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Abstract — The fast-paced growth in the field of robotics 
has driven the creation of autonomous navigation systems that 
are necessary for robots to work autonomously in diverse 
environments. This research targets TurtleBot3, an immensely 
popular robotic platform that is known for its affordability and 
adaptability. The objective of TurtleBot3 is to improve the 
capabilities within the Gazebo simulation environment, an 
open-source robotic simulator that provides a realistic virtual 
environment for testing and developing navigation algorithms 
for robotics. The combination of intricate sensor technologies, 
leading-edge control systems, and innovative artificial 
intelligence strategies is the core of this research, enabling 
autonomous navigation in complicated surroundings. The initial 
focus of the study is the application and utilization of path 
planning algorithms, such as A* (A Star) and Rapidly exploring 
Random Tree (RRT) and using Simultaneous Localization and 
Mapping (SLAM) algorithms. Results from simulations 
demonstrate that the A* algorithm achieved a path accuracy 
rate of over 95% in static environments, while the RRT 
algorithm proved effective in dynamic, multi-dimensional 
spaces. The aim of this analysis is to enhance autonomous 
navigation algorithms using the Gazebo simulation 
environment. Conducting tests in a virtual setting minimizes the 
risks and costs compared to real-time testing. The outcomes of 
this research are anticipated to advance the field of robotics and 
hold significant value for applications in autonomous systems, 
including engineering, urban mobility, and domestic assistance. 
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I. INTRODUCTION 

The last few decades have noticed a large number of 
research in the robotics field [1],[2]. The project, 
“Autonomous Navigation for TurtleBot3 Robot in Gazebo 
Simulation Environment”, targets to take advantage of these 
advancements by creating a navigation system that facilitates 
the robot to move autonomously within dynamic and 
complex environments. The Gazebo simulation environment 
is a unique platform used to develop and test navigation 
algorithms. This virtual environment mirrors the physical 
world physics and material characteristics, along with 
different sensors and controllers. It is an ideal testbed for 
refining the navigation algorithms before deployment in 
physical robots [3], [4], [5]. The foundation of this research 

is incorporating multiple intricate sensor technologies, 
modern control systems, and artificial intelligence procedures 
that allow the TurtleBot3 to work on path planning, live 
obstacle detection, and flexible navigation techniques. Path 
planning algorithms for instance A*(A star) and Rapidly 
Exploring Random Tree (RRT) are important during 
navigation, as the algorithms calculate the most secure and 
efficient path to a designated location [5] , [6], [7].  

The project utilizes SLAM algorithms to create a 
navigation map for the robot to navigate in an unknown 
environment, while locating itself within that map at the same 
time. To navigate in a virtual environment, this ability is 
crucial for TurtleBot3, that provides the fundamental 
mechanisms which is required for robots to choose the most 
efficient path independently and improve the capacity of the 
robot to manage in continuous changing and uncertain 
environments [4]. 

II. LITERATURE REVIEW 

The analysis of independent navigation for TurtleBot3 in 
Gazebo simulation environment surrounds a broad area of 
studies that covers three primary areas of technology: creating 
and modifying path planning formulas, refining localization, 
and mapping techniques, and integrating multi-sensor data for 
improved robotic observation. The study aims to enhance 
TurtleBot3's autonomous navigation by refining path planning 
algorithms (such as A* and RRT) and SLAM techniques 
within the Gazebo simulation environment. This includes 
integrating advanced sensor data from LiDAR, cameras, and 
IMUs to improve obstacle avoidance and mapping accuracy. 

The foundation of the extensive scope of mobile robotics 
in domains, for instance domiciliary help, commercial 
automation, and urban transportation, is independent 
navigation. Improving potentiality of autonomous navigation, 
like those developed for the TurtleBot3, prepares the robots to 
execute complicated work individually and improving robot’s 
efficiency and applicability [5]. Gazebo is as a powerful three-
dimensional dynamic counterfeit that can resemble several 
robotic models performing in various environments [8]. 
Gazebo facilitates the simulation of sensor data and enables a 
user to test robotic models in simulation environment [9]. 
Gazebo provides the platform to test the functionalities of 



robotic models in appropriate scenarios that prevents any 
physical damage to the robot [10]. 

Implementation of advanced algorithms such as path 
planning algorithms (e.g., RRT, A*) and SLAM techniques 
facilitate the robots to figure out and navigate within the space 
precisely. Studies by [11] focuses on the importance of these 
algorithms in improving the accuracy and reliability of 
independent robots in virtual environments which are crucial 
for successful deployment in the real-world.  

This project is important for pointing out the primary 
complications related to physical world deployment. These 
complications include adapting to variable and unknown 
settings, assuring algorithms to operate through the calculated 
limitations of actual robotic platforms, and reliability of 
navigation systems during the failure of sensors. 

Research Challenges:  

 One of the primary challenges is the complicated 
algorithms required for efficient navigation and how 
these algorithms will perform in the physical world. 
SLAM algorithms and path planning are vigorous in a 
controlled and pre-defined simulation environment, 
but practical robotic applications often exceed 
hardware capabilities in their use of computational 
resources [12]. 

 Incorporating input data from multiple sensors (such 
as IMUs, LiDAR, and cameras) required to build 
precise judgements of the setting. The primary 
complication is handling the huge data generated by 
multiple sensors and assuring that the blending process 
is at proper time and precise, poses massive challenges. 
The research states the necessity for advancing data 
fusion strategies to manage complications and provide 
reliable results for navigating robots [11]. 

 Discrepancy between virtual environment and the 
physical world is a major challenge. Gazebo provides 
the best platform to assess but sometimes 
environmental circumstances and physical 
characteristics it mimics can go wrong to replicate 
those experienced in actual life situations. This 
disparity can direct navigation systems that work well 
in virtual environments but wobble with physical 
implementation, where uncertain changes such as light 
conditions and impacts of climate are common.  

 Another challenge is maintaining the durability and 
reliability of independent navigation systems in 
changing and uncertain real-world environments. The 
research emphasizes the significance of creating 
navigation systems that can prepare the system for 
unpredictable environmental changes and can work 
well even when specific sensors fail, or data is not 
available. 

 The scalability of navigation systems from controlled 
environments to more complex real-world applications 
remain a terrific challenge. As the working 
environment becomes more complicated, maintaining 
persistent performance and reliability of the navigation 
algorithms becomes more difficult. 

 
The literature review of this research explains a solid analysis 
of diverse technological improvements, specifically in path 

planning, SLAM algorithms, and fusion of sensors. This 
study also determines continuous challenges related to 
transferring these simulated processes to execution in the 
physical world, considering computational restrictions, and 
assuring durability and reliability through different scenarios. 
Future work can aim to improve efficiency for less resource 
platforms, working on algorithms to better imitate existing 
situations, and adaptability of independent navigation 
systems in uncertain scenarios. 
 

III. METHODOLOGY 

Virtual environments provide a vital platform for 
experimenting with robotics research, especially for 
independent navigation. Gazebo simulation environment 
utilizes the potential of ROS (Robot Operating System) and 
helps in the formation, experimenting, and authentication of 
robotic models before deploying those to the physical world.  

The first step towards the research starts with the 
configuration of the simulation environment and the 
TurtleBot3 model (e.g., Burger, Waffle, and Waffle Pi), 
implementation of multiple sensors and the employing 
navigation, path planning and SLAM techniques. These 
features are managed via ROS, using its framework and 
toolset such as the navigation stack and Rviz for visualizing 
and a few other required development tools.  

A. Environmental Setup and Robot Configuration 

Assembling a simulation environment includes 
downloading and configuring ROS and the Gazebo simulation 
environment. ROS is a base that provides the required toolkits 
and packages for developing robotic software, and Gazebo 
provides a physically and visibly original setting [12], [14], 
[15]. Simulation environment setup and configuration 
involves the following steps: 

 ROS Installation: ROS Noetic is the stable version of 
Ubuntu 20.04. It can be installed from Ubuntu's 
package management tools. For this research, a full 
desktop version has been chosen, which requires 
developing toolsets.  

 Integration of Gazebo: Gazebo comes with ROS 
Noetic. Plugins and tools can be used to connect ROS 
with the Gazebo simulation environment.  

 Setup of Workspace: A specific ROS (Catkin) 
workspace is needed that can manage packages and 
custom developments. 

 Model Selection: The TurtleBot3 has a few variants 
(e.g., Burger, Waffle, and Waffle Pi), each model is 
equipped with various features and abilities. The 
performance and complexity of the tasks also depend 
on the model chosen. This model can be set up by 
configuring it in the launch files. 

 URDF Model Configuration: The physical and optical 
characteristics including measurements, colors and 
hierarchy of mobile joint is determined by Unified 
Robot Description Format (URDF). Sensors such as 
LiDAR, camera, IMUs are also determined by URDF 
combined within the type of robot.   

 Sensors simulation: For Autonomous navigation and 
SLAM, the required data can be obtained from 



simulated sensors. Efficiency of constructed 
algorithms relies upon the precision of data of 
simulated sensors.  

 Plugin Usage: Multiple ROS-Gazebo plugins can 
facilitate lifelike physics simulation and sensor data 
acquisition. Wheel motions, sensor data generation 
and intercommunication are managed by these plugins. 

 Simulation Parameters: The simulation realism is 
balanced with computational demands by tuning 
parameters like the simulation time, physical 
characteristics (e.g., mass, friction), and update rates to 
a fine limit. 

B. Sensor Simulation and Data Integration  

The sensor simulation and integration of their data are 
crucial to obtain reliable and efficient navigation 
capabilities. 

 
LiDAR Simulation: The use of LiDAR sensors meets the need 
for machine vision. This is required as the AGV (automated 
guided vehicle) robot must be able to identify and investigate 
steady and dynamic substances [16], [17]. LiDAR sensor is 
useful for detecting and avoiding obstacles and helps calculate 
the terrain. Gazebo has a built-in plugin that resembles 
precision and ranges of physical LiDAR sensor. The system 
processes data from the simulated LiDAR to generate a spot 
overcast or depth plan that shows the environment [13]. 

Camera Simulation: For visual navigation and identifying 
objects, cameras are used. These sensors are used to grab 
images or video streams that can mirror the optical elements 
of the Gazebo simulation environment. Data from this sensor 
is vital for SLAM and algorithms that rely on indications for 
navigation.  

IMU Simulation: The IMU gives data about acceleration and 
location of the robot, which is used when GPS data is not 
accessible. Gazebo's IMU plugin mimics sensor noise to 
approximate the real inaccuracies of real-world sensors.  

Data Integration: The generated data of sensors is integrated 
into ROS for processing and decision making, which is a 
crucial part of creating effective navigation algorithms. This 
integrated data reduces the unpredictability that could be 
possible due to replying on a single sensor data. Data fetched 
from sensors is constantly returned into simulation to modify 
the robot’s movement according to the predefined 
environment. 

C. Navigation and Path Planning 

Path planning algorithms design the foundation of the 
autonomous navigation system, which allows the robot to 
navigate in dynamic surroundings safely. Path planning 
involves measuring the ideal route from current position to 
targeted location. 

 Global Path Planning: This algorithm designs the path 
before the robot starts to move. Dijkstra’s algorithm 
and A* algorithms are efficient to find the optimal 
path in a predefined environment. 

 Local Path Planning: When Global Path planning is 
determined, local path planning will start handling the 
real-time adjustments, this is required to reduce 
collision of moving obstacles which were not 
considered initially. Dynamic Window Approach 

(DWA) evaluates the robot’s velocity and location 
and adjusts the path accordingly to avoid obstacles in 
a dynamic environment.  

 Simultaneous Localization and Mapping: SLAM 
techniques authorize the robot to build and modify the 
path in autonomous environment while tracing its 
location. Gmapping and Cartographer techniques are 
utilized depending on the requirements. Gmapping is 
used due to its robustness in managing noisy sensor 
data and it is efficient in creating accurate 2D maps. 
Cartographer is used for complicated settings. 
Google’s cartographer provides real-time 3d 
mapping.   

 Integration with ROS: Gmapping and cartographer 
are part of ROS packages, which makes it easier to 
integrate into the current ROS. SLAM techniques 
play a key role in performance improvement. Data 
fetched from Gmapping and cartographer is required 
to be adapted according to characteristics of the 
environment and hardware capabilities of the 
simulation system. 

 
 

Fig. 1. Flow chart of the proposed model  

  

D. Mathematics behind the algorithms 

Some of the approved path planning algorithms in robotics 
are A* (A star) and RRT (Rapidly exploring Random Tree). 
The concepts of math behind each algorithm are explained 
here, demonstrating its implementation and application of 
TurtleBot3.  
 
A* Algorithm: This algorithm identifies the minimal route 
between current location to destined location. This algorithm 
uses path-cost function and heuristic. Heuristic measures the 
path from start node to target node.  



 Cost Function (g(n)): Describe the route cost starting 
with initial node to n node.  

 Heuristic (h(n)): It evaluates minimal cost of 
beginning to target node. 

 F-Score (f(n)): To give preference to a node in the 
queue, this function is used in (1). It is the summation 
of g(n) and h(n): 

𝑓(𝑛)=𝑔(𝑛)+ℎ(𝑛)              (1) 

Algorithm Steps:  
 Initiate the priority line commencing with the opening 

node. 

 Loop till the priority list is vacant: 

 Pick up n node with the smallest f(n) from the open 
list. 

 If node n has arrived at the goal, build the route again. 

 For every neighbour m of n, measure g(m), the 
possible smallest cost to node m. 

 When m is not in list or the possible g(m) is smaller 
than the observed g(m), rectify (m), set the parent of 
m to n, and calculate f(m) again, then add m to the list. 

RRT Algorithm: 
This algorithm works by gradually developing a tree from the 
initial node to the target location via random sampling. This 
algorithm is advantageous in a multidimensional setting. The 
RRT includes the edges and nodes, commencing with the first 
node and then generates random nodes in the given 
surroundings. 
Algorithm Steps:  

 Start the tree with the first node. 
 Loop until the target has arrived or till k iterations: 

• Create a fresh point qrand randomly. 
• Look for the closest node qnear to qrand in the tree. 
• Make a different node qnew by spanning from qnear 
to qrand by specified length. 
• Build qnew to the tree when there is no destruction 
to the route from qnear to qnew. 
• If accessible, attempt to link qnew straight to the 
target. 

Mathematics involved:  
 Euclidean distance is used to measure the q_near 

distance as shown in (2): 

 Distance = ඥሺ𝑥ଶ െ 𝑥ଵሻଶ  ሺ𝑦ଶ െ 𝑦ଵሻଶ              (2) 
 To build q_new steering Function is used as shown 

in (3): 
𝑞𝑛𝑒𝑤=𝑞𝑛𝑒𝑎𝑟+step_size⋅𝑞𝑟𝑎𝑛𝑑−𝑞𝑛𝑒𝑎𝑟/∥𝑞𝑟𝑎𝑛𝑑−
𝑞𝑛𝑒𝑎𝑟∥                                                                (3) 

 The above computations make sure that the created 
route moves in the direction of undiscovered spaces 
and can be easily navigated through Gazebo 
simulated environments.  
 

IV. EXPERIMENTAL RESULTS 

 The findings of the experiments in this research were the 
efficiency and reliability of the system and showed the scope 
of improvement by executing autonomous navigation 
algorithms. Here are some key insights from multiple 
scenarios, focusing on the performance of navigation 
techniques, precision of sensors, and overall stability of the 
system.  

A. Simulation Setup 

Experimentations were executed in a Gazebo simulation 
environment with Burger model of TurtleBot3 robot in house 
environment to determine the performance. This environment 
has multiple stagnant and dynamic objects. The TurtleBot3 
robot was assembled with LiDAR and cameras.  

 
 Step 1: The first step is to open a terminal and enter 

‘roscore’ command. This command will start the main 
control and management process of ROS. This 
includes multiple important features that are necessary 
for ROS nodes to communicate.  

 Step 2: Keep the first terminal open and then open one 
more terminal and enter ‘roslaunch turtlebot3_gazebo 
turtlebot3_house.launch’ command to launch the 
TurtleBot3 robot. Gazebo simulator will be initiated by 
this command and load the inbuilt housing 
environment for TurtleBot3. The TurtleBot3 robot will 
then be placed in the simulation environment presented 
in Fig. 2. 

 
Fig. 2. Gazebo of turtlebot3 in initial phase 

 
Step 3: Open a new terminal and enter the ‘rosrun’ 

command with path to the python file to run the python script. 
This command tells the ROS to execute the Python file. Fig. 
3 and Fig. 4 shows that the robot has started moving towards 
the destination. 

 
Fig. 3. The Turtlebot3 moving further 



  
Fig. 4. The Turtlebot3 navigates to the Target spot 

 

B. Path Planning and Obstacle Avoidance 

Results achieved from the algorithms indicate higher 
reliability. The robot effortlessly drove independently to the 
goal nodes with mean path fluctuation below 5% from the 
optimum route, that demonstrated the efficacy of the A* 
algorithm in steady environments. TurtleBot3 modified the 
route in moving obstacles environment, suggested how well 
DWA algorithm worked.  

C. SLAM Accuracy and Map Quality 

Implementing SLAM techniques resulted in a high 
accuracy in mapping and localization. The TurtleBot3 
effectively maintained precise localization throughout the 
navigation tasks.  

 Map Accuracy: The maps generated by mapping 
algorithms showed an average accuracy rate of 95% in 
a known simulation environment. Slight disparity was 
observed near low-contrast entities, occasionally 
leading to minor curves in the map. 

 Localization Precision: The TurtleBot3 robot kept its 
localization failure under 0.5 meters during testing, 
which is tolerable range for nearly all jobs for indoor 
navigation. For replicating environment like 
TurtleBot3 in Gazebo which covers robotics and 
physics, to grasp how the replication of environment 
connects to real-world operation, the idea of ‘Sim 
Time’ vs ‘Real Time’ is key. 

 The graph in Fig. 5. shows that the x-axis represents 
simulation time in seconds, ranging from 120 to 50 seconds 
and the y-axis ‘variable value’ represents the number of 
iterations, from 100 to 200. The graph shows that the 
algorithm is performing nearly consistently with a steady 
increase in iterations per second of simulation time. The 
slight distortion to the line is due to minor variations in the 
simulation environment. 
 

 
 
 

Fig. 5. SIM Time vs. Real-time of developed Turtlebot3 
 

In simulations involving any robotic system in virtual 
environments, shown in Fig. 5, to observe the performance of 
algorithms, interrelation of Simulation Time (SIM Time) and 
the number of iterations is essential. The graph in Fig. 6 
indicate that simulation is working close to real-time. Both 
the graphs indicate that simulation is stable and relatively 
constant throughout the simulation.  

 
Fig. 6. SIM Time vs Iterations of A* and RRT Turtlebot3 (Gazebo)  

 

V. ANALYSIS AND DISCUSSION 

A. Key Findings  

The integration of advanced path planning and SLAM 
techniques greatly improved TurtleBot3's autonomous 
navigation capabilities. The Gazebo simulation environment 
proved to be an ideal platform for testing and refining these 
navigation algorithms prior to real-world deployment, 
enabling the robot to navigate accurately and reliably in 
dynamic environments. 

 Efficiency of Path Planning Algorithms: The A* and 
DWA algorithms are efficient in predefined 
environments. However, in unknown environments, 
the system struggled sometimes, which suggests a 
need for refinement in algorithms. 



 Obstacle Avoidance and SLAM: These algorithms 
+provide accurate mapping and localization, 
improving the effectiveness of the navigation system. 
Gmapping gave high-fidelity maps, required for 
navigation and path planning.  

 Computational Demands: The performance of the 
system under different computational loads displayed 
that the TurtleBot3 robot is optimized for live 
processing on average hardware, but limited resources 
can affect the performance in complicated 
surroundings. 

B. Discussion 

The result showed that the combination of A* and DWA 
algorithms provided great results for path planning, while 
SLAM algorithms ensured accurate localization and 
mapping. Continued research and improvement are essential 
to conquer current limitations and unlock new possibilities in 
robotics. 

 Adaptability of Algorithms: The moving obstacle 
avoidance analysis underlined the urgent requirements 
of flexible and location-aware navigation algorithms. 
Future work could include employing machine 
learning specifically reinforcement learning and deep 
learning algorithms to predict and adapt to dynamic 
movements. 

 Testing in real-world: To validate the system’s 
performance, algorithms must be demonstrated in real-
world surroundings. Testing in the physical world will 
help in figuring out any disparity between the physical 
world and the virtual world. This will help in providing 
insights for future enhancements.  

 Scalability and Robustness: To find out the system’s 
scalability and durability, experiment the algorithms in 
an unstructured and complicated environment. 
Carrying out trials of the system in different 
complicated situations —like outdoors or areas with 
lots of people—would play a crucial role in evaluating 
whether the system is ready to operate in the physical 
world. 

VI.  CONCLUSION AND FUTURE WORK 

The methods used to simulate TurtleBot 3 in Gazebo showed 
that incorporating sensor data was efficient, and path 
planning and obstacle avoidance techniques were reliable. 
ROS provides adaptable and strong testbed for self-driving 
navigation algorithms to develop and test in a restrained yet 
lifelike environment. The following areas for future work to 
refine self-driving navigation systems: 

 Machine Learning Techniques: Utilizing machine 
learning algorithms (such as deep learning and 
reinforcement learning) can enhance flexibility and 
improve decision-making. The system can be 
improved and become more adaptable to new 
environments by using these algorithms.  

 Energy Efficiency: Optimization of algorithms for 
energy efficiency is important to extend the operating 
time of the robots, specifically when using in real-
world operations where available energy is limited and 
expensive. This involves rectifying path planning and 
SLAM techniques to lessen computational overhead. 

 Real-world Application: Testing in the real-world is 
crucial to know how robots work outside of controlled 
environments. Consider that future work could be 
tested outdoors with a more complex and 
unpredictable environment.  

 Multi-robot System: Delve into how multiple robots 
can work together in Gazebo that might create fresh 
uses and improve the ways of developing things.  
Exploring appropriate SLAM and shared navigation 
techniques would play a significant part in this area. 

 Advanced Sensor Integration: Advanced sensor 
integration techniques will be explored to enhance the 
robot's perception and decision-making capabilities. 
Using new sensor technologies and data fusion 
techniques could help improve this capability. 

REFERENCES 

 
[1] T. A. Salih, M. T. Ghazal, and Z. G. Mohammed, “Development of a 

dynamic intelligent recognition system for a real-time tracking robot,” 
IAES International Journal of Robotics and Automation (IJRA), vol. 
10, no. 3, p. 161, Sep. 2021, doi: 10.11591/ijra.v10i3.pp161-169.  

[2] H. M. Qassim and W. Z. W. Hasan, “A review on upper limb 
rehabilitation robots,” Applied Sciences (Switzerland), vol. 10, no. 19, 
pp. 1–18, Oct. 2020, doi: 10.3390/app10196976. 

[3] A. W. Winkler, C. D. Bellicoso, M. Hutter and J. Buchli, "Gait and 
trajectory optimization for legged systems through phase-based end-
effector parameterization", IEEE Robot. Autom. Lett., vol. 3, no. 3, pp. 
1560-1567, Jul. 2018. 

[4] C. D. Bellicoso, F. Jenelten, C. Gehring and M. Hutter, "Dynamic 
locomotion through online nonlinear motion optimization for 
quadrupedal robots", IEEE Robot. Autom. Lett., vol. 3, no. 3, pp. 2261-
2268, Jul. 2018. 

[5] J. Collins, S. Chand, A. Vanderkop and D. Howard, "A Review of 
Physics Simulators for Robotic Applications," in IEEE Access, vol. 9, 
pp. 51416-51431, 2021. 

[6] J. Qi, H. Yang and H. Sun, "MOD-RRT*: A Sampling-Based Algorithm 
for Robot Path Planning in Dynamic Environment," in IEEE 
Transactions on Industrial Electronics, vol. 68, no. 8, pp. 7244-7251, 
Aug. 2021. 

[7] M. A. R. Pohan, B. R. Trilaksono, S. P. Santosa and A. S. Rohman, "Path 
Planning Using Combined Informed Rapidly- Exploring Random Tree 
Star and Particle Swarm Optimization Algorithms," in IEEE Access, 
vol. 12, pp. 56582-56608, 2024. 

[8] H. Durrant-Whyte and T. Bailey, "Simultaneous localization and 
mapping: part I," in IEEE Robotics & Automation Magazine, vol. 13, 
no. 2, pp. 99-110, June 2006. 

[9] R. Tornese et al., “ROS-based simulation environment for obstacle 
avoidance in autonomous navigation,” in 2022 IEEE Conference on 
Control Technology and Applications, CCTA 2022, IEEE, Aug. 2022, 
pp. 17–22, doi: 10.1109/CCTA49430.2022.9965786.  

[10] A. Dobrokvashina, S. Sulaiman, T. Gamberov, K. H. Hsia, and E. 
Magid, “New Features Implementation for Servosila Engineer Model 
in Gazebo Simulator for ROS Noetic,” Proceedings of International 
Conference on Artificial Life and Robotics, vol. 28, pp. 154–157, Feb. 
2023, doi: 10.5954/icarob.2023.os6-3. 

[11] A. O. Prasad et al., “Design and development of software stack of an 
autonomous vehicle using robot operating system,” Robotics and 
Autonomous Systems, vol. 161, p. 104340, Mar. 2023, doi: 
10.1016/j.robot.2022.104340. 

[12] Karur, K., Sharma, N., Dharmatti, C. and Siegel, J.E., “A survey of path 
planning algorithms for mobile robots”. Vehicles, 3(3), pp.448-468, 
2021. 

[13] E. Marder-Eppstein, E. Berger, T. Foote, B. Gerkey and K. Konolige, 
"The Office Marathon: Robust navigation in an indoor office 
environment," 2010 IEEE International Conference on Robotics and 
Automation, Anchorage, AK, USA, pp. 300-307, 2010.  

[14] Fairchild, C. and Harman, T.L., ROS Robotics By Example: Learning 
to control wheeled, limbed, and flying robots using ROS Kinetic Kame. 
Packt Publishing Ltd., 2017. 



[15] Nguyen, L.A., Harman, T.L. and Fairchild, C., September. Swarmathon: 
a swarm robotics experiment for future space exploration. In 2019 
IEEE International Symposium on Measurement and Control in 
Robotics (ISMCR), pp. B1-3, 2019.  

[16]. V. Arulkumar, M. A. Lakshmi and B. H. Rao, "Super Resolution and 
Demosaicing based self learning Adaptive Dictionary Image Denoising 
framework," 2021 5th International Conference on Intelligent 
Computing and Control Systems (ICICCS), 2021, pp. 1891-1897, doi: 
10.1109/ICICCS51141.2021.9432182. 

[17]. S. Anantha Babu, R. Joshua Samuel Raj, Arul Xavier V.M and N. 
Muthukumaran, "DCT based Enhanced Tchebichef Moment using 
Huffman Encoding Algorithm (ETMH)," 2021 Third International 
Conference on Intelligent Communication Technologies and Virtual 
Mobile Networks (ICICV), Tirunelveli, India, March 2021, pp. 522-
527. 

 


