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Abstract

Large-scale Cyber-Physical Systems (CPSs) are information systems that involve a vast
network of sensor nodes and other devices that stream observations in real-time and typi-
cally are deployed in uncontrolled, broad geographical terrains. Sensor node failures are in-
evitable and unpredictable events in large-scale CPSs, which compromise the integrity of the
sensors measurements and potentially reduce the quality of CPSs services and raise serious
concerns related to CPSs safety, reliability, performance, and security. While many studies
were conducted to tackle the challenge of sensor nodes failure detection using domain-
specific solutions, this paper proposes a novel sensor nodes failure detection approach and
empirically evaluates its validity using a real-world case study. This paper investigates time-
series clustering techniques as a feasible solution to identify sensor nodes malfunctions by
detecting long-segmental outliers in their observations’ time series. Three different time-
series clustering techniques have been investigated using real-world observations collected
from two various sensor node networks, one of which consists of 275 temperature sensors
distributed around London. This study demonstrates that time-series clustering effectively
detects sensor node’s continuous (halting/repeating) and incipient faults. It also showed
that the feature-based time series clustering technique is a more efficient long-segmental
outliers detection mechanism compared to shape-based time-series clustering techniques
such as DTW and K-Shape, mainly when applied to shorter time-series windows.

Keywords: Cyber-physical systems (CPSs), Wireless sensor networks(WSNs), Time-series
clustering, Dynamic time warping, K-Shape, Characteristics based time-series clustering

1. Introduction

Cyber-Physical Systems (CPSs) can be seen as networks of physical components such
as sensors and often actuators effectively incorporated using a computational and commu-
nication core (Törngren et al., 2017; Platzer, 2019). Sensors collect physical environment
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measurements and transmit them as raw data to a computational unit. The computational
unit generates feedback and sends it to the actuators that regulate the physical conditions
based on the received data. This cycle ultimately achieves the self-awareness of the CPS via
its ability to assess and correctly adjust its behaviour and performance in real-time (Kounev
et al., 2018). Large-scale CPS applications, such as environmental monitoring systems, typ-
ically involve many low-cost sensor nodes deployed in broad geographical terrains, forming
a large-scale Wireless Sensor Network (WSN) (Okafor et al., 2020; de Aquino et al., 2019;
Abid et al., 2015). Ecological factors may compromise the accuracy of sensor observations,
as extreme temperature (Banerjee et al., 2020) or humidity (Okafor et al., 2020). Failures
in sensor nodes and sensor networks are inevitable events in large-scale CPS applications,
which may cause severe data loss, producing invalid information and potentially reducing
the quality of their service (Li et al., 2019; Ghosh et al., 2020). In general, sensor nodes
in WSNs have limited computing power, storage capacity and transmission radius (Lawson
and Ramaswamy, 2016; Bhuiyan et al., 2017). Therefore, wireless sensor nodes cannot
directly send observations to a remote data destination (sink). Instead, a hub device or
another sensor node works as a bridge to transfer readings from other sensor nodes. Sensor
nodes closer to the sink consume more power because they support other sensors to trans-
mit their observations, and they are expected to have more power failures causing sensor
node failure issues (Liao et al., 2019; Togneri et al., 2019). Thus, sensor nodes may deter-
mine the network lifetime based on their battery capacity and affect the system’s quality
of service (Du et al., 2016; Curiac and Volosencu, 2012).

The contribution of this research lies in the successful implementation of time-series
clustering techniques as a sensor failure detection mechanisms based on detecting long-
segmental outliers associated with sensors faults. It investigates the possibility of utilising
time-series clustering as a sensor node failure detection mechanism, focusing on detecting
long-segmental outliers associated with halting and incipient sensor failure patterns. Dy-
namic Time Warping (DTW), K-Shape and the Characteristics-based time-series clustering
techniques are tested to prove the validity of the proposed approach. The accuracy of these
methods in detecting the incipient sensor node failure pattern is empirically evaluated using
time series collected from a local ambient temperature sensor node network deployed at the
University of East London, UK. The accuracy of these methods in detecting the halting
sensor node failure pattern is evaluated using time-series collected from a large-scale sensor
node network comprising 275 ambient temperature sensors distributed around London.

This paper is organised as follows: Section 2 provides details of the related work, Sec-
tion 3 is an introduction to time-series clustering. Section 4 describes the research data
set, Section 5 presents the implementation results of the Dynamic Time Warping (DTW)
and K-Shape time-series clustering techniques, and Section 6 provides the results of testing
the Characteristics-based time-series clustering technique. Finally, Section 7 presents the
concluding remarks.

2. RELATED WORK

Many sensor node failure detection methods were proposed in the literature, which can
be mainly categorised as; technical-based and data mining-based sensor failure detection
techniques.
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Technical-based sensor node failure detection techniques are domain-specific solutions
designed to detect sensor failures in particular applications. For example, Togneri et
al. (Togneri et al., 2019) utilised signal processing as sensor’s failure detection mechanism
for monitoring the hardware status of a large-scale weather sensor network. The Togneri et
al. (Togneri et al., 2019) sensor’s failure detection approach cannot be adopted as a generic
solution for detecting sensor failures. Thus, it does not present a systematic or generic ap-
proach for detecting sensor node failures in large-scale CPS applications. Furthermore, this
approach requires direct access to the sensor management network to check their status,
and such access may not be guaranteed in large-scale CPS applications.

Data mining-based sensor failure detection techniques utilise data analysis models to
detect abnormal data patterns (outliers) in sensor observations associated with sensor node
failures, mainly categorised into the anomaly and predictive analysis models (Chen et al.,
2018; Alwan et al., 2020). Where an outlier is an extreme sensor node’s measurement, it
is “an observation which deviates so much from other observations as to arouse suspicions
that a different mechanism generated it” (Hawkins, 1980).

1. Anomaly analysis, also known as outlier detection, identifies unusual data patterns
that do not comply with well-established normal behaviour (Appice et al., 2014).
Suppose the absolute value of a sensor observation deviation is significantly diverted
from observations of other neighbouring (spatially correlated) sensors at the same
point in time. In that case, this observation is an outlier and potentially streamed
from a faulty sensor node (Lee and Choi, 2008; Chen et al., 2018). Anomaly analysis is
a significant research field that is mainly investigated using statistical and machine-
learning based outlier detection techniques. For example, Deep Neural Networks
(DNN) (Hanrong Lu et al., 2016), K-Nearest Neighbours algorithm (KNN) (Hanrong
Lu et al., 2016), K-means clustering algorithm are machine-learning-based outlier
detection methods (Liu et al., 2019). In contrast, standard deviation, correlation co-
efficient (Xinrui et al., 2019) and the density-based spatial clustering of applications
with noise (DBSCAN) are statistical-based outlier detection methods (Jayswal and
Shukla, 2016; Abid et al., 2017; Nesa et al., 2018). Outlier detection techniques rely
on the assumption that the value of sensor nodes’ observations is correlated spatially,
temporally, or both spatially and temporally. However, these assumptions are not
necessarily always valid, especially in large-scale CPS applications where the cor-
relations between sensor nodes may be violated by many external effects, such as
the size of the deployment environment and the geographical distribution of sensor
nodes (Laso et al., 2017). For example, outlier detection cannot be applied directly to
ambient temperature observations collected from the sensor nodes distributed around
London because of a phenomenon known as the Urban Heat Islands (UHI), as shown
in the heat profile map of London in Figure 1 (MetOffice, 2019; Chandler, 1965).
UHI causes up to 6 degrees C0 of unexpected divergence among ambient temper-
ature sensors observations, violating the spatial continuity constraints among these
sensors and undermining the effectiveness of anomaly analysis methods in identifying
unusual data patterns that do not comply with typical ambient temperature sensors
observations in comparison with nearby ambient temperature sensors.

2. Predictive analysis is the process of mining current and historical data to identify
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Figure 1: The ambient temperature profile of London and the effect of the Urban Heat Islands (MetOffice,
2019).

patterns and forecast the future values of time series (Adhikari et al., 2015; Rawat
et al., 2015). Predictive analysis can be conducted using statistical or machine-
learning-based techniques (Ratner, 2017). For example, a machine learning model
based on the Random Forest Prediction (Random Forest Regression) technique is
adopted by (Farooqi et al., 2018) for developing an anomaly detection mechanism for
weather data. Another example is based on statistical predictive analysis, using the
one step-forward approach of the Autoregressive Moving Average (ARMA) model,
to tackle the inevitable challenge of sensors and sensor network failures in power
terminals (Li et al., 2019). Some applications require a mixed-methods approach,
where both machine-learning and statistical methods are used to tackle a particular
data quality challenge. For example, Okafor et al. (2020) investigated the use of
artificial neural networks and linear regression for calibrating low-cost environmental
monitoring sensors to improve their service life by reducing the probability of their
failure due to battery failure. Predictive analysis methods rely on models developed
using historical data as a training data set. Therefore, predictive analysis is most
suitable for detecting measurement errors that appear for a short time interval (short
outliers). Measurement errors that occur for a relatively long time affect the ability of
the predictive models to render accurate predictions. The pattern of time series with
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long outliers will be distorted to a certain extent, reflecting the wrong measurement
as the standard pattern, leading to higher forecast errors and limiting the ability of
predictive analysis modes to detect data accuracy issues correctly (Berk, 2015).

Outliers in sensor node networks are mainly categorised into short, simple and long-
segmental outliers (Aggarwal, 2013). Long-segmental outliers, also known as shape outliers,
are irregular observations that emerge for a relatively long time (Zhuang and Chen, 2006)
and change the time-series pattern (set of observations) (Aggarwal, 2015). Long-segmental
outliers occur in particular cases where a phenomenon has a long-term impact, such as
forest fires or oil spills or due to sensor nodes failure (Ghorbel et al., 2015). Long-segmental
outliers associated with sensor failures are categorised according to the behaviour of faulty
sensor nodes (Sailhan et al., 2010) into:

• Continuous halting faults: long outliers that show no or minimal variation in the
value attribute of their data stream for a relatively long interval of time.

• Abrupt (emerging) and incipient faults: a constant or linear increase offset to
the measurement values that occur over a longer time interval than expected.

As long-segmental outliers occur for a relatively long time and change data patterns, they
break the temporal correlation of observations after and before the anomaly and violate
the possibility of using predictive outlier detection techniques to detect this type of anoma-
lies (Berk, 2015).

This paper investigates time-series clustering as a novel solution that addresses the
limitations of both anomaly and predictive analysis approaches in detecting long outliers
associated with sensor node failures in the context of large-scale CPSs.

3. Time-Series Clustering

Time-series similarity measures define outliers in time-series windows by comparing
them with other non-overlapping windows using a measurement metric, such as the Eu-
clidean distance, which measures the distance between different time series (Aggarwal,
2015; Dean, 2014; Aghabozorgi et al., 2015). Therefore, time-series similarity measures
were utilised in time-series clustering methods to compare the pattern of an entire or a
substantial time series window with another based on their long-term temporal correla-
tion (Dean, 2014; Aggarwal, 2017). The purpose of time-series clustering is to identify
faulty sensor nodes by comparing the shape or features of their time series with the time-
series of other properly functioning sensor nodes. In this paper, Dynamic Time Wrapping
(DTW) time-series clustering technique is tested as an anomaly detection mechanism. The
DTW test has been extended to include K-Shape and Characteristic-Based Clustering tech-
niques to find a higher performance clustering technique that can render accurate results
while examining shorter time series.

3.1. Dynamic Time Warping

Dynamic Time Warping (DTW) is a time-series clustering technique that finds cor-
responding regions of similarity between time-series. DTW can stretch or shrink (warp)
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Figure 2: An illustration of how DTW warps one time-series into another one (Salvador and Chan, 2007).

time-series non-linearly along its time axis to find the optimal correlation between different
time-series (Salvador and Chan, 2007), as shown in Figure 2.

DTW has many implementations in different disciples, such as gesture recognition,
robotics, and manufacturing. However, it was mainly used for data mining as a distance
measure between time-series data points (Salvador and Chan, 2007). DTW is not sensitive
to time-shifting, and it does not require the time-series to be on the same length as a
condition to compare among them (Bankó and Abonyi, 2012). To compare time-series T1,
T2 of lengths n and m, DTW is going to measure the distance (T1, T2) with time complexity
of (n∗m). Thus, DTW is a computationally expensive method for simultaneously clustering
long time-series or numerous time-series (Aggarwal and Reddy, 2014).

3.2. K-Shape

K-Shape and Dynamic Time Warping (DTW) are shape-based time-series clustering
methods. K-Shape is a time-series clustering algorithm that uses cross-correlation measures
to measure the distance and the centroids for time-series clusters. K-Shape analyses the
shape of the time series while clustering them. The theory behind K-Shape is similar to
the one used by the K-means algorithm. K-means is a distance-based clustering algorithm
that divides the unlabelled dataset into several k non-overlapping subsets (clusters), each
of which is represented by the mean of the distance between its data points (Hartigan
and Wong, 1979). Both K-Shape and K-means rely on the iterative refinement procedure,
which scales linearly and produces equivalent and sufficiently separated clusters. K-Shape
is considered a highly efficient and more domain-independent time-series clustering method
than the DTW method. DTW considers the shape similarity between time series regardless
of differences in amplitude and phase. At the same time, K-Shape relies on the time-
series cross-correlation measures, which are significantly faster than the time-series distance
measures method adopted by DTW (Paparrizos and Gravano, 2016).

3.3. Characteristic-Based Time-Series Clustering

Characteristic-based time-series clustering is also known as features extraction-based or
statistical characteristics-based time-series clustering. Unlike the shape-based time-series
clustering methods, such as DTW or K-Shape, the characteristic-based clustering does not
use the distance measure or the cross-correlation measures methods. Alternatively, this
method clusters time-series based on their captured global characteristics using classical
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statistical methods. The features extracted from each time series can be fitted into any
arbitrary clustering algorithm. The extracted features describe a time series’ statistical
characteristics (global measures). These features can be extended to over 100 different fea-
tures, such as the absolute sum of changes, autocorrelation, standard deviation and partial
autocorrelation. Characteristic-based clustering reduces time-series dimensions, making
it much less sensitive to the effect of missing values or noisy data. The advantage of
characteristic-based clustering is its high performance, even if used to perform similarity
searches or clustering amongst very long time series (Wang et al., 2006).

4. Experimental Settings and London Case Study

Time-series clustering techniques are used in this study to detect continuous (halting),
abrupt (emerging) and incipient faults using real-world datasets collected from two different
sensor node networks, as follows:

4.1. Large-Scale Sensor Node Network

Large-scale sensor node network is the primary data source of this study. It consists
of 275 temperature sensor nodes distributed around London and managed by different
providers, such as the Meteorological Office (Met Office) (MetOffice, 2021), Open Weather
Map (OpenWeatherMap, 2021) and Smart Citizen (Citizen, 2021). The geographical dis-
tribution of these sensors is shown in Figure 3.

Data streams from these sensor nodes were coordinated by an Internet of Things (IoT)
search engine called Thingfull (Thingful, 2021). Thingful is owned by a U.K. based com-
pany named Umbrellium.Ltd (Umbrellium, 2021) specialises in IoT projects associated
with smart cities, connected vehicles, machine learning and big data analytics. These sen-
sor nodes data streams collected through the Thingful network will be utilised to test the
ability of the time-series clustering techniques to detect continuous (halting) and abrupt
(emerging) long-outliers. Thus, these types of long-outliers have been detected in some
time series of this large-scale dataset while focusing on temperature time series. Typically,
temperature time-series show daily seasonality and a trend, as shown in Figure 4.

Therefore, temperature time series with a constant value attribute or a very low sea-
sonality for a relatively long-time (long-outlier) are highly likely to encompass data quality
issues related to observations accuracy. This behaviour can be related to a sensor node’s
hardware failure that affects their detection ability, or it may indicate that these time-
series were streamed from sensor nodes that are down, and the system compensates for
their missing observations by repeating the last observation received from these faulty
sensors. An example of long-segmental outliers is shown in Figure 5. Figure 5 shows the
time-series of two sensors which displays constant readings (Figure 5 Sensor ID= kt3m3nw5
and rw4egmaw/ Smart Citizen) for a relatively long time, compared to another time-series
(Figure 5 Sensor ID=47qwbfba/ Meteorological Office) generated by a functional sensor
node managed by the Meteorological Office during the same time window.

The accuracy and performance of the three time-series clustering methods, DTW and K-
Shape and the characteristics-based time-series clustering technique, examined in this study
are evaluated based on their ability to identify time-series with halting or emerging long-
segmental outliers and the time required to render the clustering results. The evaluation
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Figure 3: The geographical distribution of the real-world sensor nodes adopted in this study.

was conducted using two different time-series windows. The first is a seven-day time-series
window. The second is a two-day time-series window used to evaluate the accuracy and
performance of time-series clustering techniques compared to the seven-day time window.
The time series were collected from a local network of four sensor nodes and a large-scale
network of 275 sensor nodes distributed around London.

4.2. Local Sensor Node Network

This time series was used as a benchmark dataset to test the ability of the time series
clustering techniques to detect incipient faults with consistent offset (long-outlier). The
local sensor node network consists of four high-quality sensor nodes deployed at The Uni-
versity of East London. One of these network sensor nodes is installed indoors, and the
other three are deployed outdoors. Since all the local sensor nodes were distributed in a
relatively small geographical area, their time-series do not show significant differences in the
shape of their trend. However, they show some differences in the value attribute, especially
with the indoors sensor, which streamed a time series with a consistent offset of 10-15 Co

from other sensors. Thus, the indoors sensor node, in this case, represented a sensor with
an incipient fault pattern, as shown in Figure 6. Furthermore, since this time series is a
high-quality dataset with no missing values or outliers, it was used as a benchmark to test
and calibrate the time-series clustering techniques before applying them to the large-scale
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Figure 4: Time-series decomposition of a single time-series collected from a real-world temperature sensor
node of the large-scale sensor network distributed around London.

Figure 5: An example of two temperature time-series with (halting) long-segmental outliers (Sensor ID=
kt3m3nw5 and rw4egmaw/ Smart Citizen) comparing with a normal time-series collected from a functional
sensor node (Sensor ID=47qwbfba/ Meteorological Office).
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sensor node network time series.

Figure 6: Time-series of the local sensor node network do not show significant differences in the shape
of their trend. However, they show differences in the value attribute, especially with the indoors sensor
(Sensor ID = 493361) which streamed a time-series with a consistent offset of 10-15 Co from other sensors.

5. Dynamic Time Warping (DTW) and K-Shape

The Dynamic Time Warping (DTW) and K-Shape time-series clustering were applied
using the Python package tslearn.clustering provided by Scikit-learn (Pedregosa et al.,
2011). The outcome from applying the DTW and K-Shape time-series clustering techniques
to the local sensor node network dataset is shown in Figure 7 (identical outcome).

Both DTW and K-Shape time-series clustering techniques successfully identified the
time series of the indoor sensor node (the incipient fault pattern Sensor ID = 493361) from
the other time series of the outdoor sensor nodes. This result is significant because both
DTW and K-Shape are shape-based time series clustering techniques, and all the time series
used in this test exhibit a significant similarity in the shape pattern, as shown in Figure 6.
The top graph line in Figure 7 is the indoors sensor (Sensor ID = 493361) time series in the
first cluster (incipient), while Cluster2 (the bottom graph lines) presents the other (normal)
time-series.

The time series used in the second test were collected from the large-scale sensor network.
The dataset of this test is much larger than the dataset of the local sensor node network.
Both DTW and K-Shape rendered identical clustering results when applied to the seven-day
time series, as shown in Figure 8 and Figure 9.

Both DTW and K-Shape successfully separated time-series with long-segmental outliers
from the other time-series that exhibit typical variation in the trend and seasonality when
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Figure 7: DTW and K-Shape were able to successfully differentiate the incipient faults time-series of indoor
sensor-493361 from the other (normal) outdoors time-series.

Figure 8: DTW successfully separated time-series with the long-segmental outliers (Cluster 1) from other
(typical) time-series (Cluster2) when applied to seven-day window real-world dataset.
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Figure 9: K-Shape successfully separated time-series with the long-segmental outliers (Cluster2) from the
other (typical) time-series (Cluster1) when applied to seven-day window real-world dataset.

applied to the seven-day time window. The temperature axis (y-axes) in Figure 8 and Fig-
ure 9 do not reflect the actual value attribute of the observations, since all time-series were
normalised using the Python package ”tslearn.preprocessing.TimeSeriesScalerMeanVariance”
(Pedregosa et al., 2011) so that each output time series had zero mean and unit variance
before being fitted to the time-series clustering models, as shown in Figure 12. Applying
DTW and K-Shape to the two-day time series showed that DTW is more sensitive to the
window length of the clustered time series than the K-Shape. The ability of the DTW to
differentiate the faulty time-series from other (typical) ones was more significantly affected
compared to K-Shape, as shown in Figure 10 and Figure 11.

In general, both shape-based time-series clustering techniques require relatively long
time series to enhance their clustering results, especially the DTW. Figures 10 and 11 illus-
trate that K-Shape can maintain its clustering accuracy when applied to a relatively shorter
time series than DTW. Both techniques were able to differentiate time-series that showed
the patterns of the continuous and abrupt long-segmental outliers with 100% accurate de-
tection ratio when applied to seven days, or longer time-series, as shown in Figure 8 and
Figure 9. The main technical steps required to fit all available time series from all sensor
nodes as a three-dimensional data array to the DTW and K-Shape models are illustrated
in the process flowchart diagram shown in Figure 12.

6. Characteristics-Based Time-Series Clustering

The characteristics (features) based time-series clustering technique was implemented
using (Christ et al., 2018)’s Python tsfresh package and the time series collected from the
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Figure 10: DTW is not able to differentiate time-series with long-segmental outliers from other typical
time-series when it was applied to a shorter two day time-window of real-world time-series.

Figure 11: K-Shape is less able to differentiate time-series with long-segmental outliers from other typical
time-series when it was applied to a shorter, two day time-window, of real-world time-series.
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Figure 12: The process diagram of the technical steps implemented to fit all available time-series as a 3D
array into the Dynamic Time Warping (DTW) and K-Shape time-series clustering models.
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local sensor node network as a benchmark test. The characteristic-based time-series clus-
tering technique successfully separated the time-series of the indoors sensor node (incipient
faults pattern) from the rest of the time series, as shown in Figure 13.

Figure 13: The feature-based time-series clustering method differentiated the indoors time-series (Cluster1)
from the other typical time-series (Cluster2) of the ideal dataset.

The characteristics based time series clustering model relies on using arbitrary clustering
algorithms, such as K-means, for clustering the set of features extracted from the examined
time series. The selected features may vary from one application to another based on
the characteristics of the time series chosen to be used as clustering reference. In this
case study, the “absolute sum of changes” was the main parameter used and fitted to
the K-means clustering model to detect continuous (halting/repeating) faults of sensors
time series that show no or minimal variation in their observations value attributes. The
outcome of applying the feature-based time-series clustering technique to the time series of
the large-scale sensor node network is shown in Figure 14 and Figure 15.

The feature-based time series clustering technique successfully categorised time series
with long-segmental outliers even when applied to the relatively short two-day time-series
window, as shown in Figure 15. The technical aspects required to fit all available time series
to the characteristic-based time-series clustering models are illustrated in the flowchart
diagram in Figure 16.

Since all the used time-series clustering techniques (DTW, K-Shape and Characteristics-
Based Time-Series Clustering) were applied to the same dataset, it was possible to evaluate
the performance of each of these methods based on the time spent to render their clustering
results. DTW required a significant amount of time to render the results, around 360
seconds compared to the feature-based and K-Shape time-series clustering techniques which
required around 30 seconds when applied to the seven-day time window. It is essential
to highlight that these results may vary according to the number and the type of the
extracted features and the selected clustering algorithm. Although DTW demanded more
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Figure 14: The feature-based time-series clustering technique successfully differentiated time-series with
long-segmental outliers (C1 = Cluster1) from other typical time-series (C2 = Cluster2) when applied to
the real-world seven-day time window.

Figure 15: The feature-based time-series clustering technique successfully differentiated time-series with
long-segmental outliers (C1 = Cluster1) from other typical time-series (C2 = Cluster2) even when applied
to relatively short time-series (two-day time window) of the real-world dataset.
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Figure 16: The process diagram of the technical steps implemented to fit time-series to the characteristic-
based time-series clustering model.

time than K-Shape to render the clustering results, it seems that the K-Shape Python
package managed the processing resources of the CPU cores more efficiently than DTW,
as shown in Figure 17.

Note : All tests of this study were conducted using Python 3.7 64 bits installed over a
Linux (Fedora 64 bits) workstation. The processor of the workstation is an Intel(R) Core
(TM) i7-7920HQ CPU @ 3.10GHz (4 CPUs), 3.1GHz with 32 GB of RAM.

7. Conclusion

The novelty of this research lies in the successful implementation of time-series clus-
tering techniques as a sensors failure detection mechanism via detecting long-segmental
outliers associated with time-series of faulty sensors. The purpose of this study is to
test Dynamic Time Warping (DTW), K-Shape, and the Characteristics-based time se-
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Figure 17: The performance of the CPU cores and the time required to perform the same task by DTW
comparing to K-Shape, each graph line represents the performance of a single CPU core.

ries clustering technique as long-segmental outlier detection methods for sensor node fault
detection in large-scale CPSs. The study focused on detecting the failures of continuous
(halting/repeating) and incipient sensor nodes. The time series clustering techniques were
evaluated using real-world observations collected from two real-world sensor node networks.
All of the examined time series clustering techniques proved their ability to detect sensor
node faults associated with long-outliers in their time series with some differences in ac-
curacy and complexity. The feature-based time series clustering technique maintained its
detection accuracy even when applied to a relatively short time series compared with the
shape-based (DTW and K-Shape) time series clustering techniques. Furthermore, the em-
pirical tests of these techniques showed that feature-based time-series clustering could be
a more efficient long-segmental outlier detection mechanism than the shape-based time-
series clustering techniques, such as DTW and K-Shape, mainly when applied to shorter
time-series windows.
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