
12

INTRODUCTION

As a teacher educator who continues
to cross the boundary between roles in
higher education (HE) and computing
teaching in the primary (ages 5 to 11)
classroom, I consider myself to have
benefited from the polycontextuality
(Kidd, 2012, cited by Czerniawski, 2018)
which these two roles bring. When
teaching and tutoring trainee teachers

I am able to draw upon recent and
relevant experiences which provide
context to theory. Similarly, when
teaching computing in the classroom
setting there is a depth to my practice
which has been enhanced through my
years of working in university- based
teacher training.

Computing is my area of expertise as
a teacher educator on the Primary

Postgraduate Certificate in Education
(PGCE) course, which is a one-year
course for trainee teachers in England.
As a teacher educator, I am acutely
aware that the subject knowledge,
theory and pedagogy which I advocate
in the lecture theatre may, at times,
be far from easy to follow through
into classroom practice, even for
experienced teachers like myself.
With this in mind, I have taken a

Exploring and understanding
pupils’ lack of perseverance
and autonomy with
debugging in computing
Gurmit Uppal
University of East London, UK

ABSTRACT
The National Curriculum for Computing in England expects that primary-school-
aged pupils (5- to 11-year-olds) will be able to correct programming errors in
age-appropriate contexts (DfE) 2013). This correction of errors in computing
is known as debugging. Utilising a broadly autoethnographic approach, this
paper draws upon the writer’s positionality as a computing teacher in primary
school and as a teacher educator in a university-based setting. Reflecting upon
experiences of teaching computing (specifically debugging) to primary school
pupils, the paper goes on to outline and explore potential reasons for pupils’
lack of perseverance and autonomy when engaged with debugging activities.
Ideas around learnt helplessness and cognitive load theory are analysed as
potential barriers to pupils’ progress when it comes to debugging. The reflective
process concludes with suggestions to further develop pupils’ independence
with debugging activities, as well as considering the importance of teacher
educators’ own practice-based experiences to share with new teachers.

KEYWORDS

computing

debugging

autoethnography

learnt helplessness

cognitive load theory

teacher education.

1312

RESEARCH in TEACHER EDUCATION

Vol.10. No 1. May 2020 pp 00-00

broadly autoethnographic approach to
reflect on my own practice and beliefs in
relation to a specific area of computing
teaching. Specifically, I wanted to better
understand whether I was promoting
pupils’ autonomy in the computer science
area of debugging.

AUTOETHNOGRAPHY
Autoethnography is a qualitative research
method which draws on one’s personal
experience to describe, reflect upon and
critique practices and beliefs (Adams et al.
2014). Unlike ethnography, it is pragmatic
in acknowledging and owning the
subjectivity in the relationship between
researcher and the researched (Ellingson
& Ellis 2008).

Autoethnography is rooted in an active
and probing form of reflection known
as reflexivity, where research analysis
is focused on how the researcher’s
‘thoughts, feelings, values, identity
[impact] … upon others, situations, and
professional and social structures’ (Bolton
2010). In my role as teacher, it provided
a relevant and in-the-moment approach
which allowed me to consider how my
thought processes, beliefs and identity
were influencing my pedagogical decision
making in the classroom.

Autoethnographic research does not
attempt to offer findings that can be
widely generalised; instead the focus is

specific, and studies should be judged on
the story and its impact on improving the
lives of participants, readers or indeed
the researcher’s own (Ellis 2004). For me,
adopting this approach was as much about
taking the time and space to reflect on
my practice as it was about improving my
practice for pupils and future teachers alike.

SUBJECT CONTEXT:
computing, computational
thinking and debugging
The research evidence which is the
basis of this paper relates to an area of
computer science known as debugging.
Debugging must first behhhhh introduced
and explained within the wider context
of the National Computing Curriculum
(DfE 2013) which is currently in place
in England, and computational thinking
which is at its very core. Computational
thinking can be defined as the process
deployed to solve problems and outline
solutions by drawing on the fundamental
skills of computer science (Papert 1980;
Wing, 2006, 2011). The development of
computational thinking skills is central
to the successful implementation and
impact of computing in schools. The
knowledge and skills developed through
this curriculum will also equip learners
with transferable tools which they can
apply across other areas of learning
(Morris et al. 2017). Despite its name,
computational thinking should be most

valued for its development of pupils’ skill
set in tackling problems in increasingly
efficient ways, regardless of whether
technology is involved or not.

Computational thinking concepts which
are regularly referred to in computing
education include: logical reasoning,
decomposition, abstraction, pattern
recognition, algorithms and evaluation. In
addition to these concepts, approaches to
the tackling of problems include: tinkering,
creating, debugging, persevering and
collaborating (Berry 2015). In this paper,
I will focus specifically on perseverance
and debugging. Debugging is the
identification and correction of errors in
computer science. National Curriculum
requirements in England state that by
the end of Key Stage 1, ‘pupils should
be taught to create and debug simple
programs’, and by the end of Key Stage 2,
‘design, write and debug programs that
accomplish specific goals’ (DfE 2013).

RESEARCH CONTEXT
In addition to my role as a teacher
educator, I am also a computing subject
leader and teacher in a primary school,
where I teach pupils between the ages of
seven and eleven (known as Key Stage 2
in English primary schools). As a subject
leader, I acknowledged that assessment
data captured from the previous school
year demonstrated that pupils’ debugging
skills were an area of weakness for many

12-17

Fig. 1. This
example shows a
performance bug,
as well as a break in
the program. Pupils’
annotations show
that they were able
to recognise the
blocks needed to
be connected and
they also recognised
that the drawing of
the circle on screen
was slow. They were
unable to improve
the performance
of the program
without significant
scaffolding and
guidance.

14

pupils across all year groups in Key Stage 2.
As a result, I decided to make this a specific
focus for my research in an attempt to
further understand and explore potential
reasons and solutions for this area where
pupil progress was lacking.

A six-week unit of work with a specific
focus on debugging was carried out with
a group of Year 3 (seven- to eight-year-
old) pupils. The planning for the unit was
based around a unit of work called, ‘We
Are Bug Fixers’ from a published scheme
of work by Rising Stars (Berry 2014).
Learning outcomes for the unit were
around pupils developing their strategies
for finding errors in programs and their
development of resilience and strategies
for problem solving.

A typical lesson consisted of introducing
pupils to a type of computer bug, then
modelling the issue through an example
created in Scratch programming software
(MIT 2019). This was then followed by
facilitating a shared discussion around
why the program was not working or how
it could be improved. Pupils then moved
on to explore the program for themselves
(in mixed attainment pairs) to identify
and explain the error through on-screen
annotations, as can be seen from the two
examples shown (Figs. 1 and 2).

REFLECTION AND
EMERGING THEMES
The weekly lessons delivered over a six-
week period were enjoyed by the pupils
as each of the programs they explored
was contextualised within a theme
or scenario which was of interest, for
example, drawing, a racing car track,
correcting muddled joke dialogue, etc.
In addition, the majority of pupils were
able to identify and explain the bug in
each type of program and make general
suggestions for what needed to be done
to improve the program.

It was the bridge between identifying
the bug in the program and going on
to correct it which is the area I believe
required further consideration. Early on,
it was evident that many of the pupils
were unable or reluctant to try to correct
the programming for themselves. This
was manifested in many ways, from pupils
expecting help with every step, stating the
task was too hard, lacking perseverance
and at times demonstrating off-task
behaviour. It must be acknowledged at
this point that there were indeed times
when the mathematical knowledge
required to understand the program
was beyond the maths-based curriculum
which had to be covered in Year 3. This
is something which I have encountered
before with Scratch programming, and I

have always ensured that the necessary
pre-teaching was in place to provide the
required background understanding. For
example, the lesson depicted in Figure 1
had begun with pupils pretending to be
human robots, to enable understanding
of direction and angle.

Before pupils explored the programs for
themselves, they had been exposed to
vocabulary explanations, step-by-step
modelling and prompts to promote ways
in which they too could tackle the task.
Despite the steps taken to make the
learning content accessible for pupils, I
observed a neediness from them which
impacted on my pedagogical approach.
I have identified the themes of learnt
helplessness and cognitive load theory
to analyse and discuss further with the
aim of providing possible reasoning and
rationale for the pupils’ lack of autonomy
when debugging, as well as understanding
and learning from my own practice in
these lessons.

LEARNT
HELPLESSNESS
Learnt helplessness is a phenomenon
which has been observed in classrooms
where some pupils believe that their
success in achieving goals is out of
their control (Seligman 2018). This is
not something unique to computing

Exploring and understanding pupils’ lack of perseverance and autonomy with debugging in computing

Fig. 2. This example
shows an exploratory
task where pupils were
required to investigate
and explain what
happened to the car
on the track when the
variable (speed) was
increased. After initial
guidance, pupils were
able to identify that
the car stayed on track
with an optimum speed
of 12 but came off
the track when speed
was increased to 13.
Through prompted
questioning, pupils
were able to identify
how the track shape
may need to be
adapted to obtain
faster speeds.

1514

RESEARCH in TEACHER EDUCATION

Vol.10. No 1. May 2020 pp 00-00

and is often seen in other STEM
(science, technology, engineering and
mathematics) subjects where pupils’
confidence may be low, and success or
failure are more obvious (Yates 2009).
Phil Bagge has further explored this issue
in relation to the teaching of computing
and the development of pupil autonomy
in problem solving. Bagge (2015) defines
learnt helplessness as times when pupils
try to get ‘other people to solve problems
for you, these others may be the teacher,
classroom assistant or other pupils’. Learnt
helplessness from pupils has many forms:
pupils may be demanding of adult help,
they may lack perseverance with tasks and
they may become upset or display signs
of low-level disruption. If enough pupils
are displaying some of the traits of learnt
helplessness, a teacher may feel that it is
their fault if pupils are not achieving and
the lesson is not successful.

As a teacher educator, I have regularly
stressed the importance of teachers
not debugging programming problems
for their pupils and instead promoting
strategies which allow pupils to take
ownership of this area. However, in the
midst of a busy classroom where as a
teacher I was multitasking on many levels,
it was all too easy to over-scaffold and
provide too much direction, to give the
appearance of a seemingly successful
lesson. As a result, the decisions which
I took in the moment were not those
which I would advocate to others, having
reflected on the situation post-event
(Schön 2016).

Despite the new Computing Curriculum
being introduced in 2013, teacher
confidence in computing still varies
considerably (The Royal Society 2017) and
it is acknowledged that the ambition and
demands of the Computing Curriculum
should be prioritised as a key area for the
professional development of teachers
(Myatt 2018). Confidence could be an
important factor in relation to why some
teachers may not be promoting debugging
skills amongst pupils. Encouraging pupils
to identify, explain and correct errors with

increasing autonomy would mean that
teachers would also need to understand
the errors in the algorithms themselves,
but it would also run the risk of pupils
appearing to be stuck and not being
successful. For me, as an experienced
computing teacher, I believe my reasons
for not fully handing over the debugging
process to pupils was more about a need
for control and wanting pupils to feel that
they had been successful in the lessons.
With this in mind, I will now move on to
explore one possible theory as to why
the debugging process may have posed
difficulties for pupils.

COGNITIVE LOAD
THEORY
The Office for Standards in Education
(Ofsted, 2019a) recently published an
overview of the research evidence which
supports its new inspection framework.
With an increased focus on the intent,
implementation and impact of a well-
sequenced, knowledge-rich curriculum,
this has once more brought cognitive
load theory to the fore (Ofsted, 2019b).
Cognitive load theory is based around
changes in short-term working memory
and the subsequent impact on the infinite
longer-term memory (Sweller, 1998). As
short-term working memory can only
process a limited amount of information
at any given time, this working memory
can become overloaded and result in
errors: the inability to follow or remember
instructions; place-keeping errors;
incomplete recall or task abandonment
(Gathercole & Alloway, 2007, p.15).

Cognitive load theory identifies three
types of cognitive load:

• Intrinsic cognitive load: the inherent
difficulty of the material itself, which
can be influenced by prior knowledge
of the topic

• Extraneous cognitive load: the load
generated by the way the material
is presented and which does not
aid learning

• Germane cognitive load: the

elements that aid information
processing and contribute to
the development of ‘schemas’.
(Shibli & West, 2018)

The requirements for debugging in the
lessons I delivered presented a high
intrinsic load for pupils. The mathematical
subject knowledge was new to them,
and the programs they were using were
different to their previous learning
experiences, therefore pupils may have
been unable to draw upon previously
stored knowledge. Although well
intentioned, I may have also inadvertently
increased the extraneous load for
pupils through modelling that consisted
of too many steps, and visual slides
that contained multiple prompts and
diagrammatic steps to also represent
processes. As a result, the high intrinsic
and extraneous loads may have had a
negative impact on the germane load.

Cognitive learning theory asserts that
pedagogical approaches and lesson
materials can be adapted to reduce the
extraneous load. This allows learners
to focus on the germane (or relevant)
processes required for constructing
schemas through the recognition of
patterns, organising information and
linking previous learning and new. In
relation to computing, Bagge (2019)
believes that cognitive load theory can
help develop children’s agency, through
strategies such as avoiding introducing
too many concepts at the same time. In
many ways the concepts and approaches
that make up computational thinking
already promote an ideal instructional
design framework for cognitive load
theory, as problems are tackled through
efficient approaches. Carefully thought-
out medium- and long-term planning
sequences in computing could also
improve the retention, recall and
application opportunities pupils require
to facilitate the changes in long-term
memory and schemata. This could help to
reduce the load on working memory the
next time new learning in a related area is
encountered.

12-17

16

Exploring and understanding pupils’ lack of perseverance and autonomy with debugging in computing

The significance of cognitive load theory
on learning has been questioned. De
Jong (2010) suggests that cognitive load
theory is difficult to disprove, as the
three types of load will always present in
learning scenarios, and success or failure
can always be attributed to one or the
other. Indeed, he suggests that what may
be identified as extraneous in one case
may be germane in another. Whilst the
principles of cognitive load theory appear
sound, other classroom and individual
factors must also be considered when
identifying impact on cognitive load.
For this reason, more recent waves of
research on cognitive learning theory
have moved forward to acknowledge
and analyse factors such as instructional
design, and environment-related factors
such as emotions, stress and uncertainty
(Sweller et al. 2019). This has shown that
such factors can impinge on cognitive
load and consequently negatively impact
working memory.

CONCLUSION
My intention through this research paper
was to reflect on my own practice to
explore whether I was promoting pupils’
autonomy in the area of debugging. As a
teacher educator this process has made
me recognise that there are times when
I may not apply the approaches which
I advocate to others, instead allowing
the demands of a progress-orientated
classroom setting to lead the choices I
made to provide short-term success over
longer-term learning.

Through reflection and analysis of my own
practice, I acknowledge that I need to
hand over more of the debugging process
to pupils. Bagge (2015) acknowledges
that this is a process which takes time for
teachers, before they can then promote
greater autonomy amongst pupils. My
natural instinct as a teacher was to
intervene to support pupils when they
appeared stuck; however, there were
times when this led to an overuse of
scaffolding and prompts for pupils, which
detracted from the development of pupils’
own debugging skills. It is important that

pupils recognise debugging as part of
their learning in computer science, and
specific strategies need to be taught to
pupils to foster independence. Whilst
as a teacher I may need to step back,
collaboration should be encouraged in
computer science, with studies showing
peer work to have a positive impact on
risk taking and perseverance (Baroutsis
et al. 2019). Paired and group work is
an approach which I encourage in my
computing lessons, although my choice
of pairings has often been based on
attainment rather than potential impact
on perseverance with problem solving,
which is certainly worthy of consideration
in future lessons.

Subject knowledge development is
paramount if learners are to use and
apply prior knowledge from long-term
memory to new tasks. In the lessons
which I delivered, the pupils had not
encountered the maths and some of the
programming elements which they were
now being asked to examine and correct.
As a result, they were unable to make links
to previously stored learning and their
working memories were overloaded with
too much new information to process. Not
having previously taught this year group, I
was unable to ascertain the gaps in their
learning until after the unit was underway,
and consequently the unit of work needed
significant adaptation and pre-teaching
on a weekly basis. The sequence in which
curriculum topics are taught is an area of
increased focus identified in the recent
Ofsted framework (Ofsted 2019b). The
teaching of a unit once during a Key Stage
cannot be assumed to be learning which
is embedded or transferable. As a subject
leader, I have found that my experience
and reflection on teaching this unit will
help me to move forward with long-
term planning to ensure that pupils have
opportunities to revisit concepts regularly
to develop their retention and application
of knowledge. Nevertheless, it must not
be assumed that all pupils will experience
cognitive overload. Kalyuga (2007)
suggests that the instructional strategies
which work for novice learners could have

a negative impact on expert learners who
are already able to make connections
between new and prior learning.
Therefore, it is imperative that teachers
are able to design learning sequences
that incorporate pedagogical approaches
which suit the subject knowledge, as well
as the learning dispositions and prior
knowledge of their pupils.

As a teacher educator it is all too easy
to become detached and focus on how
education should be, as opposed to
dealing with the reality of the pressures
and stresses which impact on teachers’
daily decision making. This journey of
reflection has provided a timely reminder
of the challenges which new teachers
will face as they try to implement the
approaches which they have learned
about, and how as teacher educators
we must continue to have one foot in
the classroom to provide an authentic
evidence-based training experience for
our new teachers. n

1716

RESEARCH in TEACHER EDUCATION

Vol.10. No 1. May 2020 pp 00-00

REFERENCES
Adams, T. E., Jones, S. H. & Eliis, C. (2014). Autoethnography: understanding
qualitative research. Oxford: Oxford University Press.

Bagge, P. (2015). ‘Eight steps to promote problem solving and resilience and
combat learnt helplessness in computing’. Retrieved from ICT in Practice:
http://www.ictinpractice.com/eight-steps-to-promote-problem-solving-and-
resilience-and-combat-learnt-helplessness-in-computing-by-phil-bagge/

Bagge, P. (2019). ‘Cognitive load theory in the computing classroom’. Hello
World, May, 34–5.

Baroutsis, A., White, S., Ferdinands, E., Goldsmith, W. & Lambert , E. (2019).
‘Computational thinking as a foundation for coding: developing student
engagement and learning’. Australian Primary Mathematics Classroom, 24 (2)
pp. 10–15.

Berry, M. (2014). Switched on computing – Year 3. London: Rising Stars UK Ltd.

Berry , M. (2015). Computing at School (CAS) quick start computing: a CPD
toolkit for primary teachers. London: Department for Education.

Bolton, G. (2010). Reflective practice: writing and professional development.
London: SAGE.

Czerniawski, G. (2018). Teacher educators in the twenty-first century: identity,
knowledge and research. St Albans: Critical Publishing.

De Jong, T. (2010). ‘Cognitive load theory: educational research, and
instructional design: some food for thought’. Instructional Science, 38(2),
105–34.

Department for Education (DfE). (2013). ‘England: computing programmes of
study’. Retrieved from GOV.UK: https://www.gov.uk/government/publications/
national-curriculum-in-england-computing-programmes-of-study/national-
curriculum-in-england-computing-programmes-of-study

Ellingson, L. L. & Ellis, C. (2008). ‘Autoethnography as a constructionist project’.
In J. A. Holstein & J. F. Gubium, Handbook of constructionist research, pp.
445–6. London: The Guilford Press.

Ellis, C. (2004). The ethnographic I: a methodological novel about
autoethnography. Walnut Creek, CA: Altamira Press.

Gathercole, S. E. & Alloway, T. (2007). Understanding working memory: a
classroom guide. London: Harcourt Assessment.

Kalyuga, S. (2007). ‘Expertise reversal effect and its implications for learner-
tailored instruction’. Educational Psychology Review, 19, 509–39.

Massachusetts Institute of Technology (MIT) (2019). ‘About Scratch’. Retrieved
from Scratch: https://scratch.mit.edu/

Morris, D., Uppal, G. & Wells , D. (2017). Teaching computational thinking and
coding in primary schools. London: SAGE Learning Matters.

Myatt, M. (2018). The curriculum: gallimaufry to coherence. Woodbridge: John
Catt Educational Ltd.

Office for Standards in Education (Ofsted) (2019a). ‘Education inspection
framework: overview of research’. Retrieved from GOV.UK: https://assets.
publishing.service.gov.uk/government/uploads/system/uploads/attachment_
data/file/813228/Research_for_EIF_framework_100619__16_.pdf

Ofsted (2019b). ‘Education inspection framework (EIF)’. Retrieved from GOV.
UK: https://www.gov.uk/government/publications/education-inspection-
framework

Papert, S. (1980). Mindstorms: children, computers and powerful ideas. New
York: Basic Books.

The Royal Society. (2017). After the reboot: the state of computing education in
UK schools and colleges. London: The Royal Society.

Schön, D. (2016). The reflective practitioner. Abingdon, Oxon: Routledge.

Seligman, M. (2018). The optimistic child. London: Nicholas Brealey Publishing.

Shibli, D., & West, R. (2018). ‘Cognitive Load Theory and its application in
the classroom’. Retrieved from Impact - Journal of Chartered College of
Teaching: https://impact.chartered.college/article/shibli-cognitive-load-theory-
classroom/

Sweller, J. (1998). ‘Cognitive load during problem solving: effects on learning’.
Cognitive Science, 12(2), 257–85.

Sweller, J., van Merriënboer, J. J. & Paas, F. (2019). ‘Cognitive architecture and
instructional design: 20 years later’. Educational Psychology Review, 31(2),
261–92.

Wing, J. M. (2006). ‘Computational thinking’. Communications of the
Association for Computing Machinery (ACM), 49(3), 33–5.

Wing, J. M. (2011). ‘Research notebook: computational thinking – what
and why?’ The Link –Magazine of the Carnegie Mellon University School of
Computer Science, 8, 20–3.

Yates, S. (2009). ‘Teacher identification of student learned helplessness in
mathematics’. Mathematics Education Research Journal, 21(3), 86–106.

12-17

