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Abstract

In this paper, we present a method for integrating a human behavior
model into robot motion control to enable safer intimate distance Human
Robot Collaboration (HRC). This approach establishes safety parameters
based on personality and experience, and optimizes the system through
observing human reactions. It integrates a behavior pattern-based emer-
gency shutdown. In our experiment, we tried to validate our claim that
incorporating a human behavior model into the robot control will in-
crease the safety of the system in intimate distance conditions. Valida-
tion through a mixed-reality approach demonstrates the feasibility of the
framework in a simulated environment, ensuring ethical considerations
and safety. Notably, it outperforms traditional benchmarks, and other
forecasting based approaches, achieving zero collisions in 100 trials and
exhibiting a forecasting error rate below 10mm. Despite notable improve-
ments, challenges persist, including residual time delays in safety compen-
sations and potential slowdowns for introverted, inexperienced workers.
While these limitations need further refinement, the proposed approach
signifies a substantial stride towards safer HRC, successfully preventing
collisions in intimate distance conditions.

1 Introduction

To harness the full capabilities of both humans and robots, the concept
of collaboration has emerged. ISO defines collaboration as “an opera-
tion by purposely designed robots and people working within the same
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space” [1]. The term “cobot” was coined in 1996 by Colgate & Peshkin,
with the conceptualization attributed to Brent Gillespie [2]. However, it
wasn’t until 2008 that the first commercially available cobot, the UR5 by
Universal Robots, entered the market [3]. Human-Robot Collaboration
(HRC) aims to establish an optimal level of collaboration to efficiently ac-
complish a task [4], [5], [6]. In collaborative scenarios, humans and robots
share the same workspace, working hours, and task objectives, with di-
rect communication for successful task completion [7]. The levels of HRC
evolve with increased interaction [8], as illustrated in Figure 1:

• Coexistence: Only the workspace is shared, and the robot and hu-
man engage in separate tasks and workpieces.

• Sequential: The robot and human perform distinct tasks in the
shared workspace, sequentially sharing the workpiece.

• Simultaneous: The robot and human undertake separate tasks in the
shared workspace, but the work is performed on the same workpiece
simultaneously.

• Supportive: The robot and human collaboratively participate in the
same task within the shared workspace, working on the same work-
piece.

The predominant category of applications in Human-Robot Collab-
oration (HRC) within the industrial context is identified as coexistence
applications. In a survey conducted by Bauer et al. [9] examining in-
dustrial applications, 60% of HRC installations were categorized as co-
existence. While it is feasible to implement other collaboration levels in
academic research, achieving the ”supportive” level, which represents the
ultimate goal of HRC, has encountered challenges. Safety concerns pose
a significant obstacle, as this level necessitates close human-robot inter-
action, carrying an elevated risk of accidents [10]. Consequently, despite
the considerable potential, the realization of the benefits of supportive
human-robot collaboration remains elusive due to safety considerations.

In this study, we tackle this challenge by developing a Human Robot
Collaboration (HRC) system centered on close-distance collaboration. Our
proposed approach incorporates a human behavior model into robot mo-
tion control, enabling the robot to be cognizant of human situations. A
scrutiny of review studies conducted over the last two decades reveals a
limited number of articles explicitly concentrating on human-related fac-
tors in human-robot collaboration [11]. Based on their claim, earlier years
predominantly emphasized robot factors, but in 2022, there is a discernible
shift towards the increasing significance of human factors. Given the in-
tegral role of humans in the HRC system, prioritizing an elevated level
of interaction necessitates a thoughtful consideration of the human con-
dition. Consequently, recent research efforts have been directed towards
addressing this crucial aspect.

To attain the objective of achieving intimate distance supportive Human-
Robot Collaboration (HRC), safety emerges as the paramount concern
[12]. The incorporation of human-based observation into the system be-
comes imperative for this purpose, serving as the primary motivation for
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Figure 1: Various levels of HRC based on interaction pattern [8].

our research. Constrained by ethical considerations and safety impera-
tives, we opted for the mixed reality method. The delineated goals for
our work encompass:

• Devise safety functions distinct from conventional workplace-based
approaches [40–42].

• Integrate a human-oriented behavioral model into robot control.

• Monitor human reactions (both physical and psychological) in di-
verse scenarios and refine our system accordingly.

• Rigorously adhere to the intimate distance condition [12] throughout
all phases of the system design.

By embodying these objectives, we formulated safety functions grounded
in a behavioral model for intimate distance HRC. The contributions of this
research are elucidated as follows:

• Analyze human body movements, predict future motion, and iden-
tify abnormalities to integrate into robot control for intimate dis-
tance conditions.

• Establish initial safety parameters based on personality and experi-
ence analyses.

• Optimize the system based on the observation of human reactions
(both physical and psychological) in various scenarios.

• Integrate an emergency shutdown approach based on behavior pat-
terns.

To authenticate our research, a case study was undertaken employing
a mixed-reality approach. In the validation process of distinct compo-
nents within the behavioral module, two supplementary datasets were
incorporated. Subsequently, we gauged the motion planning performance
through comparison with established planning approaches in a simulated
environment over 100 trials. Notably, our model demonstrated superior
performance, achieving zero collisions with a forecasting error of less than
10 mm.
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2 Related Works

Existing research has highlighted the importance of incorporating human-
related factors in the design of Human-Robot Collaboration (HRC) sys-
tems. A comprehensive survey paper [11] underscored this significance.
The current landscape of research integrating human factors into HRC
can be summarized as follows:

Despite the pivotal importance of understanding the human state, a
majority of studies primarily rely on surveys to discern human feelings
and perceptions [13], [14], [15], [16], [17], [18], [19], [20], [21], [22].

A limited number of studies incorporate physiological signals alongside
surveys [23], [24], [25]. However, these investigations mainly focus on trust
and human perception, neglecting the integration of behavioral cues into
motion planning.

Only a small subset of studies incorporate video, motion tracking,
and physiological data along with surveys [26], [27]. These integrations
predominantly serve purposes such as human perception, understanding,
trust generation, and certain forms of human adaptation training.

Recent research has acknowledged the significance of human behavior
during collaboration, with some studies attempting to integrate human
motion-based behaviors into their systems. For instance, study [28] intro-
duces a robot-following approach based on human-intentioned directions,
utilizing gaze direction and body gestures to take over the task.

An advanced approach is evident in study [29], where whole-body mo-
tion dynamics are estimated. This estimation method is applied to a
humanoid, assisting the robot in motion.

Similar goals are identified in study [30], where robot motion is planned
based on information learned from analyzing human motion. Notably,
this study considers task variation-based time variation for prediction. It
considers how variations in the tasks (complexity, difficulty) themselves
can influence variations in the time it takes to complete them as features.
Where as other studies simply looks at average times or total time spent,
this study acknowledges the importance of task and time correlation.

Author [32] forecasts the human trajectory horizon step by step, re-
quiring knowledge of the total time to reach the goal from the start.

In the study by author [31], the hand trajectory position is directly
incorporated into the robot’s planned path. Here, short-duration predic-
tion is utilized for frequent motion path updates.

Study [31] aligns most closely with our motion planning approach. Al-
though their focus is on forecasting human motion for robot control, our
work distinguishes itself by integrating numerous safety functions rooted
in behavioral models. A prior study [33] demonstrated that, despite fre-
quent path updates, real-time synchronization delays hinder a robot’s
ability to promptly follow the path. Consequently, this time gap poses a
risk of collision during intimate human-robot collaboration. The present
study contributes several novel advancements beyond the existing research
in this domain:

• We address safety concerns related to synchronization delays, a facet
overlooked by other studies. Our motion forecasting accounts for
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delays, ensuring that the human trajectory aligns with the present,
not a prior time, even if path updates take time.

• Our study pioneers the establishment of initial safety distances and
robot speed parameters based on personality and experience, with
the potential for system optimization in subsequent runs.

• Introducing a behavior observation-based emergency stop approach
is a unique aspect of our approach not found in any other study.
This function swiftly reduces the risk of collisions.

The integration of a behavioral-based approach in our study enhances
safety, as evidenced by the comparative analysis of collision occurrences in
the evaluation section. Our aspiration is that this research brings us closer
to realizing supportive Human-Robot Collaboration (HRC) by instilling
a sense of safety in intimate distance HRC scenarios.

3 Method of Behavior-based Robot Con-
trol

In this approach, we propose to develop some safety functions based on
behavior. Then we integrate this behavior module into the robot control.
The biggest challenge for supportive distance is operating the HRC system
in intimate distance conditions [12]. The reason is that with intimate
distance conditions, the risk of collision increases. So we need to provide
multiple layers of safety parameters, but they can only be based on human
factors or robot factors, or they can be combined, as introducing workplace
related safety factors will contradict our target as supportive HRC needs
to share work pieces and workplaces. Unfortunately, transition delay and
asynchronization are big challenges for robot-related factors to provide
enough safety. For these reasons, we opted for a human-related factor. In
Figure 2, we have provided the state machine diagram of our approach
which is briefly explained below:

In the initial run, we calculate the target joint based on joint impor-
tance. Based on the task pattern, different joints can give different infor-
mation. Even though many HRC studies consider the head joint as the
most important indicator [37–39], in our case study, we found that in the
case of a repetitive sequential task, the shoulder joint plays a prominent
role in trajectory estimation. Based on this finding, we have developed a
target joint selection formula. Here,

H(t)- position of the head at time t,

S(t)- position of the shoulder at time t,

G(t)- position of the goal,

EH(t)- error in predicting the wrist motion trajectory using the head,

ES(t) - error in predicting the wrist motion trajectory using the
shoulder.

The errors can be defined as 1 and 2:

EH(t) = ∥H(t)−G(t)∥ (1)

Integrating Human Behavioral Model for Safe Intimate-distance Human Robot
Collaboration



IJABC: International Journal of Activity and Behavior Computing 6

Figure 2: State machine diagram of behavior-based robot control for intimate
distance HRC.
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ES(t) = ∥S(t)−G(t)∥ (2)

The lesser the joint error the better it is for forecasting. Utilizing the
error value, we determine the target joint, which subsequently feeds into
two modules: behavior-based motion planning and behavior-based safety
measurement. Within the safety module, scoring is determined based on
personality and experience. Our investigation encompasses three experi-
ence states:

• No Experience: Individuals with no prior exposure to robots or
mixed reality devices.

• Somewhat Experienced: Individuals with experience in either robots
or mixed reality devices.

• Experienced: Individuals with exposure to both robots and mixed
reality devices.

Simplifying matters, we restricted our consideration to Introverts and
Extroverts as personality traits. Following these assessments, we assigned
scores, which were validated through user surveys and performance eval-
uations. The scores are delineated in Table 1.

Based on this score, safety distance and initial speed are decided. Then
this information, along with the forecasted results, is sent for robot con-
trol. In the next run, we just monitor stress and target joints for forecast-
ing and error occurrence count.

In this approach, we introduce four safety functions. Below, we will
elaborately explain them.

3.1 Motion Forecasting

Due to the asynchronization problem, there is always a considerable amount
of delay, so instead of the current human motion path, we need informa-
tion about the future human motion trajectory and the activity they will
be doing. As there is a chance of abnormal activity occurring due to var-
ious environmental and physical factors, we also need to identify if the
state our robot may see is normal activity or abnormal activity.

3.1.1 Joint trajectory forecasting

At first, we will discard all joint combinations that are not related to our
target joint and keep only the most important ones. The input sequence
is a set of joint positions leading up to the current time t. Let N be
the sequence length. The input sequence can be represented as shown in
equation 3:

x(t) = [q(t−N), q(t−N + 1), . . . , q(t− 1)] (3)

The output sequence for the forecasted joint position at t + ∆t can be
represented as shown in equation 4:

q(t+∆t) = Forecasting Model(x(t)) (4)

Our forecasting system utilizes a Long Short-Term Memory (LSTM)
network specifically chosen for its effectiveness in real-time applications.
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LSTMs excel at capturing temporal dependencies within data sequences,
making them ideal for tasks like time series forecasting where past ob-
servations can significantly influence future values. During our perfor-
mance comparison test LSTM outperformed traditional statistical meth-
ods: ARIMA and SARIMA. This is because LSTM can learn complex re-
lationships within the data, leading to more accurate predictions. While
offering better performance than statistical models, LSTM strike a bal-
ance by being less computationally demanding compared to even more
complex architectures like Transformers. This translates to faster pro-
cessing times and potentially less resource-intensive deployments. As they
are computationally efficient and less demanding, they are well-suited for
real-time implementation. This allows for near-instantaneous predictions
within our system, which is crucial for our implementation.Our specific
LSTM model incorporates 50 neurons in the hidden layer. This allows the
network to learn a sufficient number of features from the data to make
accurate predictions. Additionally, a 20% dropout layer is employed to
help prevent overfitting during training. Finally, a dense layer is used to
map the learned features from the LSTM to the final prediction output.
The batch size of 70 defines the number of data points processed by the
model at a time during training, which is a tunable hyperparameter that
can be further optimized for performance.Overall, the choice of LSTM
aligns perfectly with our focus on real-time forecasting, offering superior
performance compared to statistical methods while maintaining compu-
tational efficiency.

3.1.2 Activity forecasting

After the future trajectory is forecasted, this data is fed to Facebook
prophet to identify abnormalities before it even occurs. Abnormal behav-
ior is identified by examining the magnitude or pattern of these residuals.
Large residuals or patterns that deviate significantly from the typical be-
havior of residuals are considered abnormal behavior in the data. Let
y(t) be the observed value at time t, and ŷ(t) be the predicted value by
Prophet.The residual at time t can be represented as shown in equation
5:

Residual(t) = y(t)− ŷ(t) (5)

Mathematically, the abnormality score is A(t) for each time point t
based on the residuals. It can be represented as shown in equation 6:

A(t) = |Residual(t)| (6)

3.2 Speed Variation

From our case study, we found that human personality and their work
experience have a great impact on their work patterns. Based on the scores
calculated based on personality and experience, as shown in Table 1, we
initially set a comfortable speed level for the users. In our case study, we
set different levels of speed. In the evaluation part, it is explained briefly.
Later, if the forecasting result shows that there is a chance of abnormal
activity, we will readjust the speed of the robot.

Integrating Human Behavioral Model for Safe Intimate-distance Human Robot
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Here, by speed variation function we refer the modification of robot
speed during the operation based on user comfort. This is mainly origi-
nated from their experience level and personality trait. The speed varia-
tion or angular velocity (θ̇) of the robot joint can be calculated using the
time derivative of the joint angle (θ) with respect to time (t). Mathemat-
ically, this can be represented as shown in equation 7:

θ̇ =
dθ

dt
(7)

3.3 Safety Distance

Like speed, we also set safety distance based on the scores shown in Table
1 and Table 2 initially. Later, if the forecasting result shows that there is
a chance of abnormal activity or if the users get stressed, we will readjust
the safety distance by calculating the maximum joint deviation. Based
on the analysis of biomechanics, the ranges of motion for each joint have
a minimum and maximum deviation. We are just giving examples of
shoulder, elbow, and wrist joints [43]:

• Shoulder Joint: Min Angle: 50 degrees and Max Angle: 180.

• Elbow Joint: Min Angle: 0 degrees and Max Angle: 160.

• Wrist Joint: Min Angle: 15 degrees and Max Angle: 90.

Also, these deviations are possible to calculate by using trigonometric
functions and rotational matrices. Here is an example for the shoulder,
elbow, and wrist joints shown in the equations 8, 9 and 10:

Shoulder Joint (θshoulder): θshoulder represents the angle of shoulder
flexion/extension.

ϕshoulder represents the angle of shoulder abduction/adduction.
ψshoulder represents the angle of shoulder internal/external rotation.

Shoulder Position:

xy
z

 =

r sin(θshoulder) cos(ϕshoulder)
r sin(θshoulder) sin(ϕshoulder)

r cos(θshoulder)

 (8)

Elbow Joint (θelbow): θelbow represents the angle of elbow flexion/extension.

Elbow Position:

xy
z

 =

xshoulder + l1 cos(θshoulder)
yshoulder + l1 sin(θshoulder)
zshoulder − l1 sin(θelbow)

 (9)

Wrist Joint (θwrist): θwrist represents the angle of wrist flexion/extension.
ϕwrist represents the angle of wrist radial/ulnar deviation.

Wrist Position:

xy
z

 =

xelbow + l2 cos(θelbow)
yelbow + l2 sin(θelbow)
zelbow − l2 sin(θwrist)

 (10)

In these formulas:

• r is the distance from the shoulder joint to the elbow joint.

• l1 is the length of the forearm (from elbow to wrist).

• l2 is the length of the hand (from wrist to hand).

Integrating Human Behavioral Model for Safe Intimate-distance Human Robot
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Table 1: Personality and experienced based scoring

No Experience Somewhat Experienced Experienced

Introvert 1 2 3

Extrovert 1.5 2.5 3

3.4 Emergency Shutdown

In this work, we have utilized a Garmin Venu Sq watch to monitor stress
and heart rate. If we find that the stress score exceeded the normal range
and in our forecasted path there is a chance of abnormal activity occurring,
we will do the emergency shutdown.

Let:

• S represent the current stress level,

• Snormal denote the normal stress level,

• A represent the occurrence of abnormal activities, and

• Athreshold be the predefined threshold for abnormal activity occur-
rence.

The emergency shutdown condition can be expressed as:

Emergency Shutdown =

{
1 if S > Snormal and A > Athreshold

0 otherwise

In this formulation, the function Emergency Shutdown returns 1 (indi-
cating ”True”) if both conditions S > Snormal and A > Athreshold are met.
Otherwise, it returns 0 (indicating ”False”).

This can be expressed more succinctly using the equation 11:

Emergency Shutdown = [S > Snormal] · [A > Athreshold] (11)

Here, [S > Snormal] evaluates to 1 if S > Snormal is true and 0 other-
wise. Similarly, [A > Athreshold] evaluates to 1 if A > Athreshold is true
and 0 otherwise. The multiplication ensures that both conditions must be
true for the overall emergency shutdown condition to be true. The thresh-
old can be set based on the task requirements and the human coworker’s
preference. For our study, we set the scores as stress scores above 70 and
abnormal activity occurring 1 per operation.

4 Data Description

In this section, we briefly describe the datasets utilized for our study.
In this paper, the main data we utilized came from our experiment. To
evaluate the behavioral model, we have also utilized two supplementary
data sets. The information regarding these data sets can be seen in Table
3.

Integrating Human Behavioral Model for Safe Intimate-distance Human Robot
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Table 2: Safety distance calculation based on score

Score Safety Distance (m)

1 0.45

1.5 0.40

2 0.35

2.5 0.30

3 0.25

Table 3: Considered tasks and their descriptions

Data Set Task Activity Description

Our Data

Interaction Can do any random
motion they see fit to
interact with the robot.

Moving side by side Swing and twist one’s
hands side by side.

Bento [34]

Pick and place Put food in a fixed place
and put it in the bento.

Fixing and rearranging Fix and reorganize the
bento box in a hurry
while it is passing by
when one forgets to
put ingredients.

Cooking [35]

Washing Wash vegetables and
fruits in a bowl with water.

Adding and mixing Add and mix materials
to prepare food.

Cutting Cut vegetables and
fruits with a knife on
a chopping board.

Peeling Peel vegetables and
fruits using a knife or
peeler held in the hand.

Integrating Human Behavioral Model for Safe Intimate-distance Human Robot
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4.1 Our Data

The experiment has been designed based on the suggestions made in study
[11]. Due to ethical committee constraints and concerns of the possible
participants, the final experiment has been conducted with 10 people. All
of them were healthy. The data set can be described as follows:

• Number of Participants: 10

• Age groups: (20–25), (26–30), and (31–35)

• Gender: Male (6) and Female (4)

• Country of origin: Japan, Indonesia, Vietnam, Philippines, and
China

• Experience: No Experience (have never had any experience with
robots or mixed reality devices), Somewhat Experience (have ex-
perience with either robots or mixed reality devices), Experienced
(have experience with both robots and mixed reality devices)

• Personality trait: Extrovert and Introvert

• Survey: Pre-experiment, In-experiment, and Post-experiment

• Data type: Video (Skeleton), Survey, Heart Rate

• Utilized video amount: 200 minutes

4.2 Supplimentary Data Sets

In our study, we have also utilized two supplementary data sets for evalu-
ation. We have utilized the data partially, as some of the activities means
the same body movement pattern and are just described differently based
on the requirements of the data sets.

4.2.1 Bento Data

This is a dataset utilized in ABC 2021 for Bento Challenge [34]. The
experiment was conducted at the Kyushu Institute of Technology’s Smart
Life Care Unit in Japan. All participants were healthy. The dataset can
be described as follows:

• Number of Participants: 4

• Age groups: (20–25) and (26–30)

• Gender: Male

• Country of origin: Japan

• Data type: MoCap skeleton data

• Utilized video amount: 80 minutes

4.2.2 Cooking Data

This is a dataset utilized in ABC 2020 for Cooking Challenge [35]. The
experiment was conducted at the Kyushu Institute of Technology’s Smart
Life Care Unit in Japan. All participants were healthy. The dataset can
be described as follows:

Integrating Human Behavioral Model for Safe Intimate-distance Human Robot
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• Number of Participants: 4

• Age groups: (20–25) and (26–30)

• Gender: Male

• Country of origin: Japan

• Data type: MoCap skeleton data, accelerometer and gyroscope data
from smartwatch and smartphone.

• Utilized video amount: 160 minutes

5 Evaluation

In this section, we present our evaluation methods. In our approach, we
have introduced several smaller safety functions grounded in the behav-
ioral model, and by combining all of them, the final behavioral module
calculates the human condition, which is the input to the path planner
so that the new path can be created. In this section, we first describe
our experimental setup. Then we show validation for each small module,
and finally we show the comparative analysis of our approach with other
methods. Along with the results, related discussion has been given re-
garding why the approach is required or if there are any concerns.

5.1 Motion Forecasting

Motion forecasting is one of the most challenging parts of our behavior
model. As the tasks we use cover a wider range of complexity levels
compared to other case studies, it was challenging to find out the exact
motion pattern.

5.1.1 Goal

The goal of this function is to forecast trajectory and predict abnormal
activity occurrence.

5.1.2 Experimental Setup

For the feasibility study of our approach, we have designed a case study
as shown in Figure 3. The setup can be described as follows:

• Simulation Platform: Unity 3D version 2020.3.34f1

• PC Configuration: Windows 11 with 64-bit software and an NVIDIA
GeForce RTX 3050 Ti graphics card.

• Robot: Yaskawa Mottoman GP8 [44]

• Robot Control: ROS in Ubuntu 20.04.4LTS PC

• MR Device: Microsoft Hololens2

• Unity Tool for Plugin: MixedRealityFeatureTool

• Connection Protocol: TCP/IP

• Update Rate: 0.40 [s] and 0.08 [s]

• Interaction Scenario: Robot Only, AR Only and AR with Robot

Also, two supplementary data set is used.

Integrating Human Behavioral Model for Safe Intimate-distance Human Robot
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Figure 3: Experimental setup of our mixed reality based HRC system prototype.

5.1.3 Steps

The steps for this function are listed below:

• First, we need to decide the target joint.

• Then we only keep target joint-related features, which is quite dif-
ferent from other approaches.

• After that, a joint trajectory forecast.

• This is then used for activity forecasting, and abnormal activity
occurrences are checked.

• Finally, if no abnormal activity is predicted, the generated informa-
tion is sent to the path simulator for robot control.

• For evaluation metrics of the performance of the model, MAE and
F1 scores are used.

5.1.4 Results

The first step of our approach is to identify the target joint. We have
claimed that, based on task patterns, joint importance may vary. In
Table 4, the MAE for head-based joint combinations and shoulder-based
joint combinations has been calculated. We can see that, depending on
the task, different joint combinations are giving less error than others.

For the evaluation of trajectory forecasting, it can be observed in Table
5. Here, we compare it with some other methods. As DRRT ∗ [36] does
not include any behavior-based approach, no scoring is made. Compared
with the other two methods, our method achieved a lower error rate. Our
error rate is less than 10 mm.

Integrating Human Behavioral Model for Safe Intimate-distance Human Robot
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Table 4: Evaluation for target joint selection based on task pattern. Error is
calculated in MAE

Data Set Task Head(m) Shoulder(m)

Case Study
Interaction 0.02004 0.002027

Moving side by side 0.00555 0.00215

Bento
Pick and place 0.00740 0.00265

Fixing and rearranging 0.00266 0.00343

Cooking

Washing 0.01481 0.00909

Adding and mixing 0.01538 0.00979

Cutting 0.00876 0.01217

Peeling 0.0713 0.01332

Table 5: Performance comparison of trajectory forecasting with others. Error
calculated here is MAE

Task Interaction Moving
side

by side

Pick
and
place

Fixing
and

rearranging

Adding
and

mixing

DRRT ∗ [36] NA NA NA NA NA

SONIG [32] 0.1467 0.0981 0.0947 0.1043 0.0857

BP-
HMT [31]

0.0978 0.0098 0.0104 0.0315 0.0097

Our pro-
posed
method

0.0204 0.0021 0.0026 0.0026 0.0097

Integrating Human Behavioral Model for Safe Intimate-distance Human Robot
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Table 6: Performance evaluation for accurately predict abnormal activity oc-
curence

Data Set Task Our Method
(F1 Score)

Baseline
(F1 Score)

Case Study
Interaction 0.90 0.75

Moving side by side 0.96 0.87

Bento
Pick and place 0.96 0.87

Fixing and rearranging 0.95 0.85

Cooking

Washing 0.94 0.83

Adding and mixing 0.91 0.79

Cutting 0.93 0.82

Peeling 0.92 0.80

As for evaluating abnormal activity occurrence prediction, we have
used the F1 score. Here, as a baseline approach, we used full body data like
other methods. Comparing that with our method, we can see that when
target joint based selection is applied, prediction model performance gets
better. Especially from Table 6, we can see that for Interaction activity,
the F1 score increased by 0.15.

5.2 Speed Variation

Speed variation plays an important role in ensuring user safety. As this
is closely related to user preference, finding an optimal speed for each
user is challenging. We found that user preferences are highly biased by
personality and experience. So we defined the model accordingly.

5.2.1 Goal

Set the initial speed in such a way that human coworkers do not feel
uncomfortable, and if needed in later parts of the operation, optimize it.

5.2.2 Experimental Setup

The same experimental setup as motion forecasting is followed here.

5.2.3 Steps

The steps for this function are listed below:

• Make scoring based on personality and experience analysis, as shown
in Table 1.

• In the case study, we have considered the intimate distance condi-
tion.
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(a)

(b)

(c)

Figure 4: Human preference demographic based on personality and experience.
Here, NE represents No Experience, SE represents Somewhat Experienced and
E represents Experienced subjects. 0.15m-0.25m is very near to robot, 0.25m-
0.35m is moderately near to robot and 0.35m-0.45m is near to robot. The range
is decided based the intimate distance definition of 0.15m-0.45m. Due to ethical
constraint we maintained this distance between human and virtual robot instead
of the physical robot.

Integrating Human Behavioral Model for Safe Intimate-distance Human Robot
Collaboration



IJABC: International Journal of Activity and Behavior Computing 18

• Even though, due to ethical restrictions, we could not let the par-
ticipants go near the real robot, the AR robot was placed in this
condition.

• The operation is conducted at three speed levels.

• Speed is adjusted based on scoring level at Table 1, Table 2 and the
observation at Figure 4.

5.2.4 Results

The results of our study can be seen in Figure 4 From the pre- and post-
experiment questionnaires, we have found that people with Introvert per-
sonalities and No Experience have a higher negative emotional impact if
they work very near the robot at a high speed. If these conditions sepa-
rately happen, they still face more negative emotion compared to others.
On the other hand, Experienced users are not negatively affected that
much, no matter which condition is imposed. From Table 7 we can see
that in this study, four subjects suffered stress. Among them are three
people who are Introverts. S1 has No Experience so the occurrence of
stress was frequent and longer. S2 is the only Extrovert person to feel
stressed, and he also has No Experience. From these results, it can be
deduced that personality and work experience have a high impact on hu-
man state and performance.

5.3 Safety Distance

To ensure user safety, distance is equally important as speed variation.
Also, these two entities are complementary, as shown in Figure 4. As this
is closely related to user preference, finding an optimal safety distance for
each user is challenging. We found that user preferences are highly biased
by personality and experience. So we defined the model accordingly.

5.3.1 Goal

Set the initial safety distance in such a way that human coworkers do not
feel uncomfortable, and if needed in later parts of the operation, optimize
it.

5.3.2 Experimental Setup

The same experimental setup as motion forecasting is followed here.

5.3.3 Steps

The steps for this function are listed below:

• Make scoring based on personality and experience analysis, as shown
in Table 1.

• In the case study, we have considered the intimate distance condi-
tion. So the safety distance range we calculate is 0.15m to 0.45m.
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Table 7: Proof of stress occurrence during is related to personality and experi-
ence.

Subject Heart Rate Curve if the subject felt shock

S1
(Introvert)

S2
(Extrovert)

S9
(Introvert)

S10
(Introvert)
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• Even though, due to ethical restrictions, we could not let the par-
ticipants go near the real robot, the AR robot was placed in this
condition.

• We set different boundaries for them while they were having the
interaction.

• Safety distance is adjusted based on scoring level at Table 1, Table
2 and the observation in Figure 4.

5.3.4 Results

The results of our study can be seen in Figure 4. From the pre- and
post-experiment questionnaires, we have found that people with Introvert
personalities and No Experience have a higher negative emotional impact
if they work very near the robot at a high speed. If these conditions
separately happen, they still face more negative emotion compared to
others. On the other hand, Experienced users are not negatively affected
that much, no matter which condition is imposed. From these results, it
can be deduced that personality and work experience have a high impact
on human state and performance.

5.4 Emergency Shutdown

Behavior pattern-based emergency shutdown is a new approach. It is often
impossible for the machine control operator to identify the initialization
of stress. In a busy production line, this kind of manual monitoring is
hard to execute perfectly, but it is closely related to author safety. So we
have introduced this automated emergency shutdown approach.

5.4.1 Goal

If stress and abnormal activity occur together, immediately shutdown the
robot to ensure user safety.

5.4.2 Experimental Setup

The same experimental setup as motion forecasting is followed here.

5.4.3 Steps

• Monitor stress occurrence from smart watch.

• Monitor abnormal activity occurrence.

• If both occur in the same observation cycle, instead of sending path
information, send an emergency shutdown command in robot con-
trol.

5.4.4 Results

In Table 8, we show the collision occurrence comparison with other sys-
tems. Our system in 100 trials never had any collisions.
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Table 8: Performance comparison for collision occurrence test

Task DRRT ∗

[36]
SONIG
[32]

BP-
HMT [31]

Our proposed
method

Interaction 12 9 7 0

Moving side by side 5 2 0 0

Pick and place 5 2 0 0

Fixing and rearranging 8 4 3 0

Adding and mixing 2 1 0 0

5.5 Discussion

Here we will summarize the whole performance, achievement, and outlook:

Based on performance comparisons with other methods, our ap-
proach outperforms them all in motion forecasting and collision oc-
currence. Here we have compared our method with three other
methods. DRRT ∗ [36] is considered the state-of-the-art approach
to traditional path planning methods. The other two methods are
also well appreciated.

Our forecasting showed less error in MAE. Our approach focuses on
identifying key joints, instead of using data from all body joints like
other methods. This reduces the amount of potentially misleading
information the model receives during abnormal situations. For ex-
ample, during tasks like ”moving side-by-side” and ”pick and place”
performed in a small workspace, the shoulder and hand movements
are very similar. However, the head movement can vary significantly
as the person might need to look in different directions. This vari-
ability in head movement can introduce errors because the head’s
gaze might not always be focused on the target direction. By focus-
ing on key joints like the shoulder and hand, which provide more
consistent information for these tasks, our model is less susceptible
to errors caused by irrelevant joint movements.

The tasks considered in these studies are very simple movement
tasks, whereas we considered a wide variety of tasks that contained
varied movement patterns.

In comparison with our time-delay consideration and intimate dis-
tance conditions, other studies did not consider these issues. These
considerations not only made our forecasting better, but also, in our
100 trials conducted in a simulated environment with various possi-
ble collision conditions, our model never had any collisions.

Another major reason for the absence of collisions is the emergency
shutdown approach and personality- and experience-based safety
conditions. So instead of setting similar conditions for everyone,
we have proposed to modify conditions based on task patterns and
people’s conditions.
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6 Conclusion

In conclusion, this paper addresses the critical challenge of achieving in-
timate human-robot collaboration while ensuring high user safety. Our
method integrates human behavior analysis into robot motion control,
highlighting the importance of considering human factors for improved
interaction. It establishes safety parameters, optimizes system perfor-
mance based on human reactions, and includes behavior pattern-based
emergency shutdown, contributing to HRC technology advancement. The
mixed-reality approach used for validation demonstrates the feasibility of
the proposed framework in a simulated environment, ensuring ethical con-
siderations and safety. Our method outperformed the traditional bench-
marks and other studies with zero collisions and a forecasting error below
10mm in 100 trials. Despite being safer, the approach has limitations
regarding potential slowness for introverted, inexperienced workers.

Overcoming these challenges requires a more detailed behavior model.
Notably, the study did not modify the robot control system beyond in-
tegrating behavior model-based safety functions, leaving room for future
analyses such as detailed personality checks and worker experience assess-
ments. Ethical restrictions and subject disagreement due to safety con-
cerns prevented us from conducting a more extensive study. Hopefully,
the results contribute to dispelling safety concerns and paving the way for
larger studies. Despite limitations, the approach demonstrates achieving
an intimate human-robot collaboration without safety concerns, marking
progress in supportive HRC.
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