
Autonomous Navigation For TurtleBot3 Robots in
Gazebo Simulation Environment

Madhav Theeng Tamang
Intelligent Technologies Research Group,

School of Architecture, Computing and
Engineering, UEL

London, UK
u1430774@uel.ac.uk

Darshana Maheriya
Intelligent Technologies Research Group,

School of Architecture, Computing and
Engineering, UEL

London, UK
u2502796@uel.ac.uk

Thamo Sutharssan
Department of Engineering

UEL
London, UK

0000-0003-1836-0517

Mhd Saeed Sharif
Intelligent Technologies Research Group,

School of Architecture, Computing and
Engineering, UEL

London, UK
s.sharif@uel.ac.uk

Abstract — The fast-paced growth in the field of robotics
has driven the creation of autonomous navigation systems that
are necessary for robots to work autonomously in diverse
environments. This research targets TurtleBot3, an immensely
popular robotic platform that is known for its affordability and
adaptability. The objective of TurtleBot3 is to improve the
capabilities within the Gazebo simulation environment, an
open-source robotic simulator that provides a realistic virtual
environment for testing and developing navigation algorithms
for robotics. The combination of intricate sensor technologies,
leading-edge control systems, and innovative artificial
intelligence strategies is the core of this research, enabling
autonomous navigation in complicated surroundings. The initial
focus of the study is the application and utilization of path
planning algorithms, such as A* (A Star) and Rapidly exploring
Random Tree (RRT) and using Simultaneous Localization and
Mapping (SLAM) algorithms. Results from simulations
demonstrate that the A* algorithm achieved a path accuracy
rate of over 95% in static environments, while the RRT
algorithm proved effective in dynamic, multi-dimensional
spaces. The aim of this analysis is to enhance autonomous
navigation algorithms using the Gazebo simulation
environment. Conducting tests in a virtual setting minimizes the
risks and costs compared to real-time testing. The outcomes of
this research are anticipated to advance the field of robotics and
hold significant value for applications in autonomous systems,
including engineering, urban mobility, and domestic assistance.

Keywords — Autonomous navigation, Gazebo simulation,
Obstacle avoidance, Path planning algorithm, Robot Operating
System (ROS), TurtleBot3

I. INTRODUCTION

The last few decades have noticed a large number of
research in the robotics field [1],[2]. The project,
“Autonomous Navigation for TurtleBot3 Robot in Gazebo
Simulation Environment”, targets to take advantage of these
advancements by creating a navigation system that facilitates
the robot to move autonomously within dynamic and
complex environments. The Gazebo simulation environment
is a unique platform used to develop and test navigation
algorithms. This virtual environment mirrors the physical
world physics and material characteristics, along with
different sensors and controllers. It is an ideal testbed for
refining the navigation algorithms before deployment in
physical robots [3], [4], [5]. The foundation of this research

is incorporating multiple intricate sensor technologies,
modern control systems, and artificial intelligence procedures
that allow the TurtleBot3 to work on path planning, live
obstacle detection, and flexible navigation techniques. Path
planning algorithms for instance A*(A star) and Rapidly
Exploring Random Tree (RRT) are important during
navigation, as the algorithms calculate the most secure and
efficient path to a designated location [5] , [6], [7].

The project utilizes SLAM algorithms to create a
navigation map for the robot to navigate in an unknown
environment, while locating itself within that map at the same
time. To navigate in a virtual environment, this ability is
crucial for TurtleBot3, that provides the fundamental
mechanisms which is required for robots to choose the most
efficient path independently and improve the capacity of the
robot to manage in continuous changing and uncertain
environments [4].

II. LITERATURE REVIEW

The analysis of independent navigation for TurtleBot3 in
Gazebo simulation environment surrounds a broad area of
studies that covers three primary areas of technology: creating
and modifying path planning formulas, refining localization,
and mapping techniques, and integrating multi-sensor data for
improved robotic observation. The study aims to enhance
TurtleBot3's autonomous navigation by refining path planning
algorithms (such as A* and RRT) and SLAM techniques
within the Gazebo simulation environment. This includes
integrating advanced sensor data from LiDAR, cameras, and
IMUs to improve obstacle avoidance and mapping accuracy.

The foundation of the extensive scope of mobile robotics
in domains, for instance domiciliary help, commercial
automation, and urban transportation, is independent
navigation. Improving potentiality of autonomous navigation,
like those developed for the TurtleBot3, prepares the robots to
execute complicated work individually and improving robot’s
efficiency and applicability [5]. Gazebo is as a powerful three-
dimensional dynamic counterfeit that can resemble several
robotic models performing in various environments [8].
Gazebo facilitates the simulation of sensor data and enables a
user to test robotic models in simulation environment [9].
Gazebo provides the platform to test the functionalities of

robotic models in appropriate scenarios that prevents any
physical damage to the robot [10].

Implementation of advanced algorithms such as path
planning algorithms (e.g., RRT, A*) and SLAM techniques
facilitate the robots to figure out and navigate within the space
precisely. Studies by [11] focuses on the importance of these
algorithms in improving the accuracy and reliability of
independent robots in virtual environments which are crucial
for successful deployment in the real-world.

This project is important for pointing out the primary
complications related to physical world deployment. These
complications include adapting to variable and unknown
settings, assuring algorithms to operate through the calculated
limitations of actual robotic platforms, and reliability of
navigation systems during the failure of sensors.

Research Challenges:

 One of the primary challenges is the complicated
algorithms required for efficient navigation and how
these algorithms will perform in the physical world.
SLAM algorithms and path planning are vigorous in a
controlled and pre-defined simulation environment,
but practical robotic applications often exceed
hardware capabilities in their use of computational
resources [12].

 Incorporating input data from multiple sensors (such
as IMUs, LiDAR, and cameras) required to build
precise judgements of the setting. The primary
complication is handling the huge data generated by
multiple sensors and assuring that the blending process
is at proper time and precise, poses massive challenges.
The research states the necessity for advancing data
fusion strategies to manage complications and provide
reliable results for navigating robots [11].

 Discrepancy between virtual environment and the
physical world is a major challenge. Gazebo provides
the best platform to assess but sometimes
environmental circumstances and physical
characteristics it mimics can go wrong to replicate
those experienced in actual life situations. This
disparity can direct navigation systems that work well
in virtual environments but wobble with physical
implementation, where uncertain changes such as light
conditions and impacts of climate are common.

 Another challenge is maintaining the durability and
reliability of independent navigation systems in
changing and uncertain real-world environments. The
research emphasizes the significance of creating
navigation systems that can prepare the system for
unpredictable environmental changes and can work
well even when specific sensors fail, or data is not
available.

 The scalability of navigation systems from controlled
environments to more complex real-world applications
remain a terrific challenge. As the working
environment becomes more complicated, maintaining
persistent performance and reliability of the navigation
algorithms becomes more difficult.

The literature review of this research explains a solid analysis
of diverse technological improvements, specifically in path

planning, SLAM algorithms, and fusion of sensors. This
study also determines continuous challenges related to
transferring these simulated processes to execution in the
physical world, considering computational restrictions, and
assuring durability and reliability through different scenarios.
Future work can aim to improve efficiency for less resource
platforms, working on algorithms to better imitate existing
situations, and adaptability of independent navigation
systems in uncertain scenarios.

III. METHODOLOGY

Virtual environments provide a vital platform for
experimenting with robotics research, especially for
independent navigation. Gazebo simulation environment
utilizes the potential of ROS (Robot Operating System) and
helps in the formation, experimenting, and authentication of
robotic models before deploying those to the physical world.

The first step towards the research starts with the
configuration of the simulation environment and the
TurtleBot3 model (e.g., Burger, Waffle, and Waffle Pi),
implementation of multiple sensors and the employing
navigation, path planning and SLAM techniques. These
features are managed via ROS, using its framework and
toolset such as the navigation stack and Rviz for visualizing
and a few other required development tools.

A. Environmental Setup and Robot Configuration

Assembling a simulation environment includes
downloading and configuring ROS and the Gazebo simulation
environment. ROS is a base that provides the required toolkits
and packages for developing robotic software, and Gazebo
provides a physically and visibly original setting [12], [14],
[15]. Simulation environment setup and configuration
involves the following steps:

 ROS Installation: ROS Noetic is the stable version of
Ubuntu 20.04. It can be installed from Ubuntu's
package management tools. For this research, a full
desktop version has been chosen, which requires
developing toolsets.

 Integration of Gazebo: Gazebo comes with ROS
Noetic. Plugins and tools can be used to connect ROS
with the Gazebo simulation environment.

 Setup of Workspace: A specific ROS (Catkin)
workspace is needed that can manage packages and
custom developments.

 Model Selection: The TurtleBot3 has a few variants
(e.g., Burger, Waffle, and Waffle Pi), each model is
equipped with various features and abilities. The
performance and complexity of the tasks also depend
on the model chosen. This model can be set up by
configuring it in the launch files.

 URDF Model Configuration: The physical and optical
characteristics including measurements, colors and
hierarchy of mobile joint is determined by Unified
Robot Description Format (URDF). Sensors such as
LiDAR, camera, IMUs are also determined by URDF
combined within the type of robot.

 Sensors simulation: For Autonomous navigation and
SLAM, the required data can be obtained from

simulated sensors. Efficiency of constructed
algorithms relies upon the precision of data of
simulated sensors.

 Plugin Usage: Multiple ROS-Gazebo plugins can
facilitate lifelike physics simulation and sensor data
acquisition. Wheel motions, sensor data generation
and intercommunication are managed by these plugins.

 Simulation Parameters: The simulation realism is
balanced with computational demands by tuning
parameters like the simulation time, physical
characteristics (e.g., mass, friction), and update rates to
a fine limit.

B. Sensor Simulation and Data Integration

The sensor simulation and integration of their data are
crucial to obtain reliable and efficient navigation
capabilities.

LiDAR Simulation: The use of LiDAR sensors meets the need
for machine vision. This is required as the AGV (automated
guided vehicle) robot must be able to identify and investigate
steady and dynamic substances [16], [17]. LiDAR sensor is
useful for detecting and avoiding obstacles and helps calculate
the terrain. Gazebo has a built-in plugin that resembles
precision and ranges of physical LiDAR sensor. The system
processes data from the simulated LiDAR to generate a spot
overcast or depth plan that shows the environment [13].

Camera Simulation: For visual navigation and identifying
objects, cameras are used. These sensors are used to grab
images or video streams that can mirror the optical elements
of the Gazebo simulation environment. Data from this sensor
is vital for SLAM and algorithms that rely on indications for
navigation.

IMU Simulation: The IMU gives data about acceleration and
location of the robot, which is used when GPS data is not
accessible. Gazebo's IMU plugin mimics sensor noise to
approximate the real inaccuracies of real-world sensors.

Data Integration: The generated data of sensors is integrated
into ROS for processing and decision making, which is a
crucial part of creating effective navigation algorithms. This
integrated data reduces the unpredictability that could be
possible due to replying on a single sensor data. Data fetched
from sensors is constantly returned into simulation to modify
the robot’s movement according to the predefined
environment.

C. Navigation and Path Planning

Path planning algorithms design the foundation of the
autonomous navigation system, which allows the robot to
navigate in dynamic surroundings safely. Path planning
involves measuring the ideal route from current position to
targeted location.

 Global Path Planning: This algorithm designs the path
before the robot starts to move. Dijkstra’s algorithm
and A* algorithms are efficient to find the optimal
path in a predefined environment.

 Local Path Planning: When Global Path planning is
determined, local path planning will start handling the
real-time adjustments, this is required to reduce
collision of moving obstacles which were not
considered initially. Dynamic Window Approach

(DWA) evaluates the robot’s velocity and location
and adjusts the path accordingly to avoid obstacles in
a dynamic environment.

 Simultaneous Localization and Mapping: SLAM
techniques authorize the robot to build and modify the
path in autonomous environment while tracing its
location. Gmapping and Cartographer techniques are
utilized depending on the requirements. Gmapping is
used due to its robustness in managing noisy sensor
data and it is efficient in creating accurate 2D maps.
Cartographer is used for complicated settings.
Google’s cartographer provides real-time 3d
mapping.

 Integration with ROS: Gmapping and cartographer
are part of ROS packages, which makes it easier to
integrate into the current ROS. SLAM techniques
play a key role in performance improvement. Data
fetched from Gmapping and cartographer is required
to be adapted according to characteristics of the
environment and hardware capabilities of the
simulation system.

Fig. 1. Flow chart of the proposed model

D. Mathematics behind the algorithms

Some of the approved path planning algorithms in robotics
are A* (A star) and RRT (Rapidly exploring Random Tree).
The concepts of math behind each algorithm are explained
here, demonstrating its implementation and application of
TurtleBot3.

A* Algorithm: This algorithm identifies the minimal route
between current location to destined location. This algorithm
uses path-cost function and heuristic. Heuristic measures the
path from start node to target node.

 Cost Function (g(n)): Describe the route cost starting
with initial node to n node.

 Heuristic (h(n)): It evaluates minimal cost of
beginning to target node.

 F-Score (f(n)): To give preference to a node in the
queue, this function is used in (1). It is the summation
of g(n) and h(n):

𝑓(𝑛)=𝑔(𝑛)+ℎ(𝑛) (1)

Algorithm Steps:
 Initiate the priority line commencing with the opening

node.

 Loop till the priority list is vacant:

 Pick up n node with the smallest f(n) from the open
list.

 If node n has arrived at the goal, build the route again.

 For every neighbour m of n, measure g(m), the
possible smallest cost to node m.

 When m is not in list or the possible g(m) is smaller
than the observed g(m), rectify (m), set the parent of
m to n, and calculate f(m) again, then add m to the list.

RRT Algorithm:
This algorithm works by gradually developing a tree from the
initial node to the target location via random sampling. This
algorithm is advantageous in a multidimensional setting. The
RRT includes the edges and nodes, commencing with the first
node and then generates random nodes in the given
surroundings.
Algorithm Steps:

 Start the tree with the first node.
 Loop until the target has arrived or till k iterations:

• Create a fresh point qrand randomly.
• Look for the closest node qnear to qrand in the tree.
• Make a different node qnew by spanning from qnear
to qrand by specified length.
• Build qnew to the tree when there is no destruction
to the route from qnear to qnew.
• If accessible, attempt to link qnew straight to the
target.

Mathematics involved:
 Euclidean distance is used to measure the q_near

distance as shown in (2):

 Distance = ඥሺ𝑥ଶ െ 𝑥ଵሻଶ ሺ𝑦ଶ െ 𝑦ଵሻଶ (2)
 To build q_new steering Function is used as shown

in (3):
𝑞𝑛𝑒𝑤=𝑞𝑛𝑒𝑎𝑟+step_size⋅𝑞𝑟𝑎𝑛𝑑−𝑞𝑛𝑒𝑎𝑟/∥𝑞𝑟𝑎𝑛𝑑−
𝑞𝑛𝑒𝑎𝑟∥ (3)

 The above computations make sure that the created
route moves in the direction of undiscovered spaces
and can be easily navigated through Gazebo
simulated environments.

IV. EXPERIMENTAL RESULTS

 The findings of the experiments in this research were the
efficiency and reliability of the system and showed the scope
of improvement by executing autonomous navigation
algorithms. Here are some key insights from multiple
scenarios, focusing on the performance of navigation
techniques, precision of sensors, and overall stability of the
system.

A. Simulation Setup

Experimentations were executed in a Gazebo simulation
environment with Burger model of TurtleBot3 robot in house
environment to determine the performance. This environment
has multiple stagnant and dynamic objects. The TurtleBot3
robot was assembled with LiDAR and cameras.

 Step 1: The first step is to open a terminal and enter

‘roscore’ command. This command will start the main
control and management process of ROS. This
includes multiple important features that are necessary
for ROS nodes to communicate.

 Step 2: Keep the first terminal open and then open one
more terminal and enter ‘roslaunch turtlebot3_gazebo
turtlebot3_house.launch’ command to launch the
TurtleBot3 robot. Gazebo simulator will be initiated by
this command and load the inbuilt housing
environment for TurtleBot3. The TurtleBot3 robot will
then be placed in the simulation environment presented
in Fig. 2.

Fig. 2. Gazebo of turtlebot3 in initial phase

Step 3: Open a new terminal and enter the ‘rosrun’

command with path to the python file to run the python script.
This command tells the ROS to execute the Python file. Fig.
3 and Fig. 4 shows that the robot has started moving towards
the destination.

Fig. 3. The Turtlebot3 moving further

Fig. 4. The Turtlebot3 navigates to the Target spot

B. Path Planning and Obstacle Avoidance

Results achieved from the algorithms indicate higher
reliability. The robot effortlessly drove independently to the
goal nodes with mean path fluctuation below 5% from the
optimum route, that demonstrated the efficacy of the A*
algorithm in steady environments. TurtleBot3 modified the
route in moving obstacles environment, suggested how well
DWA algorithm worked.

C. SLAM Accuracy and Map Quality

Implementing SLAM techniques resulted in a high
accuracy in mapping and localization. The TurtleBot3
effectively maintained precise localization throughout the
navigation tasks.

 Map Accuracy: The maps generated by mapping
algorithms showed an average accuracy rate of 95% in
a known simulation environment. Slight disparity was
observed near low-contrast entities, occasionally
leading to minor curves in the map.

 Localization Precision: The TurtleBot3 robot kept its
localization failure under 0.5 meters during testing,
which is tolerable range for nearly all jobs for indoor
navigation. For replicating environment like
TurtleBot3 in Gazebo which covers robotics and
physics, to grasp how the replication of environment
connects to real-world operation, the idea of ‘Sim
Time’ vs ‘Real Time’ is key.

 The graph in Fig. 5. shows that the x-axis represents
simulation time in seconds, ranging from 120 to 50 seconds
and the y-axis ‘variable value’ represents the number of
iterations, from 100 to 200. The graph shows that the
algorithm is performing nearly consistently with a steady
increase in iterations per second of simulation time. The
slight distortion to the line is due to minor variations in the
simulation environment.

Fig. 5. SIM Time vs. Real-time of developed Turtlebot3

In simulations involving any robotic system in virtual
environments, shown in Fig. 5, to observe the performance of
algorithms, interrelation of Simulation Time (SIM Time) and
the number of iterations is essential. The graph in Fig. 6
indicate that simulation is working close to real-time. Both
the graphs indicate that simulation is stable and relatively
constant throughout the simulation.

Fig. 6. SIM Time vs Iterations of A* and RRT Turtlebot3 (Gazebo)

V. ANALYSIS AND DISCUSSION

A. Key Findings

The integration of advanced path planning and SLAM
techniques greatly improved TurtleBot3's autonomous
navigation capabilities. The Gazebo simulation environment
proved to be an ideal platform for testing and refining these
navigation algorithms prior to real-world deployment,
enabling the robot to navigate accurately and reliably in
dynamic environments.

 Efficiency of Path Planning Algorithms: The A* and
DWA algorithms are efficient in predefined
environments. However, in unknown environments,
the system struggled sometimes, which suggests a
need for refinement in algorithms.

 Obstacle Avoidance and SLAM: These algorithms
+provide accurate mapping and localization,
improving the effectiveness of the navigation system.
Gmapping gave high-fidelity maps, required for
navigation and path planning.

 Computational Demands: The performance of the
system under different computational loads displayed
that the TurtleBot3 robot is optimized for live
processing on average hardware, but limited resources
can affect the performance in complicated
surroundings.

B. Discussion

The result showed that the combination of A* and DWA
algorithms provided great results for path planning, while
SLAM algorithms ensured accurate localization and
mapping. Continued research and improvement are essential
to conquer current limitations and unlock new possibilities in
robotics.

 Adaptability of Algorithms: The moving obstacle
avoidance analysis underlined the urgent requirements
of flexible and location-aware navigation algorithms.
Future work could include employing machine
learning specifically reinforcement learning and deep
learning algorithms to predict and adapt to dynamic
movements.

 Testing in real-world: To validate the system’s
performance, algorithms must be demonstrated in real-
world surroundings. Testing in the physical world will
help in figuring out any disparity between the physical
world and the virtual world. This will help in providing
insights for future enhancements.

 Scalability and Robustness: To find out the system’s
scalability and durability, experiment the algorithms in
an unstructured and complicated environment.
Carrying out trials of the system in different
complicated situations —like outdoors or areas with
lots of people—would play a crucial role in evaluating
whether the system is ready to operate in the physical
world.

VI. CONCLUSION AND FUTURE WORK

The methods used to simulate TurtleBot 3 in Gazebo showed
that incorporating sensor data was efficient, and path
planning and obstacle avoidance techniques were reliable.
ROS provides adaptable and strong testbed for self-driving
navigation algorithms to develop and test in a restrained yet
lifelike environment. The following areas for future work to
refine self-driving navigation systems:

 Machine Learning Techniques: Utilizing machine
learning algorithms (such as deep learning and
reinforcement learning) can enhance flexibility and
improve decision-making. The system can be
improved and become more adaptable to new
environments by using these algorithms.

 Energy Efficiency: Optimization of algorithms for
energy efficiency is important to extend the operating
time of the robots, specifically when using in real-
world operations where available energy is limited and
expensive. This involves rectifying path planning and
SLAM techniques to lessen computational overhead.

 Real-world Application: Testing in the real-world is
crucial to know how robots work outside of controlled
environments. Consider that future work could be
tested outdoors with a more complex and
unpredictable environment.

 Multi-robot System: Delve into how multiple robots
can work together in Gazebo that might create fresh
uses and improve the ways of developing things.
Exploring appropriate SLAM and shared navigation
techniques would play a significant part in this area.

 Advanced Sensor Integration: Advanced sensor
integration techniques will be explored to enhance the
robot's perception and decision-making capabilities.
Using new sensor technologies and data fusion
techniques could help improve this capability.

REFERENCES

[1] T. A. Salih, M. T. Ghazal, and Z. G. Mohammed, “Development of a

dynamic intelligent recognition system for a real-time tracking robot,”
IAES International Journal of Robotics and Automation (IJRA), vol.
10, no. 3, p. 161, Sep. 2021, doi: 10.11591/ijra.v10i3.pp161-169.

[2] H. M. Qassim and W. Z. W. Hasan, “A review on upper limb
rehabilitation robots,” Applied Sciences (Switzerland), vol. 10, no. 19,
pp. 1–18, Oct. 2020, doi: 10.3390/app10196976.

[3] A. W. Winkler, C. D. Bellicoso, M. Hutter and J. Buchli, "Gait and
trajectory optimization for legged systems through phase-based end-
effector parameterization", IEEE Robot. Autom. Lett., vol. 3, no. 3, pp.
1560-1567, Jul. 2018.

[4] C. D. Bellicoso, F. Jenelten, C. Gehring and M. Hutter, "Dynamic
locomotion through online nonlinear motion optimization for
quadrupedal robots", IEEE Robot. Autom. Lett., vol. 3, no. 3, pp. 2261-
2268, Jul. 2018.

[5] J. Collins, S. Chand, A. Vanderkop and D. Howard, "A Review of
Physics Simulators for Robotic Applications," in IEEE Access, vol. 9,
pp. 51416-51431, 2021.

[6] J. Qi, H. Yang and H. Sun, "MOD-RRT*: A Sampling-Based Algorithm
for Robot Path Planning in Dynamic Environment," in IEEE
Transactions on Industrial Electronics, vol. 68, no. 8, pp. 7244-7251,
Aug. 2021.

[7] M. A. R. Pohan, B. R. Trilaksono, S. P. Santosa and A. S. Rohman, "Path
Planning Using Combined Informed Rapidly- Exploring Random Tree
Star and Particle Swarm Optimization Algorithms," in IEEE Access,
vol. 12, pp. 56582-56608, 2024.

[8] H. Durrant-Whyte and T. Bailey, "Simultaneous localization and
mapping: part I," in IEEE Robotics & Automation Magazine, vol. 13,
no. 2, pp. 99-110, June 2006.

[9] R. Tornese et al., “ROS-based simulation environment for obstacle
avoidance in autonomous navigation,” in 2022 IEEE Conference on
Control Technology and Applications, CCTA 2022, IEEE, Aug. 2022,
pp. 17–22, doi: 10.1109/CCTA49430.2022.9965786.

[10] A. Dobrokvashina, S. Sulaiman, T. Gamberov, K. H. Hsia, and E.
Magid, “New Features Implementation for Servosila Engineer Model
in Gazebo Simulator for ROS Noetic,” Proceedings of International
Conference on Artificial Life and Robotics, vol. 28, pp. 154–157, Feb.
2023, doi: 10.5954/icarob.2023.os6-3.

[11] A. O. Prasad et al., “Design and development of software stack of an
autonomous vehicle using robot operating system,” Robotics and
Autonomous Systems, vol. 161, p. 104340, Mar. 2023, doi:
10.1016/j.robot.2022.104340.

[12] Karur, K., Sharma, N., Dharmatti, C. and Siegel, J.E., “A survey of path
planning algorithms for mobile robots”. Vehicles, 3(3), pp.448-468,
2021.

[13] E. Marder-Eppstein, E. Berger, T. Foote, B. Gerkey and K. Konolige,
"The Office Marathon: Robust navigation in an indoor office
environment," 2010 IEEE International Conference on Robotics and
Automation, Anchorage, AK, USA, pp. 300-307, 2010.

[14] Fairchild, C. and Harman, T.L., ROS Robotics By Example: Learning
to control wheeled, limbed, and flying robots using ROS Kinetic Kame.
Packt Publishing Ltd., 2017.

[15] Nguyen, L.A., Harman, T.L. and Fairchild, C., September. Swarmathon:
a swarm robotics experiment for future space exploration. In 2019
IEEE International Symposium on Measurement and Control in
Robotics (ISMCR), pp. B1-3, 2019.

[16]. V. Arulkumar, M. A. Lakshmi and B. H. Rao, "Super Resolution and
Demosaicing based self learning Adaptive Dictionary Image Denoising
framework," 2021 5th International Conference on Intelligent
Computing and Control Systems (ICICCS), 2021, pp. 1891-1897, doi:
10.1109/ICICCS51141.2021.9432182.

[17]. S. Anantha Babu, R. Joshua Samuel Raj, Arul Xavier V.M and N.
Muthukumaran, "DCT based Enhanced Tchebichef Moment using
Huffman Encoding Algorithm (ETMH)," 2021 Third International
Conference on Intelligent Communication Technologies and Virtual
Mobile Networks (ICICV), Tirunelveli, India, March 2021, pp. 522-
527.

