represent information coming from whichever Web Service 

implementation. 

As a consequence, our approach is based on reengineering the value added service in order to 

automatically obtain its new web service version. Every service requires a root SBB which 

represents the service entry point (e.g. the SBB on the left side in Figure 5). Only when a root 

SBB is triggered a new service instance is created.  

As the Value Added Service has been previously designed for listening to a particular event type, 

adding a new root SBB becomes necessary, i.e. the ReceiveSOAP SBB. The SOAP request is 



 10 

received from the SOAP-client through the Web Service Implementation and forwarded by the 

SOAP RA to a root SBB by means of a SOAP event.  

 The new root SBB (ReceiveSOAP) is then the service entry point which extracts data from the 

SOAP-Request and put them in the activity context.  

 

 

Figure 4. ReceiveSOAP SBB 

The introduction of a new ReceiveSOAP SBB in place of the former root is not enough. In fact, 

reengineering a service by adding a new SBB requires a deeper analysis of service structure to 

find out dependencies among SBBs, both at the control-flow level and at the data-flow one.  

For example, looking at the service in figure 2, we can identify different types of SBBs. The 

TPCC (Third-Party Call-Control) is a type of SBB representing the actual service logic 

implementation (we can call it “core SBB”) and other SBBs whose main activity is the 

communication with external entities, that we call “connector SBBs”. Among these ones we can 

further distinguish SBB receiving data (i.e. the RecvSMS which receive an SMS coming from the 

SMS-resource adaptor) from other ones sending out data (i.e. the SendSMS which sends an SMS 

to the SMS-resource adaptor): the ones receiving data can be labeled “service heads”, because 

they are typically performed at the beginning of service execution, while the others sending data 

can be labeled “service tails”, because they are typically performed at the end of service 

execution. 

A service can be described by a direct cyclic graph, where a node corresponds to a SBB instance, 

and there is an arc from node A to node B only if the same type of event is sent by A and received 

by B. 

Thus “service heads” are nodes with no incoming arcs, while “service tails” are nodes with no 

outgoing arcs. 

For example in the service of figure 5 there are three service heads (ReceiveIM_0, ReceiveIM_1, 

and ReceiveIM_2) and two service tails (SendIM_0, and Echo_0). 
 

 
Figure 5. Service heads and service tails 
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On the other hand, the data-flow of a service instance can be deduced analyzing which attributes 

are read from (or written in) the activity context. The content of the activity context instance 

represents the state of the service instance at a particular time. 

The attributes stored in the activity context by each SBB instance can be obtained from the XML 

service descriptor file.  

In practice, reengineering the service to be transformed in a Web Service means making some 

design decisions:  

1. Which service heads must be replaced by a ReceiveSOAP SBB. 

2. Which service attributes in the activity context must be mapped to parameters of Web Service 

operations.  

3. Which interaction style to use between SOAP clients and the Communication Web Service. 

4. Which service attributes in the activity context must be considered as a result to be sent back to 

SOAP clients. 

5. Depending on the chosen interaction style, how service results should be transferred to the 

SOAP clients. 

 

Once the developer makes these decisions, StarSCE can automatically generate the corresponding 

WSDL interface, the Web Service Implementation Java code to be deployed on the Web 

container, and the code of the ReceiveSOAP SBB.  

Once a Communication Web Service has been deployed, it is provided with as many operations 

as the number of the available service heads. Invoking an operation mapped to a root service head 

means activating an instance of the corresponding service. The user can then interact with the 

service instance by means of invoking operations mapped on any of the other service heads.  

For example, in figure 6 the original service of figure 5 has been reengineered, applying the 

following changes: the root SBB has been replaced by the SBB ReceiveSOAP_1, the other 

service head ReceiveIM_1 has been replaced by another ReceiveSOAP SBB instance, the two 

service tails have been substituted two SendSOAP SBBs.     
 

 

Figure 6. New Service heads and tails 

 
A SendSOAP SBB is used to send service results back to the SOAP-RA sending a SOAP 

event containing attributes in the activity context, previously selected as service result. 

 



 12 

StarSLEE

SOAP RA

SIP RA

HTTP RA

Service Bus

AS Deployer

Event Router

Web Server

SOAP Server

Service

SOAP Client

RecSOAP
Timer

SendSOAP

Service

SOAP-Event

Request SOAP

SessionId

SessionId

StarSLEE

SOAP RA

SIP RA

HTTP RA

Service Bus

AS Deployer

Event Router

Web Server

SOAP Server

Service

SOAP Client

RecSOAP
Timer

SendSOAP

Service

SOAP-Event

SOAP-Event

Request SOAP
Request SOAP

SessionId

SessionId

SessionIdSessionId

 

Figure 7. Web Service Request and SLEE Dispatching  

 
Figure 7 shows how a Communication Service is accessed via SOAP: 

1. The SOAP client request reaches the Web Service implementation of the SLEE Service; 

2. The Web Service collects the parameters and delivers them to the SOAP RA; 

3. The SOAP RA in turn identifies the corresponding reengineered SLEE Service and triggers it 

by generating the proper SOAP event, containing the service name and the parameters of the 

invoked Web Service operation; 

4. The root SBB (ReceiveSOAP) receives the SOAP event, creates the service instance, and 

then it copies the operation’s parameters in the service activity context; 

5. The service is executed and results are sent to the SOAP-RA with a SOAP event.       

At this point, using a synchronous interaction style implies that SOAP-RA has to provide two 

more operations: getStatus and getResult. Invoking the former operation, while a service instance 

is running, allows SOAP clients to gain information on the state of its execution, polling on the 

latter returns service results whenever available. 
  Another important feature of SOAP RA is keeping a service session. In fact a session-ID is 

created and delivered to the SOAP client and it has to provide it for any further operation 

invocation. This session-ID is used to keep the link between the Web Service client and the 

corresponding StarSLEE service instance. 

 

 

 

JSLEE - WEB SERVICES INTEGRATION ISSUES 
 
 

There are other implementations of JAIN-SLEE specification along with StarSLEE: the Rhino 

(OpenCloud, 2007) and MobiCents open source project (MobiCents, 2007). While they both 

provide a rich set of resource adaptors compliant to recent JAIN-SLEE specification, they do not 

implement a SOAP Resource Adaptor, like in StarSLEE.  

Moreover they do not specify a service description language for defining JSLEE service 

descriptor, and, like in StarSLEE, they do not face with inter-communication between SBBs 

deployed on different JSLEE containers. 

In particular, main lacks of JAIN-SLEE specification are the following ones: 

- SBB descriptor and Service descriptor are required to be based on XML, and to contain 

some basic information like name, version, owner, but there is no XML-Schema to refer to. 
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- There is no specification on how to implement the event bus, neither how to define events 

namespaces, nor how this event bus can enable communications between SBBs deployed 

in different JAIN-SLEE containers. 

- There is no specification on how to define services whose SBBs are running on different 

JAIN-SLEE containers, and how (i.e. with which middleware or protocol) these containers 

have to communicate. 

- The JAIN-SLEE specification does not specify a service description language but it just 

suggest that SBB work-flow could be represented with a tree-structure, which limits the 

composition possibilities. 

In order to fill these gaps, StarSLEE has been developed to implement and extend the JAIN-

SLEE specification. 

In this section we discuss important issues to be solved in order to obtain a smooth integration 

between JAIN-SLEE and Web Services world. In particular we will discuss our approach and we 

compare it with related work on service description languages, asynchronous interactions, and 

service discovery. 

 

Service Description Languages 

 
Telecom domain offers several service description languages, but they have been designed for 

domain specific applications and protocols (Licciardi, 2003); many languages have been 

proposed to enable service programming on telecom networks, namely: Call Processing 

Language (CPL) (Rosenberg, 1999), Service Creation Markup Language (SCML) (Bakker, 2002), 

Language for End System Services in Internet Telephony (LESS) (Wu, 2003), CCXML (CCXML, 

2007), Session Processing Language (SPL) (Burgy, 2006), XTML (eXtensible Telephone 

Markup Language) (Pactolus, 2001).  

The expressiveness of LESS and CPL have been intentionally limited to make them accessible to 

end-users without programming expertise, while SCML and CCXML require more technical 

knowledge and thus they target expert users. 

SPL is a language which aims at raising the level of abstraction by introducing domain-specific 

constructs, such as sessions and branches. SPL hides SIP protocol complexity into appropriate 

language abstractions, and it makes programming telephony services accessible to more 

programmers, but it is bound to SIP-based services, it does not foresee integration with Web 

Services, and it still lacks a related service creation environment, able to automatically generate 

code and configuration files. 

Both LESS and SPL use program analysis to check particular properties on the designed service: 

LESS use it to detect feature interactions, SPL to check for safety and robustness properties 

exploiting the high-level domain-specific constructs of the language. 

Most of existing scripting languages for programming telephony services are limited, because 

they do not provide typical programming constructs such as loops and variables and they are 

tightened to a specific telecom network protocol, like SIP. 

Using a network-independent service platform like JAIN-SLEE requires the definition of a 

service description language not coupled to the underlying network. 

With respect to the service description and creation facets, JAIN-SLEE does not specify a 

language to describe services. As a consequence the new StarSDL language for StarSLEE 

platform has been defined to enable description of value added services less coupled to the 

underlying network resources, thanks to JSLEE event-based architecture. 

StarSDL is inspired to a well known standard language in IT world to define service 

orchestrations, such as Business Process Execution Language (BPEL, 2003) for WS.  
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Several BPEL4WS implementations (ActiveBPEL, 2007) consist in environments which allow 

creating, deploying, executing and monitoring BPEL4WS services. Although these solutions 

encompass almost all the functional requirement for creating communication Web Services they 

still cannot fulfill essential telecom services requirements like low latency and high throughput 

which implies that they do not easily scale for telecommunication Services environments. 

Even if BPEL4WS language offers several workflow features, like Sequence, Parallel Split, 

Synchronization, Exclusive Choice, Simple Merge, Multi Choice, Synchronizing Merge, and 

Implicit Termination, it does not allow to define interactions based on publish-subscribe pattern: 

as a consequence, it is not possible to activate several process instances with the same event 

notification. In particular, StarSLEE execution environment requires to express and enact critical 

workflow patterns, like arbitrary cycles and multi-merges, not supported by BPEL language and 

related engines (Wohed, 2003). 

Same limitations are observable in XPDL (XPDL, 2007), the standard language defined for 

easing interchange among business process languages in the Workflow Management domain. The 

goal of XPDL is more oriented to store and exchange the process diagram, in order to allow one 

tool to model a process diagram, another to read and edit the diagram, and another to run the 

process model on an XPDL-compliant engine. 

The Web Services Choreography Description Language (WS-CDL, 2004) is an XML-based 

language that describes collaborations among different Web Services by defining, from a global 

viewpoint, their overall behavior, in order to achieve a common business goal. 

While WS-BPEL represent the workflow orchestrated by a dominating entity (the BPEL engine 

running the BPEL script), WS-CDL defines the same workflow as a protocol between services 

which are independent peers working together to realize a collaboration: WS-CDL definition can 

be decomposed in different BPEL scripts, each one executed by a peer in the collaboration.  

Recently, two other languages have been proposed: SOAP Service Description Language 

(Parastatidis, 2006) which enables contract specification on WSDL 2.0 and it is better suited to 

precisely specify a web service interface than representing an orchestration language; Taverna 

(Wolstencroft, 2005) is a data-centric workflow language which uses data dependencies to 

describe a workflow of GRID processes. 

Any of these XML-based languages is not so useful without a related service creation 

environment, used to generate such languages from a high-level, possibly graphical, 

representation 

Regarding the service creation environment, WebSphere Studio Application Developer (IBM, 

2007) and RapidFLEX Application Server (Pactolus, 2001) provide a graphical SCE easing the 

service creation process of value added services. 

The former strongly relies only on those telecom network resources exposed as Web Services 

compliant to the Parlay-X specification. 

The latter allows creating workflows of elements representing telecom resources exposing their 

native interfaces or Java code snippets; such workflows are then represented with XTML files 

which are executed by the proprietary application server. In this platform web service invocations 

might be inserted manually in Java code snippets. 

More specifically to JAIN-SLEE, Eclipslee (Eclipslee, 2007) is also available as a SCE for 

MobiCents services, but it does not support any web service facilities, as its underlying platform 

does not offer any SOAP Resource Adaptor. 
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Facing with asynchronous interactions 

 
The aim of overcoming the limitations of SOAP toolkits in addressing asynchronous interactions 

with Web Services it is not just a Telecom Operator prerogative. Recent standard specification 

like WS-Notification (WSN, 2007) defines how to apply publish-subscribe interaction pattern 

among Web Services for implementing asynchronous interaction style among loosely coupled 

services, relying on standard SOAP protocol; for this reason there are a few implementations 

addressing these issues.  

Apache Muse project (Muse, 2007) is a Java-based implementation of OASIS standard 

specifications, like Web Services Resource Framework (WSRF, 2007), Web Services 

Notification (WSN, 2007) and Web Services Distributed Management (WSDM, 2007).  

Muse is a framework upon which developers can build web service interfaces for manageable 

resources: it hides the complexity of dealing with the specifications cited above. Furthermore the 

applications built with Muse can be deployed in both Apache Axis2 (Axis2, 2007) and OSGi 

(OSGi, 2007) environments. Axis2 is a recent SOAP implementation which supports standards 

like OASIS WS-ReliableMessaging (WS-ReliableMessaging, 2007) and W3C WS-Addressing 

for providing asynchronous Web services.  

 

The main requirement of a Communication Web Service Platform is to manage asynchronous 

interactions with clients by means of a fully asynchronous WS management system. Along with 

the synchronous SOAP solution described in the former section, we have implemented a full 

asynchronous management of client-server interactions. 

 This was obtained implementing an enhanced version of the SOAP resource adaptor in 

accordance with WSN family of specifications.  WSN defines a set of specifications that 

standardize the way Web Services can interact using the Notification pattern, which specify a 

way for consumers to subscribe to a producer for notifications whenever a particular event occurs. 

This set of specifications includes WS-Base Notification (WSN, 2007), WS-Topics (WS-Topics, 

2007), and WS-Brokered Notification (WS-Brokered Notification, 2007). 

Web Services can act asynchronously as long as they make their own state persistent. This was 

reached referring to the Web Service Resource Framework family of specifications (WSRF, 

2007). WSRF defines a generic and open framework for modeling and accessing stateful 

resources using Web Services. It provides mechanisms to describe views on the state, to support 

management of the state through properties associated with the Web Service, and to describe how 

these mechanisms are extensible to groups of Web services.  

A SOAP server redirects inbound messages to the said SOAP resource adaptor which in turn 

creates: 

•   A SOAP service context 

•   A client formal subscription to further outbound messages and 

•   A SOAP event to be dispatched by means of the event router.  

On the other hand, whenever a service needs to contact back the client it triggers an event to the 

SOAP RA which calls back the client. 

In the following figure is shown what happens when a service instance in the SLEE container 

terminates its execution: before the service instance is released it notifies the router with an End 

of Service event which is forwarded to the SOAP RA. Then the SOAP RA looks for the related 

SOAP service context, and the corresponding web service implementation is notified: at this point 

the web service provider notifies the Service Requestor with a SOAP message, containing the 

web service response.  
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Figure 8. Web Service Response: SOAP Notification  

 

 

Service Discovery 

 
Service discovery and advertising are key facets in a telecom environment: for example, a SIP 

network leverages on its native publish-subscribe model to “push” new services information to 

clients belonging to a given network domain.  

A communication service platform aiming at composing and integrating Web Services is fully 

concerned with static and dynamic discovery of web-services. Furthermore the discovery process 

has to sort candidate services that fulfils given functionality and quality parameters, and can be 

combined in order to realize value added services. 

Therefore, new processes, methods, and tools need to be provided to extend current software 

development practices to support these requirements. Discovering Web Services dynamically 

consists in identifying alternative services to replace services already participating in a given 

composition that may become unavailable or fail to meet specific functional or quality 

requirements during service execution. It is a challenging activity since it requires efficient 

discovery of alternative services that precisely match the functional and quality requirements 

needed and replacement of these services during run-time execution in an efficient and non-

intrusive way. 

At its foundation, Universal Description Discovery and Integration (UDDI, 2007) is a group of 

specifications that lets Web service providers publish information about their Web Services on a 

public UDDI registry and it lets Web service discoverers or requesters search that information to 

find a Web Service and run it.  

UDDI specification is then focused on the information model that enables a suitable 

categorization of the published services, but it does not address the following important 

requirements in telecom domain: 
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• Late binding: since service references are published as static data, Web Services are forced to be 

up and running continuously on a given URL. No dynamic instantiation of services and 

references is therefore possible.  

• Personalization: UDDI does not support any form of personalization, i.e. the result of a specific 

query is the same for any requestor. 

• Authorization: there is no mechanism in UDDI that allows defining and enforcing complex 

authorization policies for service requestors when inquiring the registry and retrieving the details 

of the services. 

• Reference validity: UDDI does not guarantee that the service reference returned to the 

application (in response to a Get Service operation) really points to a Web Service. 

In order to meet these requirements a “UDDI proxy” has been prototyped (see Figure 9). The 

proxy routes queries from a client application to the UDDI registry and provides additional and 

personalized capabilities, mediating the access to the actual UDDI registry.  

The proxy can control the access to the information contained in the UDDI Registry 

allowing/denying the access, basing on a Service Requestor’s Authorization Profile. The UDDI 

proxy is also able to dynamically create the Web Services instances, guaranteeing the existence of 

the Web Service, and to personalize the Web Service instances based on the Service Requestor 

identity.  

The proxy exposes standard UDDI interfaces to the applications, so that the interactions with it 

are right the same as the ones with ordinary UDDI registry (i.e. UDDI clients use the same UDDI 

API). The solution has minimal impact on the pre-existing architecture since it does not require 

modifying the existing elements. In fact it only implies to add a separate node (the proxy), 

reconfiguring the applications by providing the reference to the new node and by configuring the 

UDDI registry to accept inquiries from the proxy.  
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Figure 9. UDDI proxy architecture 

 

 

 

CONCLUSIONS AND FUTURE WORK 
 
There is an increasing interest in introducing Web Service technology in telecom service 

platforms. On one hand it is an opportunity to enable new business models and reach new 

markets, nevertheless it points out that to get to a successful applicability to telecom domain 

many weaknesses have still to be overcome. A communication web service platform would be 
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more familiar for Internet application developers, but it could imply some limitation in the usage 

of the network capabilities in term of provided features. 

The process of integrating Web Services in telecom platforms and services has shown that the 

Web Service orchestration approach has some limitations: the critical requirement for publish-

subscribe interaction model is not supported, even if recent standards like WS-Notification (WSN, 

2007) and recent W3C submissions like SOAP over JMS (SOAP-JMS, 2008) are improving Web 

Service applicability to telecom platforms. 

Meanwhile emerging event based containers (such as JAIN-SLEE) are designed for telecom 

environment but may be extended to be capable of integrating Web Services.  

Our work shows both benefits and drawbacks in supplying a telecom application server (inspired 

to JAIN-SLEE) with Web Services facilities to enable Value Added Services composition and 

execution. We defined StarSDL, a new service description language to cover the lacks of JAIN-

SLEE specification and we developed a SOAP resource adaptor (which is essential for exposing 

JAIN-SLEE service as Web Services) able to forward SOAP requests both in the typical request-

response interaction style and in the emerging asynchronous one, based on the recent 

implementation of WSN provided by Axis 2. 

At the service creation level we defined in StarSCE service creation environment a semi-

automated way for generating SOAP-related SBBs, and for modifying automatically all service 

descriptors, in order to interact with the SOAP resource adaptor. 

The SCE, together with the StarSDL language, and JAIN-SLEE will ease IT and telecom service 

integration, thanks to a new way of reusing components and Web Services to provide advanced 

value added services which can also be exported as communication Web Services. This will ease 

the service creation process reducing time-to-market for the new services. 

Future work is focused on how to integrate recent WS standards and the rest of IT-research trends 

in a value added service platform, namely: Web Services discovery, dynamic Web Services 

composition, Web Services monitoring and management, Web Services security (Naedele, 2003), 

and semantic Web Services.  
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