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ABSTRACT 
Although using a handheld mobile phone while driving is illegal, hands-free (HF) use remains per-
mitted, despite causing cognitive distraction. This study investigated the cognitive impact of HF 
phone use on drivers using real-time physiological data—heart rate (HR) and blood pressure 
(BP)—and applied machine learning to classify driver cognitive load. Participants performed com-
plex tasks while driving and reversing, both with and without HF phone use. Results showed sig-
nificant increases in HR and BP during HF phone conversations. A novel feedforward neural 
network model achieved 97% accuracy in classifying cognitive load. The study’s real-time, natural-
istic approach enhances its generalisability and validity. It uniquely applies advanced ML techni-
ques to highlight the cognitive risks of HF phone use while driving. These findings provide crucial 
evidence for policymakers, particularly in the UK, supporting efforts to reconsider regulations and 
improve road safety. The study also offers insights for traffic safety experts and behavioural 
researchers.
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1. Introduction

Considering their capacity to induce disinterest and cogni-
tive disorientation, mobile phones are prohibited while driv-
ing (Lipovac et al., 2017). As a substitute, drivers may use 
hands-free (HF) mobile phones (Lipovac et al., 2017; 
Sullman et al., 2018). Nonetheless, should the preceding 
vehicle slow down during a pivotal moment in the conversa-
tion, there is a likelihood of impact. This is because the 
upcoming driver might fail to react in time. The blood pres-
sure and heart rate of adult drivers who experience this are 
higher (Mehler et al., 2008; Welburn et al., 2018; Reimer 
et al., 2008).

An increase in physiological signals is directly correlated 
with an increase in task difficulty. When three levels of task 
difficulty were randomly ordered during driving (Son & 
Park, 2011), found a near linear increase in heart rate. The 
findings demonstrate that heart rate is sensitive to incre-
mental changes in cognitive workload. Moreover, Son and 
Park (2011) reported that basic cardiovascular measures 
(heart rate and blood pressure) increase with increasing cog-
nitive workload. When task demands increased, such as 

entering a traffic circle, heart rate increased, and decreased 
as task demands decreased, such as driving on a two-lane 
highway. Furthermore, other studies have found that when 
task challenge increases, HR and BP increase, resulting in an 
increase in workload (Mehler et al., 2008; Welburn et al., 
2018). Therefore, HR and BP were chosen as physiological 
measures in this study to estimate cognitive function.

Considering this, the authors propose that if HR and BP 
are higher during phone usage compared to during 
no-phone usage, the participant is loaded cognitively. 
Cognitive load refers to the level of details the brain can 
process at once, thus the driver may subsequently be disori-
ented (Puma et al., 2018; Re~nosa et al., 2019; Sugimoto 
et al., 2020). Conversely, the subject is not loaded cognitively 
if the HR and BP during phone usage are lower than during 
no-phone usage. A proven approach to ascertaining the 
physiological effects resulting from cognitive workload is the 
use of the OMRON M7 Intelii IT Blood BP/HR Monitoring 
device. With this device, one can measure BP and HR to 
determine the effects of talking on an HF mobile phone. It 
is clinically validated and generates accurate results regard-
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less of where it is placed on the upper arm. In addition, it 
has Bluetooth capability that transmits all measurements to 
physicians using mobile phone software (Kollias et al., 
2020).

The present study applied two approaches. A qualitative 
approach was adopted based on research into cognitive load 
among drivers. It was the qualitative study responses that 
produced empirical findings about the cognitive function of 
the drivers, which were utilized to corroborate the ML tech-
nique results, thus validating the hypothesis. Experimental 
evidence indicates that engaging in mobile phones while 
driving contributes to unsafe driving, which is largely caused 
by cognitive, rather than physical distractions. Empirical 
data shows that hands-free phones are also linked to unsafe 
driving, like hand-held phones (Backer-Grøndahl & Sagberg, 
2011). As in Reference (Backer-Grøndahl & Sagberg, 2011), 
this study employed a qualitative survey. Earlier investiga-
tions have primarily depended on average HR data analysis 
or on average HR and BP from one experiment to deter-
mine the study’s outcomes (Mehler et al., 2008; Welburn 
et al., 2018; Reimer et al., 2008; Caird et al., 2018). Using 
physiological indicators of drivers’ workload (HR and BP) 
and ML techniques, the present research has advanced 
beyond this level by classifying the cognitive function of 
drivers and recommending safety measures.

Previous studies have used BP and HR to measure effort 
in task engagement. In a simulator, Welburn et al. (2018) 
researched the implications of talking on a mobile phone 
versus not talking on a phone on BP and HR. Results 
showed that talking on a mobile phone while driving 
increased BP and HR considerably, compared to driving 
without a mobile phone. Talking on a mobile phone as a 
secondary task from Welburn et al. (2018) is like previous 
work from Reimer et al. (2008) and Caird et al. (2018). 
Researchers have investigated the prevalence of mobile 
phone usage according to type, in terms of placing as well 
as receiving calls, based on the growing number of people 
using hands-free mobile phones. According to the results of 
the investigation, handheld users and hands-free users dif-
fered significantly. Among hands-free users, there was a 
higher percentage of drivers that admitted placing as well as 
receiving calls (at least once daily), with 43 percent placing 
and 47 percent receiving calls, compared to 17% and 21% 
for handheld users. Considering this, more research is 
needed to comprehend hands-free mobile phone usage 
(Sullman et al., 2018).

The results following a much more thorough investiga-
tion into related research indicate that numerous papers 
such as Mehler et al. (2008), Reimer et al. (2008), Backer- 
Grøndahl and Sagberg (2011) and Reimer et al. (2011) have 
extensively utilized driving simulation trials to investigate 
driver behavior when using mobile phones. The present 
study used real-time driving (field research) to reflect partic-
ipants’ behavior as it would occur naturally. Therefore, a 
practical recommendation can be derived immediately from 
that situation (Viglia & Dolnicar, 2020). A critical examina-
tion of published studies indicates that previous research 
evaluating the generated impact from talking on mobile 

phones hands-free has not explored machine learning and 
has also not explored drivers of all age categories in a single 
unit (Sullman et al., 2018; Welburn et al., 2018; Backer- 
Grøndahl & Sagberg, 2011; Hendrick & Switzer, 2007). 
Considering the points mentioned in this paragraph, it 
remains unclear how physiological markers such as BP and 
HR determine the cognitive function of drivers of all ages as 
one unit when driving in actual time and talking on an HF 
mobile phone. Filling in this gap is the purpose of this 
study. By using all driver age groups as a complete cohort, 
an advanced model was created that categorized the cogni-
tive function of drivers who talked on an HF mobile phone 
while driving in actual time.

This study is inspired to strive to develop an Artificial 
neural network (ANN) that will not only predict the conse-
quences of talking on HF mobile phones on driving per-
formance but additionally identify the effects of additional 
cognitive stressors on drivers of all age groups when driving 
in actual time while talking on mobile phones hands-free. 
Biological nervous systems are like artificial neural networks. 
These artificial networks can be taught to provide results 
since they are composed of linked networks of neurons in a 
comparable manner to the human neural system. 3 types of 
characteristics describe them: first, the interactions among 
the different neuron layers. Second, the training procedure 
that adjusts network weights. Lastly, the process that trans-
forms the measured input of a neuron into its output. The 
ANN algorithm is based on the principle that inputs are fed 
into hidden nodes, and their accumulated sums are summed 
up. As a result, the output of the concealed node is subse-
quently swayed in a particular order (Dastres & Soori, 2021; 
Zakaria et al., 2024).

Based on this research design, the classifier that produces 
the highest performance is the focus of the analysis. 
Therefore, we have limited the discussion of the algorithms’ 
mathematical operands to artificial neural networks only. 
The accuracy of ANNs improves over time during learning 
from training data. Using these algorithms, data can be clas-
sified at high speeds once they have been fine-tuned for 
accuracy. Equation (1) below represents the basic mathemat-
ical operation of ANN.

Y ¼ WX þ B 

where X is the input data; Y is the output; W is the weight 
of the neurons; and B is the bias.

As the algorithm guesses the parameters “W” and “B”, it 
measures the accuracy of the guess, which is sometimes 
called the loss. This data is used to make another guess. As 
this is repeated, the loss decreases progressively. Over time, 
the algorithm learns how to correctly match ’X’ to “Y”. 
Depending on the input, the parameters “W” and “B” can 
be changed or tweaked to achieve the desired result (Dastres 
& Soori, 2021; Zakaria et al., 2024).

This contribution employed a neural network to classify 
drivers’ cognitive function based on physiological markers of 
driver workload (BP and HR) in 2 classes (1 or 0) through a 
multilevel perceptron neural network, such that a “0” 
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stipulates that the driver is loaded cognitively and a “1” spe-
cify that the driver is not loaded cognitively. The authors 
achieved this by measuring the blood pressure and heart 
rate of drivers while talking on a hands-free mobile phone, 
collecting and analyzing the data, building a network model 
using Python, and training, testing, and validating the data.

2. Related work

Speaking on a mobile phone hands-free while driving 
reduces drivers’ alertness on the road. While driving, driving 
tasks and mobile phone use compete for drivers’ attention 
(Caird et al., 2018). During driving, the task may be dis-
rupted. Consequently, the motorist behind may not be cap-
able of reacting in a timely manner should the preceding 
vehicle slow down while the conversation is in progress 
(Reimer et al., 2011). The crash risk ratio did not differ 
between handheld and hands-free mobile phones, according 
to Young and Schreiner (2009), indicating that the high 
accident risk ratio is primarily caused by conversational dis-
traction, rather than physical distractions from holding up 
the phone or dialing. Mobile phone usage by type, for plac-
ing and receiving calls, has increased as more people use 
hands-free mobile phones. The results of the investigation 
showed remarkable differences between handheld and 
hands-free users. Drivers who made and answered calls 
(once a day or more) were more likely to be hands-free 
users, with forty-three percent of hands-free users placing 
calls and forty-seven percent receiving calls, as opposed to 
seventeen percent and twenty-one percent respectively, for 
handheld users. The results indicate that further investiga-
tion needs to be conducted on mobile phone use while 
hands-free (Sullman et al., 2018). The effects of talking on 
an HF mobile phone have been investigated using blood 
pressure and heart rate measurements (Welburn et al., 
2018).

Stuiver et al. (2014) describes a short-term cardiovascular 
strategy to assess drivers’ mental workload using data from a 
driving simulator study. After a short increase in task 
demands (forty seconds), heart rate and blood pressure were 
measured as indicators of mental effort. The driving simulator 
study involved 15 drivers participating in six 1.5-hour sessions. 
To increase workload demands, short segments of fog (40 s) 
were used to induce two traffic density levels (7.5-minute seg-
ments). Systolic blood pressure increased as traffic density 
increased, and blood pressure variability decreased. When 
driving in fog under low traffic conditions, heart rate variabil-
ity and blood pressure variability measures decreased, indicat-
ing an increased effort. The described short-term measures 
can be used to indicate cardiovascular reactivity as a function 
of workload.

In the past three decades, machine learning research and 
applications have grown rapidly. In connection with acceler-
ated technological developments, sophisticated ML algo-
rithms, as well as the emergence of immense amounts of 
data, ML has advanced enormously. In this study, we inves-
tigate an effective, reliable, and feasible way to measure 

physiological results of HF mobile phone usage, based 
on HR and BP signals. Much work has been done on BP 
and HR evaluation, feature retrieval, and classification. BP 
and HR data classification continues to be largely reliant on 
feature retrieval. In recent years, machine learning methods 
for heart rate estimation and blood pressure prediction have 
been growing in popularity (Maqsood et al., 2021).

Maqsood et al. (2021) carried out an extensive assessment 
of characteristic retrieval strategies in BP prediction that uti-
lized photoplethysmography (PPG) indices. The characteris-
tic retrieval strategies have been subsequently split between 
3 separate categories to evaluate the relevance of every cat-
egory. Category A consists of time-based characteristics; 
Category B offers statistical characteristic retrieval, and 
Category C offers frequency domain-based characteristics. 
The evaluation incorporated a few ML algorithms and meas-
ured each one’s effectiveness based on various viewpoints. 
The research findings from 2 openly accessible datasets indi-
cate that the features corresponding to category A were bet-
ter dependable compared with other strategies for BP 
estimation. The study determined that deep learning models 
delivered more effective outcomes than all conventional 
machine learning techniques. Based on the findings of this 
case study, experts will be able to select the most suitable 
and effective approach to characteristic extraction and 
machine learning algorithms.

A machine learning technique named classification tree 
was used to predict increased blood pressure based on body 
mass index (BMI), waist circumference (WC), hip circum-
ference (HC), and waist-hip ratio (WHR). Among 400 col-
lege students aged 16-63 (56.3% women), 400 data were 
collected. In the training group, 15 trees were calculated for 
each sex, using different numbers and combinations of pre-
dictors. It was found that BMI, WC, and WHR are the com-
binations that produce the best prediction for women, with 
the lowest deviation (87.42) and misclassification (.19). In 
the training set, the model’s specificity was 81.22 percent, 
and sensitivity was 80.86 percent while in the test sample it 
was 65.15 percent and 45.65 percent, respectively. With the 
lowest deviation (57.25) and misclassification (.16), BMI, 
WC, HC, and WHC were the best predictors for men. In 
the training set, this model had a sensitivity of 72% and a 
specificity of 86.25%, whereas in the test set, it had a sensi-
tivity of 58.38% and a specificity of 69.70%. In terms of pre-
dictive power, the classification tree analysis outperformed 
the traditional logistic regression method (Golino et al., 
2014).

According to a new study, correlated variables (body mass 
index, age, exercise, alcohol, smoke level, etc.) were used to 
predict systolic blood pressure using machine learning techni-
ques, specifically artificial neural networks. Data was split into 
two parts, eighty percent for training the machine and twenty 
percent for testing its performance. The prediction system was 
constructed and validated using back-propagation neural net-
works and radial basis function networks. A backpropagation 
neural network is used to predict the absolute difference 
between the measured and predicted value of systolic blood 
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pressure under 10 mm Hg based on a data set with 498 partic-
ipants. The probability value for men is 51.9% and for 
women, it is 52.5%. Based on the same input variables and 
network status, these values are 51.8% and 49.9% for men and 
women. As a result of this novel method of predicting systolic 
blood pressure, young and middle-aged people who don’t 
measure their blood pressure regularly may receive early 
warnings of problems. In addition, due to daily fluctuations, 
isolated blood pressure measurements may not be very accur-
ate. Medical staff can use this predictor as another reference 
value. According to the experimental results, artificial neural 
networks are suitable for modeling and predicting systolic 
blood pressure (Wu et al., 2014).

The importance of monitoring blood pressure continuously 
cannot be overstated; nonetheless, the traditional cuff BP 
monitoring methods are cumbersome for users. With ML 
algorithms, a cuff-less, non-invasive, and continuous system 
for measuring blood pressure was proposed using a photople-
thysmography (PPG) signal and demographic features. The 
feature extraction process was performed on 219 PPG signals. 
The time, frequency, and time-frequency properties of PPG 
signals were analyzed. For diastolic blood pressure (DBP) and 
systolic blood pressure (SBP), each regression model was 
selected. The Relief feature selection algorithm and Gaussian 
process regression (GPR) outperform other algorithms in 
determining DBP and SBP, respectively. The ML model can 
be implemented in hardware systems to continuously monitor 
blood pressure and avoid any critical health conditions caused 
by sudden changes (Chowdhury et al., 2020).

To monitor and predict HR based on the wearable sensor 
(accelerometer)-generated data, it is essential to analyze data 
analytics and machine learning. Therefore, this study 
explored various robust data-driven models, such as linear 
regression, support vector regression, autoregressive inte-
grated moving average (ARIMA), k-nearest neighbor (KNN) 
regression, random forest regression, decision tree regres-
sion, and long short-term memory recurrent neural network 
algorithm. The accelerometer’s univariant heart rate time- 
series data from healthy people can be used to make future 
HR predictions using a recurrent neural network algorithm. 
Under different durations, the models were evaluated. Based 
on a very recently collected data set, the results demonstrate 
that an ARIMA model with linear regression and walk-for-
ward validation is effective for predicting heart rate for all 
durations and other models for durations longer than one 
minute. According to the results of this study, accelerometer 
data analytics can be used to predict future HR more accur-
ately (Oyeleye et al., 2022).

To determine which machine learning technique is most 
suitable in classifying fatal heart rate signals, a study focused 
on the most adopted and effective machine learning techni-
ques, including artificial neural networks, support vector 
machines, extreme learning machines, radial basis function 
networks, and random forests. By applying the above-men-
tioned machine learning approaches, fatal heart rate meas-
urements were classified as normal or hypoxic. To evaluate 
the success of the classifiers, confusion matrix, and perform-
ance metrics were employed. Despite all machine learning 

approaches delivering good results, artificial neural networks 
yielded the best results with 99.73% sensitivity and 97.94% 
specificity. According to the study results, artificial neural 
networks outperform other algorithms (C€omerta & Kocamaz, 
2017).

A further literature survey of research in machine learn-
ing by this study has unfolded some noteworthy algorithms 
that are typically utilized for evaluation and prediction. The 
notable algorithms include Artificial Neural Networks, ran-
dom forest, Bayesian modeling, K-means clustering, KNN, 
and SVM (Mahesh, 2020; Singh et al., 2016; Kotsiantis et al., 
2006; Chen et al., 2014). For regression and classification 
analysis, Support Vector Machines (SVM) are very reliable 
and efficient. These models are supervised learning models. 
SVMs can also perform non-linear classification by employ-
ing the kernel trick, which involves projecting their inputs 
into high-dimensional feature spaces. Essentially, it draws a 
line separating classes. The margins are drawn in a way that 
diminishes the space separating the classes and the margins, 
thus reducing ambiguity in categorization. This approach is 
commonly adopted given that it has a high level of accuracy 
and uses minimal processing power (Mahesh, 2020).

The decision tree (DT) is typically utilized as a nonlinear 
classifier. The algorithm is also quick and easy to use when it 
comes to classifying and training large amounts of data. In the 
form of a tree, a decision tree illustrates choices and their out-
comes. Graph nodes indicate choices or events, and graph 
edges indicate conditions or decision rules. There are nodes 
and branches in every tree. An attribute is depicted by a node, 
and a value is depicted by a branch (Mahesh, 2020).

ML algorithms such as K-nearest neighbors (KNN) are 
often extensively implemented in supervised learning for 
addressing classification and regression tasks. Apart from 
functioning on relatively small amounts of data at a reason-
able speed, the algorithm is also simple to implement and 
comprehend. In the KNN approach, an item is categorized 
according to the collective vote of its closest K-neighbors. 
Based on this technique, items are classified in relation to 
their closest K-neighbors, ranking them in the top popular 
group. As a training dataset, an entire dataset is utilized 
(Singh et al., 2016). In a study, the mental workload of each 
subject was classified based on the HR variability (HRV) 
metric. A K-nearest neighbor method achieved an average 
classification accuracy of 98.77%. The highest average classi-
fication accuracy (80.56%) was achieved using HRV signals 
from 5 subjects for training and one subject for testing. The 
results of this study may improve operators’ safety and well- 
being by analyzing HRV signals that are indicators of mental 
workload in various subjects (Shao et al., 2020).

As opposed to SVMs or Decision Trees, Logistic 
Regression incorporates probability, and it can be adjusted 
online to incorporate new data easily (via gradient descent). 
As it returns probabilities, classification thresholds can be 
easily adjusted. It is possible to substitute the logistic model 
for discriminant analysis. There is no assumption about the 
structure of the independent variables, and there is no linear 
relationship between the predictors and target variables. 

4 M. S. SHARIF ET AL.



Nonlinear effects can be handled by it. Nevertheless, reliable 
results require a large sample size (Singh et al., 2016).

ANN are one of the most efficient tools for data explor-
ation and evaluation (Kotsiantis et al., 2006). Feedforward 
neural networks are robust and massive deep learning mod-
els. Three layers of neurons are fused together; the input 
layer, the hidden layer, and the output layer. Using convolu-
tional neural networks (CNNs) (Li et al., 2019), separated 
heart sound signals into abnormal and normal without 
ECGs. According to the experimental findings, the devel-
oped CNN model has greater classification precision, better 
classification capability, and an elevated F-score, than the 
backpropagation neural network blood pressure model. A 
99.01% classification precision rate is also achieved by the 
enhanced CNN.

The present investigation explores heart rate and blood 
pressure as physiological markers of cognitive load. More 
task burden increases heart rate and blood pressure read-
ings, making heart rate and blood pressure considered as 
one of the widely researched cognitive load indices (Reimer 
et al., 2011; Scheepers and Ellemers, 2005). The heart rate 
and blood pressure of the subjects in phone mode will be 
contrasted with the heart rate and blood pressure of the sub-
jects in no-phone mode to measure the subjects’ cognitive 
function. Employing data from heart rate and BP, the pre-
sent research centered on the classification of drivers’ cogni-
tive load using ML.

It is expected that the subjects’ HR and BP will be higher 
for phone conditions than for no-phone condition (Zokaei 
et al., 2020). Therefore, the following hypothesis was pro-
posed: “When a participant’s HR and BP are higher in 
phone mode than in no-phone mode, the participant is 
viewed as cognitively loaded, culminating in poor perform-
ance. In contrast, the participant is not cognitively loaded.

3. Methodology

ANN, SVM, Logistic Regression, Decision tree, KNN, and 
Random Forest ML techniques were applied to the data 
from blood pressure and heart rate signals.

3.1. Subject selection

Healthy drivers in the age groups of young (17–39), older 
(40–69), and elderly (70 and over) made up the participants. 
Sixteen subjects took part. Nonetheless, the five subjects’ 
data were excluded due to technical problems encountered 
during the testing procedures. A sum of 214 simulated data 
points was produced as well as employed in this research 
(Gifford et al., 2022). This total also contains data from 
eleven subjects: 6 females and five males. The subjects’ ages 
varied from 18 to 89 years, with a standard deviation of 16.8 
and a mean age of 42.9. The contributors supplied their free 
and informed consent. Each participant completed two 
tasks, one simple and one difficult. Participants also com-
pleted questionnaires outlining their individualized perspec-
tives on workload. The questionnaire asked about the age, 

gender, and driving experience level of the driver such as 
elderly, experienced, or novice.

Each item on the survey form reflects a weighted percent-
age value, with 0% being the lowest and 100% being the 
greatest. These boxes represent participants’ self-reported 
cognitive load. Following the experiment, each participant 
answered the questionnaire by checking the box that, in 
their opinion, best captures the effect of cognitive load based 
on their perception throughout the research (where “0” 
denotes no load and “100” denotes maximum load) 
(Toroyan et al., 2011; Tornros & Bolling, 2005).

3.2. Experiment protocol

Using the Omron blood pressure monitor, the authors took 
data during control tasks, simple tasks, and difficult tasks. 
The subjects’ BP and HR were recorded with this device. 
Bay parking in reverse with no phone use is the control 
task. Before starting the control task, participants’ baseline 
HR and BP were taken. On completion of the control task 
and within the experimental time frame, new measurements 
of BP and HR were taken (Welburn et al., 2018; Scheepers 
and Ellemers, 2005). Reversing into the bay while on the 
phone is the phone task. The phone task is divided into 2 
segments: a simple task (task 1) and a difficult task (task 2). 
One trial per task for everyone. The following is a simple 
task procedure: The investigator turns on the phone’s power 
knob. The subject initiates an audio call with the word 
“Experiment”. The phone acknowledges as well as rings that 
number connected to “Experiment”. A previously taped 
message plays, thus: “Count from 50 up to 200”. The subject 
answers the message while he or she drives to the bay and 
parks there. In the case of difficult tasks, a similar procedure 
is used, except using this instruction: “Count backwards 
from 100, taking away 3 each time”.

The hypothesis for this study was formulated by concen-
trating on the progression of task complexity from simple to 
difficult tasks throughout the examination, thus allowing a 
thorough investigation of how drivers’ performance changed 
with an increase in task difficulty. We therefore did not use 
task randomisation. A standardized procedure was used 
during which the research protocol was kept constant 
(Spyropoulou & Linardou, 2019; Desmet & Diependaele, 
2019). To ensure reliable results, all aspects of the protocol 
were kept the same. The authors ensured all subjects had no 
previous information about the tasks before the testing 
began to reduce any likelihood of order effects. To avoid 
anticipation, each experimental session had only one partici-
pant. Figures 1 and 2 show the test site entrance and test 
site car park, while Figures 3 and 4 show driving in traffic 
and reverse parking in the test site car park.

3.3. Data collection and data description

For this study, data collection entails measuring and analyz-
ing variables of interest, such as blood pressure and heart 
rate, in a systematic way that allows testing hypotheses and 
evaluating results. To get HR and BP data, an OMRON M7 
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Intelii IT BP Sensor was utilized. The capability of Bluetooth 
is another advantage. Like mobile phones, it requires pairing 
for them to connect. “OMRON Connect” is the designation 
of the application. With the aid of phone holders, two 
mobile phones were mounted on the dashboard of the 
research car. One was used to video the experimental route 
(Samsung Galaxy A12) while the other was used for talking 
hands-free (Samsung Galaxy A52s 5 G). The Omron blood 
pressure/heart rate measurer was connected to the experi-
mental research phone via Bluetooth thus: The Bluetooth of 
the phone was turned on via settings and the Omron blood 
pressure/heart rate measurer was selected from the list of 
devices that appeared on the research phone, thereby allow-
ing Bluetooth connection between the measuring device and 
the research phone. The measuring device was not mounted 
but rather was utilized when measurement was required. 
Measurement duration (45 s) is the same for every BP/HR 
measurement session. The measuring device measures both 
BP and HR at the same time and shows both BP and HR 
readings on the screen at the same time, and measurement 
was taken within the experiment time frame. The user man-
ual states that OMRON digital blood pressure monitors 
don’t need to be calibrated on a regular basis. When the 
device is powered on, it usually does a calibration self-check. 
If there is an issue, it will show an error message or other 
on-screen notification. Before every experiment, its function-
ality was verified. The cuff was examined for potential dam-
age, such as air leaks, and for general wear and tear that 
might lead to device malfunctions.

The subject’s upper arm was bound with the cuff so that 
it was in line with the chest. Furthermore, the tubing was 
positioned over the middle of the subject’s front arm. 
Stretching the cuff’s edge ensures that the sensor is firmly 
fastened and uniformly tight. After pressing the “ON” but-
ton on the device, the cuff inflates. The measurements are 
obtained when the cuff has reached full inflation and 
stopped inflating and the readings on the screen are con-
stant. Throughout the experiment, every measurement was 
sent instantly through Bluetooth to the researcher’s mobile 
phone. The monitor measures numerical values that respect-
ively indicate the participants’ heart rate and blood pressure. 
The first column of an Excel spreadsheet’s main data file 

displays the date, whilst the next column shows the meas-
urement time. The subsequent columns show the partici-
pant’s Systolic blood pressure in mmHg, Diastolic blood 
pressure in mmHg, and heart rate in bpm in the sequence 
from left to right.

3.4. Feature extraction and data processing

The experiment for this study was designed so that BP and 
HR measurements were taken during the experimentation 
window (Welburn et al., 2018; Scheepers & Ellemers, 2005) 
to guarantee precise and trustworthy readings. Here is a 
brief explanation of the procedures used to take BP and HR 
readings: Participants specified bay parking technique was 
described and then practiced for fifteen minutes 
(Hettiarachchi et al., 2018). The subjects had a five-minute 
break (Hettiarachchi et al., 2018). The authors obtained 
baseline HR and BP values. The subjects drove from the car 
park entry point and carried out bay parking with no phone 
use. The subjects’ BP and HR were taken again. The subjects 
took a break for five minutes (Hettiarachchi et al., 2018). 
The simple task began. The subjects proceeded from the car 
park entrance and carried out bay parking whilst talking on 

Figure 1. Test site entrance.
Figure 2. Test site car park.

Figure 3. Driving in traffic.
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the phone. The subjects’ HR and BP were measured. After 
resting for ten minutes (Hettiarachchi et al., 2018), the 
experimenter repeated the simple task method using the dif-
ficult task. The driver’s mean HR for simple and difficult 
tasks (phone mode), mean BP for simple and difficult tasks 
(phone mode), age, and gender are the input values used to 
assess the participant’s cognitive function and for the ML 
categorization. A binary class that indicates whether the 
driver is cognitively loaded is produced by the classifier. 
Class 1 indicates “not cognitively loaded”, while Class 0 
indicates “cognitively loaded”. HR as well as BP are expected 
to increase in correlation with self-reported cognitive load. 
HR and BP have been selected as the sole physiological 
measures for this study because increased physiological sig-
nals such as HR and BP are directly correlated with 
increased task difficulty (Mehler et al., 2008). According to 
Son and Park (2011), a near linear increase in heart rate was 
observed when three levels of task difficulty were randomly 
ordered during driving. According to these findings, heart 
rate can distinguish incremental changes in cognitive work-
load with high sensitivity.

3.5. Measurement process flow

Figure 5 illustrates the project’s key components in a block 
diagram. In the first block, BP and HR are recorded using a 
non-invasive sensor as detailed in Section “C” above. Data 
processing includes finding the mean of the driver’s HR for 
a simple task and difficult task (phone mode) and finding 
the mean of the driver’s BP for a simple task and difficult 
task (phone mode). Extrapolated values comprise the driv-
er’s mean HR for a simple task and difficult task (phone 
mode), the driver’s mean BP for a simple task and difficult 
task (phone mode), and the driver’s gender and age. Blocks 
3–5 illustrate the steps followed in the ML procedure in 
which modeling, as well as classification tasks, have been 
performed, which resulted in ANN reaching the optimum 
level of performance out of the 6 algorithms applied in this 

research. Section “F” below illustrates the step-by-step 
sequence of the research process.

3.6. Step-by-step Sequence of Investigation

1. Researcher meets the subject at the testing site’s car 
park.

2. Researcher briefs the subject at testing site’s car park 
(procedure).

3. Check subject’s driving license, issue date & another 
form of ID.

4. Document age, gender, and driver category (elderly, 
experienced or novice).

5. Document driving licence number. Subject signs 
declaration.

6. Check subject’s eyesight (read a car registration num-
ber twenty meters away).

7. The subject’s driving ability is tested in the experimen-
tal car.

8. Failure? Yes, the subject is withdrawn but continues 
otherwise.

9. Do a 15-minute illustration and practice session of the 
specific bay parking technique.

10. Subject rest for 5 min.
11. Measure baseline BP & HR using Omron M7 Intelli IT 

BP/HR monitor for 45 s.
12. The subject drives from the site entrance and parks in 

a bay without using a phone.
13. Measure subject’s BP & HR.
14. 5 min rest.
15. Subject drives towards the site entrance.
16. Researcher switches the phone power button on. The 

phone type is Samsung Galaxy A52s 5G.
17. Subject says “experiment”.
18. Subject listens and confirms voice recognition.
19. The phone says, “Calling experiment”.
20. The phone rings and switches to the pre-recorded 

message.
21. Message to subject: “Count from 50 up to 200”.
22. Subject begins the task as he or she drives from the 

entrance towards the bays.
23. Subject finishes bay parking.
24. Subject’s BP & HR are recorded.
25. Subject rest for 10 min.
26. Subject drives towards the cite entrance.
27. Researcher switches the phone power button on.
28. Subject says “Jump”.
29. Subject listens and confirm voice recognition.
30. The phone says, “Calling Jump”.
31. The phone rings and switches on to a pre-recorded 

message.
32. Message to subject: “Count backwards from 100 taking 

away 3 each time”.
33. Subject begins the task as he or she drives from the 

entrance towards the bays.
34. Subject finishes the bay parking.
35. Subject’s BP & HR are recorded.

Figure 4. Reverse parking.
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36. Subject fills out a survey form regarding perceived 
workload.

37. Subject is debriefed.
38. Researcher elucidates the study’s significance to science 

& public safety.
39. Researcher answers questions from subjects.
40. Subject is given a voucher for participating before 

departing.
41. Data processing.
42. 5 faulty samples were rejected.
43. Find the average of the drivers’ HR for simple tasks 

and difficult tasks (phone mode).
44. Find the average of the drivers’ BP for simple tasks 

and difficult tasks (phone mode).
45. Extract drivers’ average HR for simple tasks and diffi-

cult tasks (phone mode).
46. Extract drivers’ average BP for simple tasks and diffi-

cult tasks (phone mode).
47. Extract drivers’ gender and age.
48. Organize dataset in eleven columns and 214 rows (214 

data points) using Excell spreadsheet.
49. Import data from the csv file “finaldataset.csv” using 

Python’s read () function.
50. Read data into a dataframe using Pandas read_csv ().
51. Encode categorised variables and separate training 

from testing data.
52. Print data information to ensure there are no null 

values.
53. Train and test the ML models.
54. Classify the cognitive function of drivers using ML 

classification algorithms.
55. Visualise the classified outputs.

4. Modelling and implementation

SVM, KNN, Logistic Regression, Decision Trees, Random 
Forests, and ANN were selected as part of the recommended 
procedure. At first, the data were analyzed for every ML 
algorithm to train, test, and validate the hypothesis. Eighty 
percent of the data consisted of training data, while twenty 
percent consisted of testing data. Data were cleaned, proc-
essed, and scaled to ensure consistency across the dataset. 
Data was tested to ensure true generalization ability. 

However, the algorithm that gave the highest accuracy is the 
focus in terms of analysis and illustration in the present 
study’s design. ANN gave the highest accuracy. Therefore, 
the training and testing details for this algorithm have been 
described below in this section.

The training algorithm for ANN in the present study is 
‘backpropagation’. Artificial Neural Networks (ANNs) are 
trained using the supervised learning technique known as 
backpropagation, which iteratively modifies the network’s 
weights in response to the discrepancy between the intended 
output and the actual goal. The network may learn from its 
failures and gradually improve its predictions by altering the 
connections between neurons and efficiently propagating 
this error information backward down the network layers to 
adjust the weights and minimize the overall loss function 
(Al-Sammarraie et al., 2018).

The learning rate, which regulates how much the weights 
and biases are changed in each iteration during backpropa-
gation, the weights connecting neurons between layers, and 
the biases associated with each neuron (which indicate the 
strength of connections) are the main parameters in back-
propagation. Here’s how backpropagation makes use of 
these parameters: The network processes input data, calcu-
lating each neuron’s output according to its weights and 
biases. The “error” is the difference between the actual target 
value and the expected output. The network propagates the 
fault backward. To reduce the overall error and raise 
the prediction accuracy of the model, the method computes 
the gradient of the error function regarding these weights 
and biases (Al-Sammarraie et al., 2018).

Two datasets were created utilizing related parameters 
that would affect the individuals’ performance to validate 
the theory. The first dataset includes the driver’s mean heart 
rate for simple and difficult tasks (phone mode), as well as 
the driver’s mean blood pressure for simple and difficult 
tasks. The second dataset includes information collected 
from participants regarding their age and gender. As targets, 
binary data points were used. 0 denotes “cognitively loaded” 
and 1 denotes “not cognitively loaded”.

Six classifiers were used to compare classification accur-
acy. A model’s accuracy, and how precisely the predictions 
align with the data, is an important factor in its performance 
(Sharif et al., 2022). It is therefore crucial to examine the 

Figure 5. Research plan block diagram.
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precision of each model. To determine the model’s accuracy, 
the authors collected a small portion of the dataset for valid-
ation. The six techniques were all implemented in the 
Phyton programming language. Research has used this lan-
guage to analyze data, develop algorithms, and model ML 
(Chun, 2000). A description of the computing procedure is 
given in the following paragraphs.

Some library tools for data processing, ML, and data dis-
play were imported using Python scripts. Additionally, the 
script can load and pre-process or prepare data, train, assess 
classifiers, as well as display model results. The employed 
dataset consists of two hundred and fourteen data points 
organized in eleven columns using an Excel spreadsheet. 
Physiological data such as HR and BP, as well as individual 
data such as gender and age are included in the columns. 
Inputs to the classifier include heart rate, blood pressure, 
gender, and age. The dataset contains both categorical and 
numerical data, and there are no missing values.

Using codes, the computation process commenced with 
loading and reading relevant data. Python’s read () function 
was used to import and read the relevant CSV file. Data was 
imported from the csv file “finaldataset.csv” as well as read 
into a dataframe using Pandas read_csv (), then processed 
and cleaned, which included dealing with invalid or missing 
values, encoding categorized variables, and separating train-
ing from testing data. With respect to the overall number of 
rows, the dataset has two hundred and fourteen observa-
tions, whereas the total number of columns suggests 11 vari-
ables. Data information was printed to make sure that there 
were no null values. The cognitive function of the drivers 
was then classified using ML classification algorithms. 
Reliability and precision evaluations were conducted on the 
machine-learning models. With a 97% accuracy rate, the 
ANN model produced the best results.

Weights and biases for all layers of the neural network 
are trainable parameters in the ANN. The number of 
parameters in each layer is calculated by multiplying the 
number of inputs by the number of neurons plus the num-
ber of biases. The size of the output may differ based on the 
amount of input batches used for training. To normalize the 
data-frame, we applied normalization techniques and div-
ided the dataset into training and testing. 650 is the epoch 
while the batch size is ¼ 8. There was an increase in model 
accuracy over time as training, as well as validation epoch 
numbers, increased. According to the findings, the ANN 

model can make predictions based on well-fitting data. This 
research was designed to optimize the accuracy of all the 
classifiers during the classification process as can be seen in 
the epoch count for the ANN’s model accuracy graph in 
Figure 14 below. In addition, analyses focus on the classifier 
which gives the best performance. Hence, the authors have 
scoped or limited the mathematical expression of the algo-
rithms to ANN only.

5. Result and analysis

This study’s 214 simulated data points depict the partici-
pants to be analyzed. Histograms were used in the results 
and analysis, as shown below. Histograms are graphs that 
display the distribution of continuous data. They show how 
frequently values fall into different groups. The height of 
each bar indicates how many objects in the dataset fit into a 
particular category. The values on the x-axis from Figures 7
and 8 show blood pressure groups, while Figures 9 and 10
represent heart rate groups. The height of each bar indicates 
the proportion of data points (subjects) that fit in each 
blood pressure bracket and each heart rate bracket respect-
ively. For instance, in Figure 7, ten data points fit in the BP 
bracket (0-82) while 16 data points fit in the BP bracket 
(83-92) and so on. Similarly, the values on the x-axis in 
Figure 11 represent the group values of participants’ per-
centage self-reported cognitive load.

As shown in Figure 6 above, 40-69 years are the biggest 
group (65%), whereas 70 years and above and 17-39 are 
roughly 16% and 19% respectively. From statistical measures 
without a phone: Mean BP ¼ 114.52, Max BP ¼ 142, Min 
BP ¼ 80 and SD ¼ 15.35. The statistics of BP with the 
phone are: Mean BP ¼ 121.30, Max ¼ 151, Min ¼ 89 and 
SD ¼ 13.19. Results for heart rate without phone: Mean HR 
¼ 71.07, Max HR ¼ 110, Min ¼ 55 and SD ¼ 12.64. For 
HR with phone: Mean HR ¼ 77.43, Max HR ¼ 115, Min 
HR ¼ 55 and SD ¼ 13.20. From the results, the mean blood 
pressure and mean heart rate during phone use are greater 
than the mean blood pressure and mean heart rate during 
no-phone use. Thus, subjects’ mean BP with phone tasks is 
6.78 mmHg more than the mean BP without a phone. 
Similarly, participants’ mean HR with phone tasks is 6.36 
beats per minute more than the mean HR without a phone. 
This is due to the cognitive requirement as a consequence of 
the extra cognitive burdens (simple task and difficult task).

Since the reader is more likely to understand if the BP 
increment with and without a phone is emphasized, as 

Figure 6. Participant’s age distribution.
Figure 7. Data points versus BP without the phone.
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normal blood pressure (blood pressure when not driving) 
varies from subject to subject and some may be hyperten-
sive, the illustration focuses on BP increments from no- 
phone to phone usage and HR increments from no-phone 
to phone usage. A graph showing data points versus blood 
pressure differences between phone and no-phone use and a 
graph showing data points versus heart rate differences 
between phone and no-phone use have been plotted as 
shown in Figures 12 and 13 above. These graphs have been 
used to illustrate the relationships between the participants 
and BP differences and the relationship between the partici-
pants and HR differences. The figures show that blood 
pressure and heart rate differences between phone and non- 
phone use are distributed across most of the subjects.

The proportion of subjective cognitive load in percentage 
on account of the extra cognitive burdens (simple task and 
difficult task) is depicted in Figure 11 above by randomly 
selecting approximately 25 data samples from the total data 
samples. 22 participants (data points) reported having a 70% 
or higher response rate. Participants reporting less than 70% 
in total ¼ 3. The hypothesis for this study has been corro-
borated by the results as illustrated above and the self- 

reported cognitive load by the participants. From the results, 
this study’s contribution has demonstrated that based on 
drivers of all age categories as a single unit in a real driving 
setting, the average BP and HR of the drivers increased 
whilst talking on mobile phones hands-free and exceeded 
those under no-phone conditions. Table 1 above presents 
the accuracy results comparing each of the classifiers 
employed in this research.

Figure 14 shows the model precision graph for ANN. 
The authors ran the codes and achieved 97% training accur-
acy as best while the validation accuracy was 91% as shown 
on the graph. Numerous studies in the literature have 

Figure 10. Data points versus HR with the phone.

Figure 11. Participants self-reported cognitive load.
Figure 8. Data points versus BP with the phone.

Figure 9. Data points versus HR without the phone.
Figure 12. Data points versus BP differences between phone and no-phone 
use for all participants.

Figure 13. Data points versus HR differences between phone and no-phone 
use for all participants.

Table 1. Accuracy results comparison.

Model Accuracy (%)

ANN 97
SVM 80
Logistic regression 82
K-Nearest Neighbor 71
Decision tree 72
Random forest 78
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reported that ANN yields the best outcomes, even though 
several other ML techniques give satisfactory results (Wu 
et al., 2014; C€omerta & Kocamaz, 2017). However, overfit-
ting is a common problem with neural networks (Jabbar & 
Khan, 2015). Therefore, the performance analysis of the 
ANN model for this study leans toward the training and val-
idation accuracies due to this significant flaw. To determine 
whether an ANN model is overfitting or underfitting, it is 
essential to use both training and validation accuracies when 
assessing its performance. This allows for better model opti-
mization by pinpointing areas that require improvement, 
especially when it comes to adjusting model complexity and 
fine-tuning hyperparameters to improve generalization on 
unseen data. Overfitting occurs when the training accuracy 
is much greater than the validation accuracy, indicating that 
the model has learned the data (including noise) too well 
and may not perform well on new data. The model may not 
be sophisticated enough to recognize the patterns in the 
data, indicating underfitting, if the accuracy of both training 
and validation is insufficient (Jabbar & Khan, 2015).

A trained neural network’s performance is frequently 
assessed using validation data, which is also used to choose 
the network that is thought to be best suited for the given 
task (Foody, 2017). The authors have tracked changes in 
training and validation accuracy with various hyperpara-
meter settings (e.g., number of hidden layers and learning 
rate). The ideal parameters that maximize generalization and 
reduce overfitting were found. To make sure the model isn’t 
assessed on data it has previously seen during training, the 
authors divided the data into separate training and testing 
sets. Since validation accuracy is based on data that hasn’t 
been used to train the model, it is a better predictor of how 
well the model will perform when it is exposed to fresh data 
than training accuracy. For a model to function well, the 
validation accuracy must be equal to or marginally lower 
than the training accuracy (Foody, 2017). This claim is 

supported by the current study’s 91% validation accuracy as 
shown on the model precision graph in Figure 14.

6. Discussion

Driving while on a mobile phone has been banned owing to 
the inattention and cognitive dysfunction it causes. HF 
mobile phones are permitted during driving as an alterna-
tive. In adult drivers 18-66 years of age, however, HF mobile 
phone use during driving increases HR and BP (Mehler 
et al., 2008; Welburn et al., 2018; Reimer et al., 2008). Even 
so, the neurophysiological impact of additional cognitive 
demands (dual task) in young novice drivers (18-19 years 
old) and older drivers (65þ years old) is unclear. It is 
unclear how neurophysiological markers such as HR and BP 
measure cognitive functions during driving and talking on 
an HF mobile phone. It is also uncertain if previous studies 
have employed real-time driving (field research) to reflect 
participants’ behavior as it would occur naturally.

With advanced ML strategies for drivers’ biological 
markers, such as HR and BP, this paper explored the cogni-
tive implications of talking HF on mobile phones in actual 
time. To prove the hypothesis, quantitative as well as quali-
tative procedures were applied. The qualitative method 
relied on a survey, grounded in research on drivers’ cogni-
tive load. The participants’ qualitative responses dispensed 
the empirical proof about their cognitive function that was 
employed to confirm the findings of the ML approaches; 
therefore, the hypothesis was proved.

Only a few studies have investigated the physiological 
implications of talking HF on a mobile phone during driv-
ing (Mehler et al., 2008; Welburn et al., 2018). In the pre-
sent investigation, talking on an HF mobile phone while 
driving resulted in a substantial increase in BP and HR, 
much higher than when driving with no phone as was 
reported in related papers (Mehler et al., 2008; Welburn 

Figure 14. Model precision versus epoch for ANN.
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et al., 2018; Reimer et al., 2008). Findings show that partici-
pants’ mean BP with phone tasks is 6.78 mmHg more than 
the mean BP without a phone. Similarly, participants’ mean 
HR with phone tasks is 6.36 beats per minute more than the 
mean HR without a phone. This is due to the cognitive 
requirement that arose from the secondary cognitive 
demand (task due to phone use) as supported by the quali-
tative results. Feedforward neural networks were used to 
classify participants’ cognitive performance, and 97% accur-
acy was achieved. The papers (Puma et al., 2018; Re~nosa 
et al., 2019) support the present study’s findings confirming 
that as task difficulty increases, HR and BP increase, causing 
an increase in workload.

The findings provide supplementary corroboration that 
talking on an HF mobile phone causes cognitive distraction. 
This is rather concerning because several studies such as 
Lipovac et al. (2017) and Welburn et al. (2018) have pro-
vided similar evidence. It can be argued that the increasing 
number of traffic events on urban roads is adding to the 
cognitive load on drivers as they are talking on HF mobile 
phones (Di Flumeri et al., 2018). The additional mental 
impact that an increase in traffic events may have on drivers 
is beyond the scope of this research,

With respect to self-reported cognitive load, by randomly 
selecting approximately 25 data samples from the total data 
samples. The subjective cognitive load across the subjects, as a 
consequence of the extra cognitive burdens (simple and diffi-
cult tasks, respectively), indicate that twenty-two participants 
reported having a 70% or higher reaction rate. Participants 
reporting less than 70% in total ¼ 3. It can be argued that the 
sample used in this investigation is too low to draw conclu-
sions. Nevertheless, the total findings from the 214 data points 
in this investigation (quantitative), correlate with the findings 
based on the 25 data samples collected.

The phone task employed in this study is a representation 
of talking on an HF mobile phone as maintained by the 
study design. It can be argued that people on phone calls 
always talk about what they are familiar with, which may 
not increase the cognitive load significantly. However, like 
the present research, the study by Yan et al. (2018) also 
employed numerical tasks with differing levels of intricacies 
as secondary tasks while talking on an HF mobile phone 
while driving which instigated various levels of workload in 
the distracted drivers, and a significant result was achieved. 
Like Yan et al. (2018), the present study provides additional 
insight. The study by Haque and Washington (2014) also 
demonstrated that subjects in a phone conversation had 
talked about unfamiliar content. In Haque and Washington 
(2014), the individuals had to listen to a full question, do a 
basic math problem, or solve a verbal challenge before they 
could respond appropriately to the phone conversation. “If 
three wine bottles cost ninety-three dollars, what is the cost 
of one wine bottle?” was an example of a numerical question 
used in Haque and Washington (2014). These types of 
queries involve simultaneous storage and processing of 
information and therefore distract drivers by boosting their 
cognitive burdens. Moreso, talking during a conversation on 
the phone has been extensively studied (Caird et al., 2018; 

Yan et al., 2018; Haque & Washington, 2014; Carsten, 
2020).

The classification algorithms used in this study include 
ANN, SVM, Logistic Regression, KNN, Random Forest, and 
Decision Tree. As shown in previous literature, these algo-
rithms are proven to be simple to use when identifying the 
category of new observations based on training data (Golino 
et al., 2014; Wu et al., 2014; C€omerta & Kocamaz, 2017). 
For instance, Golino et al. (2014), highlighted the strength 
of the classification Tree while, Wu et al. (2014) had applied 
ANN and asserted that ANN are suitable for model predic-
tion. C€omerta and Kocamaz (2017) have applied ANN, sup-
port vector machines, and random forests. According to 
C€omerta and Kocamaz (2017), despite all machine learning 
techniques producing satisfactory results, ANN produced 
the best results with 99.73% sensitivity and 97.94% specifi-
city. For large datasets, KNN is slow, while SVM needs a 
long training time (Mahesh, 2020; Singh et al., 2016). A 
major disadvantage of decision trees is that they are prone 
to overfitting the training data, while neural networks have 
a greater computational burden, are prone to overfitting, 
and are empirical in nature (Golino et al., 2014). Despite the 
drawbacks, related studies show remarkable strength and 
benefits from the use of these classifiers for data analysis 
and prediction, which led the authors to select these classi-
fiers for the present study.

There are alternative algorithms to the algorithms used in 
this study, including linear regression, Naïve Bayes, 
XGBoost, and LSTM. The linearity of a linear regression 
model is one of its primary advantages: Besides being rela-
tively simple to apply and performing well with linear data, 
it also has the drawbacks of being prone to underfitting and 
assuming the data is independent (Nakayama et al., 2022). 
Naïve Bayes is a linear classifier that is faster when applied 
to big data, but it is sensitive to data quality, which is one 
of its main drawbacks. It can produce inaccurate or biased 
results if the data is noisy, incomplete, or imbalanced (Ting 
et al., 2011). As with decision trees, XGBoost combines mul-
tiple decision trees to make predictions, but it has the disad-
vantage of requiring significant computational resources, 
especially when using large datasets or many iterations 
(Liew et al., 2021). Long-short-term memory (LSTM) 
requires more memory to train and is easy to overfit 
(Oyeleye et al., 2022). However, machine learning has some 
potential limitations when it comes to analyzing physio-
logical data. The quality of the data provided to ML deter-
mines how smart and effective it can be. For accurate 
modeling, substantial data is often required (Golino et al., 
2014; Wu et al., 2014; C€omerta & Kocamaz, 2017). By using 
machine learning algorithms, bias and discrimination may 
be maintained due to overfitting and underfitting of models. 
The use of ML may also reduce the critical thinking and 
judgment of the researcher or analyst if it is overused in the 
analysis.

This study has some notable limitations and strengths. As 
a first point, despite the study’s large sample size, it was lim-
ited to a convenience sample of drivers in London ranging 
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in age from 18 to 89. For this study, we used a sample data-
set from a small population rather than a population dataset. 
It is also noted by the authors that some ML studies have 
used limited or small sample sizes. For instance Rahman 
et al. (2015), collected EEG data from 10 subjects in its 
experiment, from which only data from five subjects were 
analyzed, data from the other five subjects were ignored 
because of the higher degree of noise and artifacts. 
Ganglberger et al. (2017), selected 12 participants for all 
recordings in its experiment while Tjolleng et al. (2017) 
recruited 15 male participants only in a study. The present 
study has overcome limitations due to the small sample size 
through 214 simulated data from 11 subjects (the 11 subjects 
inclusive). Several significant studies such as Xanthis et al. 
(2020) and Shepperd and Kadoda (2001), have also 
employed data simulation to address shortcomings due to a 
small sample size. Xanthis et al. (2020) has overcome limita-
tions due to small sample sizes through advanced simula-
tions on a realistic computer model of human anatomy 
without using a real MRI scanner and without scanning 
patients. Shepperd and Kadoda (2001). used simulation to 
generate a large validation dataset for comparing software 
prediction techniques.

Strengths of the study include equipment’s Bluetooth cap-
ability. Throughout the experiment, every measurement was 
sent instantly through Bluetooth to the researcher’s mobile 
phone. Secondly, to optimize the generalisability of the find-
ings from the field experiment for this study, this research 
has conducted experiments in a car whilst the participants 
were driving in real-time. The experimental testing site is 
Wood Green Driving Test Center, London. During the 
study, all the subjects drove the same car, which was author-
ized by the research ethics committee of the University of 
East London, specifically for the investigation. Identical 
research methods were followed for the entire subjects but 
driving situations for each driver were anticipated to vary 
due to external influences such as weather and the effects of 
other vehicles. Nevertheless, the simple and hard tasks were 
not introduced to the subjects earlier than the testing site 
entrance. One car at a time can be parked in the bay. Hence 
extraneous variables and other vehicles have a relatively 
minimal effect.

The present study examined the cognitive ramifications 
of talking on an HF mobile phone during driving. The dis-
tracted driving induced by commencing or terminating a 
call, trying to find a number to call, or mistakes such as the 
phone accidentally dropping, are various effects of mobile 
phone usage during driving that deserve further examina-
tion. With these modes of mobile phone usage, the risk of 
interference with driving may well increase further. A 
detailed study of this issue is also necessary. It is believed, 
however, that the use of hands-free phones has some notable 
advantages because there are drivers who depend on them 
for work, for example, delivery drivers, who need to find 
out about their next job, or taxi drivers who require accurate 
navigation applications, not to mention paramedics and 
police who must constantly be on the radio.

7. Conclusions

The physiological impact on drivers due to talking HF on 
mobile phones was examined in real-time, using BP as well as 
HR signals. To predict the effect on the participants, a model 
was created. HR and BP of participants increased during the 
phone condition and exceeded those during the no-phone 
condition. A survey was conducted to gather subjective data 
from each subject. In reliance on the responses that partici-
pants submitted to the qualitative survey, empirical proof was 
obtained pertaining to their cognitive function. After examina-
tion, the most suitable algorithms for the dataset were chosen. 
By employing the questionnaire responses, ML methods were 
verified. Therefore, the consequences of driving and talking on 
mobile phones hands-free (which differ individually among 
subjects) were validated. The Feedforward network reached 
ninety-seven percent accuracy.

Based on statistical measures for BP without phone: 
Mean BP ¼ 114.52, Max BP ¼ 142, Min BP ¼ 80, and SD 
¼ 15.35. The statistics of BP with the phone are: Mean BP 
¼ 121.30, Max ¼ 151, Min ¼ 89, and SD ¼ 13.19. Heart 
rate without phone: Mean HR ¼ 71.07, Max HR ¼ 110, 
Min ¼ 55, and SD ¼ 12.64. For HR with phone: Mean HR 
¼ 77.43, Max HR ¼ 115, Min HR ¼ 55, and SD ¼ 13.20. 
The findings from statistical measures indicate as follows: 
Mean BP along with mean HR during phone mode are 
greater than mean BP as well as mean HR during no-phone 
mode. These findings from the quantitative study illustrate 
that while the HR and BP in the phone mode are greater 
than those during no-phone mode, the participant is loaded 
cognitively, causing poor task execution. A participant’s per-
formance is regarded as good if the values are lower. 
Similarly, the qualitative questionnaire form shows that par-
ticipants’ cognitive load elevated considerably when they 
performed the telephone tasks. The outcomes of this investi-
gation validate the hypothesis.

As part of the discussion and analysis, earlier related 
research with similar findings was acknowledged and cited 
by the authors. The authors discussed the benefits and draw-
backs of the classifiers applied in this research, and why 
these classifiers were selected for this study. The potential of 
using ML for classifying physiological data and how data 
simulation was used to overcome limitations due to small 
sample sizes by several studies was discussed. The authors 
have used both quantitative and qualitative techniques to 
address the study’s research question and have achieved sig-
nificant results as detailed above and have also improved the 
research by using machine learning approaches. By creating 
public understanding pertaining to the shortcomings of talk-
ing on mobile phones HF, this research contributes to the 
United Kingdom’s Department of Transport and Public 
Safety. Consequently, the government can consider the exist-
ing findings regarding the precariousness of talking on a 
mobile phone HF while driving and will be able to measure 
and revise their road safety advancement strategies.

Despite their numerous drawbacks, hands-free mobile 
phones can also offer some noteworthy advantages, such as 
making correspondence more convenient, particularly in 
emergencies. To reduce the risks inherent with distracted 
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driving, this study generally encourages drivers to minimize 
discussion duration, indulge in only necessary conversations 
while driving, and possibly explore the use of voice com-
mand mobile phones. Our forthcoming research will con-
centrate on how the developed approach might be applied 
generally throughout the United Kingdom.
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