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Supplementary Material 1: Guidance for the Development Stage of a 
Statistically Representative Sample Size 

Table S.1.1: Step-by-Step Development of the Study Sample. 
Introduction 
This appendix details the problems with invalid data and how invalid data can be assessed based upon 
research. This appendix provides a summary of the data preparation stages, as well as explaining the 
concept of developing a statistically representative sample size. 
Stage 1: Checking for Invalid Data 
Checking a dataset for invalid cases or values is a critical part of data preparation. Invalid datapoints are 
observations that reflect inaccurate, inattentive or careless response values. Cases that exhibit these types 
of responses can seriously bias a study. The appropriate procedure for handling invalid data is typically 
removal of the data in the invalid case, which often results in a reduction of sample size. This appendix is 
a tool to help future scholars write an appropriate discussion about case removal in their own 
methodological framework.  
Reasons for Removal of Data 

Cases and/or observations are flagged as invalid if they meet any of several criteria: 
Duplicate cases: Duplicate cases can occur when respondents take a survey more than once. 

Avoiding this requires the use of unique identifiers (e.g., participant ID, IP address, or email address) in 
order to isolate whether respondents may have been duplicated in the data. Duplicated cases bias results 
and should be removed (Johnson, 2005). In the present study, there was no unique identifier was used. 

Participant did not consent: Respondents who did not consent are excluded from the study for 
ethical reasons. In the present study, no data was excluded on this basis. 

Met exclusion criteria: Cases that do not meet the inclusion criteria, outlined in the sampling 
strategy, need to be excluded in order to meet the objectives of the study. There were no data was removed 
based on this criterion. 

Dropped out without responding: Cases that may have begun but dropped off with no response on 
some/all of the items of interest. These cases should not be counted as part of the final sample and should 
be excluded from the rest of the analysis to avoid any research bias in the interpretation of the results. In 
the present study, cases with only two responses entered were removed during the dataset preparation 
stage. 

Impossible values: Impossible values refer to values in a variable that lie outside the theoretical range 
for that particular variable, for example: a case with a negative value for body mass index (BMI) would 
be impossible. Unless the convention recommends that the researcher go back to the original source (e.g., 
the questionnaire survey) and confirm the correct value, it is recommended that these values be set as 
missing values. In the present study, an impossible In_WET temperature of 48.50 was corrected to 25.60.  
Summary of the Identification of Invalid Data  
Table 1 below shows each of the reasons for removal due to duplicates, non-consent, cases that did not 
meet the inclusion criteria, and cases that dropped off at onset of the questionnaire survey. These 
categories are considered critical removal reasons. The column titled ‘Met Removal Criteria’ presents the 
frequencies and percentages of each individual case removal reason found in the sample population. The 
frequencies do not reflect the total number of invalid cases that were removed because some cases had 
more than one removal reason (e.g., an observation/case may not have met the inclusion criteria and was 
a duplicate). In the present study, there were zero duplicate cases and there were zero impossible values.  

Table 1: Invalid Data Summary for Critical Removal and Removal with Two or More Removal Reasons 
Valid categorisation n % 
Critical invalid cases 0 0.0 
Potential invalid cases with two or more removal reasons 0 0.0 
Valid cases 100 100.0 
Total 100 100.0  

Note: This Table presents the data included into the dataset after the completion of necessary data-mining process.  
 



Supplementary Material  

 2 

Supplementary Material 1: Guidance for the Development Stages of the 
Concept of Statistically Representative Sample Size 

Table S.1.2: Step-by-Step Development of the Study Sample. (Continued) 
Introduction 
This section details the problem of missing data and how it is assessed. In this study, the researcher also 
prepared a summary of the missing data to avoid any research bias while interpretating the statistical 
analysis, and here presents a list of options for this process to guide future readers of the study.  
Stage 2: Missing Data Report  
Missing data can have a profound effect on a study’s validity depending on how severe the missing data 
is within a dataset (Little & Rubin, 2002). Therefore, missing data should not be ignored and best practices 
should be followed to handle it appropriately. Fortunately, within the last few decades, there have been 
advances in statistical methodology to properly identify and correct missing data issues. The impact of 
missing data on an analysis depends on three factors: sample size, the proportion of missing values in the 
data and the pattern of missing values in the data.  
Sample size 
Sample size matters in missing data for two reasons: 1) small to moderate samples with missing data are 
prone to a higher likelihood of biased estimates and larger standard errors, and 2) as sample size increases 
the standard errors for the estimates decrease, leading to more efficient estimates regardless of the 
presence of missing data (Cheema, 2014; Dong & Peng, 2013; Little & Rubin, 2002). In other words, the 
larger the sample size, the less of an effect missing data will have on a study. 
Proportion of Missing Data 
The percentage of missing data present in the data matrix has implications for researchers in terms of how 
the missing data must be treated to resolve potential biased estimates in the analysis. Complete-case 
analysis is only reliable when the percentage of incomplete values in the data matrix is less than 5% (Little 
& Rubin, 2002; Schafer, 1999). Beyond the 5% threshold, the data should be treated in some manner (e.g., 
multiple imputation or maximum-likelihood replacement).  
Pattern of Missing Data 
Little and Rubin (2002) suggest that the pattern of missing data is a more important factor than the actual 
amount of missing data. Missing values that are randomly scattered throughout the data matrix (i.e., data 
is missing completely at random; MCAR) is a less serious problem than missing values that are not 
random. If the missing values on a variable are not random but are associated with other variables in the 
data, this is referred to as missing at random (MAR) and can be alleviated with imputation methods. If 
the missing values on a variable are associated with the variable itself (i.e., missing not at random; 
MNAR), this has serious implications for inferences, regardless of imputation procedures (Dong & Peng, 
2013). Recently, Schouten et al. (2009) proposed two definitions of representativeness with respect to 
survey response: strong (given in Definition 1.1) and weak (given in Definition 1.2).  

Definition 1.1 (strong). A response subset is representative with respect to the sample if response 
propensities  are the same for all units in the population: 

                                                                                  (1) 
The response of a unit is independent of the response of all other units, where denotes the response of unit 
i and is an indicator showing whether a unit took part in the survey. Schouten et al. (2009) notes that 
strong representativeness corresponds to the Missing Completely at Random (MCAR) pattern for every 
target variable y. This means that non-response does not cause estimators to be biased. Although this 
definition is appealing, its validity can never be tested in practice. To solve this problem, a weaker 
definition of representativeness was introduced by Schouten et al. (2009). 

                                                                                          (2) 
Definition 1.2 (weak). A response subset is representative of categorical variable x with H categories 

if the average response propensity over the categories is constant, where  is the population size of category 
h, is the response propensity of unit i in category h, and summation is over all units in this category. 
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Supplementary Material 1: Guidance for the Development Stages of the 
Concept of Statistically Representative Sample Size 

Table S.1.3: Step-by-Step Development of the Study Sample. (Continued) 
Summary of the Proportion of Missing Data 
An extensive analysis of missing data was conducted for the present study. The results and 
recommendations are presented below. 
The three pie charts below summarise the frequency and percentage of missing data in the dataset by 
variable, case/observation and individual values. The third pie chart represents the full data matrix and 
was used to evaluate the 5% threshold of the proportion of missing values in the data matrix that was 
discussed above. 

 
Figure 1: Overall summary of missing data values. 
Note: There is a distinction being drawn between missing data removed for critical reasons and data was not removed. 

This graph presents the detection of missing data prior to the data mining process of the dataset before conducting the 
statistical analysis. 
Summary of the Pattern of Missing Data 
It was found that the data was missing completely at random (MCAR). After preparing the data for 
analysis, it was observed that out of 100 recorded cases, 98 cases contained missing data (98.0%) and out 
of 53 variables, 2 variables contained missing data (2.8%), which amounted to a total of 0.04% missing 
information in the dataset. To assess whether the pattern of missing values was MCAR, Little’s MCAR 
test (Little, 1988) was conducted. The null hypothesis of Little’s MCAR test is that the pattern of the data 
is MCAR and follows a chi-square distribution. Using an expectation-maximisation algorithm, the MCAR 
test estimates the univariate means and correlations for each of the variables. The results revealed that the 
pattern of missing values in the data was MCAR: χ² (104) = 121,645, p = 0,114. Even though the 
proportion of the total missing data is less than 5% and the data is MCAR, the final sample size may still 
be affected by listwise or pairwise deletion when the analysis is run. Listwise deletion removes a case if 
a case has any missing value for any of the variables used in an analysis. This is also known as complete-
case analysis. Pairwise deletion better maximises all the data available in the data analysis and is preferred 
over listwise deletion for increasing the statistical power of the study (Newman, 2014). 

Table 2: Comparison of Minimum Pairwise and Listwise N for the Final 53 Variables of Interest 
Deletion Method Minimum N 
Listwise 98 
Pairwise 98 
Note: Pairwise and listwise Ns are the same because the same two participants had the same missing values. The 

final N may be higher upon analysis.  
Note: This Table presents the data at the time of detecting the missingness data in the data-mining process.  

Recommendations 
The missing values of data allow flexibility when addressing missing data because the proportion of 
missing data in the sample is less than 5% and the pattern of missing data is MCAR. Based upon these 
two findings, the data should be fine using either pairwise or listwise deletion methods. Listwise and 
pairwise deletion are unbiased techniques when data is MCAR; however, pairwise deletion increases 
power (Newman, 2014). Given the sufficient sample size for the present study, the proportion of missing 
data and the pattern of missing data, listwise or pairwise deletion is recommended.  
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Supplementary Material 1: Guidance for the Development Stages of the 
Concept of Statistically Representative Sample Size 

Table S.1.4: Step-by-Step Development of Study Sample. (Continued) 
Stage 3: Basic Assumption Testing Report 
Introduction 
This section details the importance of basic assumption testing in inferential analyses, as well as how 
basic assumptions were assessed, the summary of the data preparation process, and options for coding 
data prior to conducting analysis.  
Basic Assumptions and Inferential Analyses 
Before any inferential analyses are conducted, basic assumptions must be met to avoid bias in a study’s 
findings. The validity of conclusions drawn from a statistical analysis depend on the validity of any 
assumptions made. Where data is lacking, assumption testing may have to be restricted to simply making 
a judgment about whether an assumption is reasonable. In addition, scholars may have to judge what 
effect the violation of an assumption might have on the findings. The effect of violating any of the 
assumptions is a change in the probability of making a Type I or a Type II error, and the researchers won’t 
usually know whether the change has made it more or less likely to commit an inferential error. Basic 
assumptions are also accompanied by analysis-specific assumptions. Analysis-specific assumptions are 
tested during the analysis phase of the project.  
How are Basic Assumptions Tested? 
In the present study, the researcher used available descriptive statistics in order to fully understand the 
data. When it comes to making inferences, both parametric and nonparametric analysis can be applied. 
Nonparametric analyses are considered when there is reason to worry about parametric assumptions, or 
when the measurements being considered demand them.  
Below are the assumptions tested and the recommended guidelines for how to handle assumption 
violations. Keep in mind that for some assumptions there are no hard and fast rules on cut-offs. It is up to 
the researcher to account for them and report any biases that may result from not addressing assumption 
violations.  
Sample Sizes of Comparison Groups 
A general rule for sample sizes is that group sizes are approximately equal if n of the largest group is no 
more than about twice n of the smallest group. Another general rule for sample sizes is at least 10% of the 
sample should be in each group. Categorical variables with very uneven splits between categories present 
problems for several multivariate analyses (Tabachnick & Fidell, 2007). The following variables were 
recoded to reflect the conceptualisation of statistically representative findings in accordance with the 
research hypotheses.  

 
Table 3: Coded Variables During the Data Preparation Stage.  

Age band Cooling energy consumption in August 2015 Floor level 
Cooling consumption on weekdays Cooling energy consumption in summer 2015 Health condition 
Clothing insulation levels of 
participants 

Heating energy consumption in winter 2015 Occupation 

Type of cooling control in home Cooling energy consumption in August 2016 Heating consumption on 
the weekend 

Ethnicity Cooling energy consumption in summer 2016 Household density 
Thermal preference Heating energy consumption in winter 2016 Income 
Interviewed room condition Metabolic rates of participants Length of residency 
Orientation Reasons for thermal discomfort Space conditioning 
Overall thermal satisfaction in 
summer 

Thermal sensation in bedrooms 1, 2, 3 and living 
room 

Type of cooling system 

Window closing reasons Window opening patterns in winter Type of heating system 
Note: Additionally, all categorical variables were recoded in ordinal sequence where possible (e.g., metabolic rate) 
Variables related to occupants’ thermal preferences were recoded from very cold to very hot 
All variables were recoded from smallest value to largest value 
All dichotomous variables were recoded to 1 = yes, 0 = no  
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Supplementary Material 1: Guidance for the Development Stages of the 
Concept of Statistically Representative Sample Size 

Table S.1.5: Step-by-Step Development of Study Sample. (Continued) 
Stage 3: Basic Assumption Testing Report (Continued) 
Normality 
Virtually all parametric statistics have an assumption that the data comes from a population that follows a 
known distribution. This assumption of normality is often erroneous applied, however, because many 
populations are not normally distributed. Therefore, researchers need to understand what their samples consist 
of. It is standard practice to assume that the sample mean from a random sample is normal because of the 
central-limit theorem. However, almost all variables have a slight departure from normality. If researchers have 
a large enough sample, then any statistical test will reject the null hypothesis. In other words, the data will 
never be normally distributed if the sample size is large enough.  

To assess normality, skewness and kurtosis statistics are assessed. Skewness refers to the symmetry of the 
distribution and kurtosis refers to the peakedness. Variables that have distributions that are very asymmetrical, 
flat, or peaked could bias any test that assumes a normal (i.e., bell-shaped) distribution. Generally, skewness 
and kurtosis values (converted as z-scores) that fall outside ±4 should be further inspected for potential outlier 
removal, nonparametric testing, or transformation. However, researchers may have flexibility in larger samples 
(Field, 2013). Some normality tests are done for sample sizes smaller than 100 (i.e., Shapiro–Wilks and 
Kolmogrov–Smirnov tests). If these tests are significant beyond p < 0.001, these variables should be further 
inspected (Gamst, Meyers & Guarino, 2008). Graphing methods are also employed for assessing normality. 
These graphs include histograms, normal quantile–quantile (Q-Q) plots and box plots.  

Histograms should look fairly bell-shaped. Q-Q plots should follow a straight line when plotting the expected 
values against the observed values. Box plots show the overall interquartile range and whether extreme values 
exist in the variable (see section on outliers below). If the data contains outliers, graphic displays both with and 
without the outliers should be examined to see how the graphs changed. If a continuous variable has serious 
deviations from normality, it must be addressed through transformation (log, inverse, Box-Cox, etc.), recoding 
into an ordinal variable, or assessment for whether nonparametric analysis needs to be conducted. Regardless, 
researchers should run analysis both with and without outliers to see whether the pattern of results changes.  
Outliers 
Univariate and multivariate outliers are also known as extreme values and can significantly bias any parametric 
test. We have checked our variables for univariate outliers. SPSS identifies these values as being three times 
the interquartile range beyond the 25th and 75th percentile values. In the present study, multivariate outliers 
were tested before the primary analyses were conducted where appropriate.  
Summary of Basic Assumptions - Normality 
All continuous variables were constructed horizontally in the dataset with the following information: statistics 
summary table, histogram, normal Q-Q plot, box plot, and relevant notes about outliers (if applicable). The 
statistics summary, histogram, Q-Q plot and boxplots were reviewed together to determine if variables were 
significantly skewed, flat or peaked. A variable that violates normality will present as being non-normal across 
most, if not all, of the graphs and summary information.  

In Appendix F, the representative findings titled “Test of Normality” can be found: this displays the results 
from the Kolmogrov–Smirnov and Shapiro–Wilk tests. If the sample size is smaller than 100, we highlight the 
variables that violated one or both of these tests. If the sample size is larger than 100, this tab can be reviewed, 
but reviewing these tests is not necessary. Note that if data contains variables with outliers then the “outliers 
removed” variables were tested as well. Skewness, time-of-day/kurtosis issues, indoor DEW, and data mining 
methods were used to resolve the issues detected in these variables before undertaking the relevant statistical 
analyses.  

There are three remedies for violations of normality: mathematical transformation, categorisation and non- 
parametric testing. Because the eventual analysis will be a fairly simple bivariate test, in the present study we 
are recommending non-parametric testing as an alternative.  
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Supplementary Material 2: Descriptive Analysis 
 

Information on the Convention Applied to Designing the Concept of the Thermal Comfort Assessment 

In this study, a dataset related to occupants’ thermal sensation votes (TSVs) was designed in accordance with the thermal comfort assessment 
convention recommended by Wang et al. (2018). As presented in Chapter 3, Subsection 3.3.4, in accordance with Wang et al. (2018), the thermal 
sensation scale was set out in two conceptual assessment criteria in order to undertake the statistical analysis accurately. 

First, Wang et al. (2018) recommend a 7-point discrete thermal sensation scale that can be applied to assess occupants’ TSVs (see Chapter 3, 
Subsection 3.3.4, Figure 3.20(a)). In this case, the TSV is set as an ordinal variable, thus enabling researchers to undertake Cramér’s V test for the 
statistical analysis and apply the statistical findings whenever it is appropriate at the time of developing an evidence-based energy policy design. 
In the present study, the dataset was coded as follows: 0 = -3, 1 = -2, 2 = -1, 3 = 0, 4 = +1, 5 =+2, 6 = +3. Notably, the [-3, +3] scale band represents 
the outcome of occupants’ thermal sensation as an ordinal measure used to accurately conduct the Cramér’s V test. This type of coding was applied 
to determine households’ TSVs gathered through a questionnaire survey. In the questionnaire survey, questions related to households’ thermal 
sensation were ranked on 7-point Likert scale that could be used as an ordinal measure. In this dataset, to provide consistency of the interpretation 
of households’ TSVs [0 to 6], a coding range representation of thermal sensation scale band at [-3, +3] was used, which was developed by Fanger 
in the 1970s and was commonly used by thermal comfort scholars between 1990 and 2000. 

Second, Wang et al. (2018) recommend a 7-point continuous thermal sensation scale that can be applied to assess occupants’ TSVs (see 
Chapter 3, Subsection 3.3.4, Figure 3.20(e)). With the TSV set as a continuous variable, researchers are able to undertake Pearson’s correlation 
analysis. This method of design is commonly applied by thermal comfort researchers to identify “neutral” adaptive thermal comfort thresholds. 
Using occupants’ TSVs as continuous variables is the most well-known method for reporting field survey findings concurrently with in-situ 
measurements or on-site environmental monitoring findings. This is an essential method of design that was developed by a team of experts at the 
University of California at Berkeley to contribute to the ASHRAE Global Thermal Comfort Database II. Further to this on-going method of 
analysis in thermal comfort studies, in the present study, the dataset was coded as follows: -3 = Cold, -2 = Cool, -1 = Slightly cool, 0 = Comfortable, 
+1 = Slightly warm, +2 = Warm, +3 = Hot. Notably, the [-3, +3] scale band enables thermal comfort researchers to identify “neutral” adaptive 
thermal comfort thresholds for benchmarking. In this dataset, to provide consistency of the interpretation of households’ TSVs, the [-3, +3] coding 
range represents the [Cold to Hot] thermal sensation scale, which was recommended by Fanger in the 1970s and further developed by de Dear in 
1998 and 2001. 
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Supplementary Material 2: Descriptive Analysis 
 

Table S.2.1: Descriptive analysis of the variables related to identification of ‘neutral’ adaptive thermal comfort thresholds for benchmarking. 

Variable Name Mean Median Mode 
Std. 

Deviation Minimum Maximum 
Percentiles 

25 50 75 
Overall thermal satisfaction in summer 
[0 to 6] - Discrete  

1.64 2.00 3 1.453 -2 3 1.00 2.00 3.00 

Overall thermal satisfaction in summer 
[-3, +3] - Continuous  

1.68 2.00 3.00 1.36241 -1.00 3.00 1.00 2.00 3.00 

Thermal sensation in bedroom 1 [0 to 6] 
- Discrete 

0.52 1.00 1 1.396 -3 3 0.00 1.00 2.00 

Thermal sensation in bedroom 2 [0 to 6] 
– Discrete 

0.46 1.00 1 1.290 -3 3 0.00 1.00 1.00 

Thermal sensation in bedroom 3 [0 to 6] 
– Discrete 

0.55 1.00 1 1.234 -2 3 0.00 1.00 1.00 

Thermal sensation in kitchen [0 to 6] - 
Discrete 

-0.35 -1.00 -2a 1.533 -2 3 -2.00 -1.00 1.00 

Thermal sensation in living room [0 to 
6] - Discrete 

0.20 0.00 -1 1.595 -2 3 -1.00 0.00 1.75 

Thermal sensation in bedroom 1 [-3, +3] 
- Continuous 

0.51 1.00 1.00 1.30651 -2.00 2.00 0.00 1.00 2.00 

Thermal sensation in bedroom 2 [-3, +3] 
- Continuous 

0.45 1.00 1.00 1.23399 -2.00 2.00 0.00 1.00 1.00 

Thermal sensation in bedroom 3 [-3, +3] 
- Continuous  

0.53 1.00 1.00 1.20147 -2.00 2.00 0.00 1.00 1.00 

Thermal sensation in kitchen [-3, +3] - 
Continuous 

-0.42 -1.00 -2.00a 1.39393 -2.00 2.00 -2.00 -1.00 1.00 

Thermal preference  1.50 1.00 1.00 1.07778 0.00 3.00 1.00 1.00 3.00 
a. Multiple mode exists. The smallest value is shown.  

All these variables had scales with smaller scores indicating colder whereas larger scores indicating warmer  
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Supplementary Material 2: Descriptive Analysis 
Table S.2.2: Descriptive analysis of the variables related to households’ socio-demographic characteristics. 

Variable Name Mean Median Mode 
Std. 

Deviation Minimum Maximum 
Percentiles 

25th  50th  75th  
Age 51.37 53.50 60.00 13.92524 23.00 84.00 42.00 53.50 60.00 
Energy efficiency awareness  1.81 2.00 2 0.961 0 3 1.00 2.00 2.00 
Health condition  2.68 3.00 3.00 0.93073 1.00 4.00 2.00 3.00 3.00 
Metabolic rates of participants (met)  4.10 4.00 2.00 1.87757 1.00 7.00 2.00 4.00 6.00 
Household density 1.88 2.00 3.00 0.99778 0.00 4.00 1.00 2.00 3.00 
a. Multiple mode exists. The smallest value is shown. 
 

Table S.2.3: Descriptive analysis of the variables related to households’ habitual adaptive behaviour on home energy use. 

Variable Name Mean Median Mode 
Std. 

Deviation Minimum Maximum 
Percentiles 

25th  50th  75th  
Cooling consumption patterns on weekdays  1.20 1.00 2.00 0.76541 0.00 2.00 1.00 1.00 2.00 
Cooling consumption patterns on the 
weekend 

1.58 2.00 2.00 1.04621 0.00 3.00 1.00 2.00 2.00 

Cooling energy consumption in summer of 
August 2015  

1.25 1.00 1.00 1.02863 0.00 3.00 0.00 1.00 2.00 

Cooling energy consumption in summer of 
2015  

2.33 2.00 3.00 1.28751 0.00 5.00 2.00 2.00 3.00 

Cooling energy consumption in summer of 
August 2016  

1.33 1.00 1.00 1.02548 0.00 3.00 1.00 1.00 2.00 

Cooling energy consumption in summer of 
2016  

1.79 2.00 1.00 1.28153 0.00 4.00 1.00 2.00 3.00 

Heating consumption patterns on weekdays  0.80 1.00 1.00 0.69631 0.00 2.00 0.00 1.00 1.00 
Heating consumption patterns on the 
weekend  

0.96 1.00 1.00 0.77746 0.00 2.00 0.00 1.00 2.00 

Heating energy consumption in winter of 
2015  

3.00 4.00 4.00 1.47710 1.00 4.00 1.00 4.00 4.00 

Heating energy consumption in winter of 
2016  

3.00 4.00 4.00 1.47710 1.00 4.00 1.00 4.00 4.00 

a. Multiple mode exists. The smallest value is shown. 
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Supplementary Material 2: Descriptive Analysis 

 
Table S.2.4: Descriptive analysis of the variables related to both on-site monitored and in-situ recorded environmental parameters. 

Variable Name Mean Median Mode 
Std. 

Deviation Minimum Maximum 
Percentiles 

25th  50th  75th  
Indoor DEW (°C) 21.48 21.90 20.20a 3.36021 11.40 32.40 20.20 21.90 23.40 
Indoor relative humidity (%) 57.83 59.95 56.10 8.75611 31.10 75.00 52.15 59.95 63.27 
Operative air temperature (°C) 30.59 31.10 31.50 1.76860 25.40 34.10 29.52 31.10 31.80 
Solar radiation (°C) 33.64 32.90 32.90 2.35445 29.10 39.80 32.10 32.90 34.80 
Indoor WET (°C)  24.12 24.60 18.70a 2.18689 18.70 31.00 23.00 24.60 25.57 
Indoor wet bulb ground temperature 
(°C) 

26.12 26.60 26.80 2.03956 21.00 30.70 25.02 26.60 27.40 

Outdoor heat stress index (°C) 36.70 36.00 36.00 2.33766 33.00 43.00 35.00 36.00 38.00 
Outdoor relative humidity (%) 59.16 59.00 57.00a 11.7626

4 
19.60 78.00 54.00 59.00 67.00 

Outdoor air temperature (°C) 32.11 32.00 34.00 2.17015 23.70 36.00 30.25 32.00 34.00 
Outdoor DEW (°C) 22.82 23.00 23.00 2.21538 13.00 26.00 22.00 23.00 24.00 
Indoor temperature ground (°C) 31.23 31.35 31.80 3.42791 24.70 60.20 29.80 31.35 32.20 
a. Multiple mode exists. The smallest value is shown. 
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Supplementary Material 3: Type of Measures for each Variable 
 

Table S.3.1: List of the type of measures for each variable. 
Variable Name Measures 
Residential tower block (RTB) number Nominal 
Age Scale 
Age bands  Ordinal 
Energy efficiency awareness  Ordinal 
Energy conservation  Nominal 
Location of subject respondent  Nominal 
Thermal preference  Nominal 
Doors opening patterns in summer  Nominal 
Doors opening patterns in winter  Nominal 
Overall thermal satisfaction in summer (Discrete thermal sensation 
scale) 

Ordinal 

Overall thermal satisfaction in summer (Continuous thermal sensation 
scale)  

Scale 

Thermal sensation in bedroom 1 (Discrete thermal sensation scale) Ordinal 
Thermal sensation in bedroom 2 (Discrete thermal sensation scale) Ordinal 
Type of heating control at home  Nominal 
Thermal sensation in bedroom 3 (Discrete thermal sensation scale) Ordinal 
Thermal sensation in kitchen (Discrete thermal sensation scale) Ordinal 
Thermal sensation in living-room (Discrete thermal sensation scale) Ordinal 
Thermal sensation in living-room (Continuous thermal sensation scale) Scale 
Thermal sensation in bedroom 1 (Continuous thermal sensation scale) Scale 
Thermal sensation in bedroom 2 (Continuous thermal sensation scale) Scale 
Thermal sensation in bedroom 3 (Continuous thermal sensation scale) Scale 
Thermal sensation in kitchen (Continuous thermal sensation scale) Scale 
Type of cooling control at home  Nominal 
Clothing insulation level of participants  Nominal 
Reasons for thermal discomfort  Nominal 
Length of residency  Nominal 
Floor level  Nominal 
Ethnicity  Nominal 
Orientation  Nominal 
Interviewed room condition Nominal 
Cooling consumption patterns on weekdays  Ordinal 
Cooling consumption patterns on the weekend Ordinal 
Cooling energy consumption in summer of August 2015  Ordinal 
Cooling energy consumption in summer of 2015  Ordinal 
Cooling energy consumption in summer of August 2016  Ordinal 
Cooling energy consumption in summer of 2016  Ordinal 
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Supplementary Material 3: Type of Measures for each Variable 
 

Table S.3.2: List of the type of measures for each variable. (Continued) 
Variable Name Measures 
Energy consumption in April of 2015 Scale 
Energy consumption in August of 2015 Scale 
Energy consumption in December of 2015 Scale 
Energy consumption in February of 2015 Scale 
Energy consumption in January of 2015 Scale 
Energy consumption in July of 2015 Scale 
Energy consumption in June of 2015 Scale 
Energy consumption in March of 2015 Scale 
Energy consumption in May of 2015 Scale 
Energy consumption in November of 2015 Scale 
Energy consumption in October of 2015 Scale 
Energy consumption in September of 2015 Scale 
Energy consumption in April of 2016 Scale 
Energy consumption in August of 2016 Scale 
Energy consumption in December of 2016 Scale 
Energy consumption in February of 2016 Scale 
Energy consumption in January of 2016 Scale 
Energy consumption in July of 2016 Scale 
Energy consumption in June of 2016 Scale 
Energy consumption in March of 2016 Scale 
Energy consumption in May of 2016 Scale 
Energy consumption in November of 2016 Scale 
Energy consumption in October of 2016 Scale 
Energy consumption in September of 2016 Scale 
Energy consumption in January of 2017 Scale 
Indoor temperature ground (°C) Scale 
Overall cooling energy consumption in summer of 2015 Scale 
Overall heating energy consumption in winter of 2015 Scale 
Overall cooling energy consumption in summer of 2016 Scale 
Overall heating energy consumption in winter of 2016 Scale 
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Supplementary Material 4: Sample of A Correlation Analysis 
 

Information on the Applied Convention for Statistical Analysis 

In this study, Fisher’s exact test was applied to determine the accuracy of the Chi-squared test 

that were applied throughout the statistical analysis. This appendix presents the stage-by-stage 

development of the Fisher’s exact test that was conducted for Tables 4.4(a) and (b), which are 

presented in Chapter 4. To conduct accurate analysis according to statistical conventions, the 

findings of the Chi-squared tests are presented in the appendix. As can be seen, some tables 

present that the numbers of cells have expected values of less than 5. In the present study, this 

convention was strictly used to determine whether the Fisher’s exact test analysis would be 

required or not. This is the reason for conducting Chi-squared tests and presenting them in the 

appendix.  

Schmill et al. (2014) highlight that the chi-squared test is useful for computing 

representativeness, which gives the degree of extent for the global representativeness of case 

studies included in the dataset. Schmill et al. also indicate that the chi-squared analysis is the 

standard and most applicable method of analysis in many disciplines as it allows researchers 

to provide a reliable result without requiring research limitations at the time of addressing 

research hypotheses. However, Schmill et al. recommend that the chi-squared test is not an 

applicable test for sample sizes of less than 50, or when the expected frequency for more than 

one category is less than 5. Following these statistical criteria provides a reasonably 

representative sample size that should be considered to prevent any research bias. Schmill et 

al. (2014) also indicate that Fisher’s exact test can help in cases where there is an expected 

frequency of zero to avoid any research bias in relatively small sample sizes.  

According to Schmill et al. (2014), Fisher’s exact test should be applied before conducting 

Cramér’s V test to avoid any research bias and demonstrate statistically representative research 

outcomes. Further to this statistical convention, Supplementary Material 6 presents the Chi-

squared and Cramér’s V tests that are presented in Tables S.6.1–4, S.6.5(a) and (b), and S.6.6(a) 

and (b). In these tables, Fisher’s exact test was applied before undertaking Cramér’s V test to 

provide reliable outcomes on households’ socio-demographic characteristics and their habitual 

adaptive behaviours regarding energy use. 
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Supplementary Material 4: Sample of A Correlation Analysis 
 
Supplementary Material 4 presents the step-by-step statistical analysis was conducted for the Tables 

4.4 (a) and (b) 
 

Thermal sensation in livingroom (recoded) * Floor level (4 groups) 

 
 

 
 

 
Figure S.4.1: Occupants’ TSVs in living-room by floor level. 
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Supplementary Material 4: Sample of A Correlation Analysis 
 

Thermal sensation in kitchen (recoded) * Floor level (4 groups) 

 
 

 
 

 
Figure S.4.2: Occupants’ TSVs in kitchen by floor level. 
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Supplementary Material 4: Sample of A Correlation Analysis 
 

Thermal sensation in bedroom 1 (recoded) * Floor level (4 groups) 

 
 

 
 

 
Figure S.4.3: Occupants’ TSVs in bedroom 1 by floor level. 
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Supplementary Material 4: Sample of A Correlation Analysis 
 

Thermal sensation in bedroom 2 (recoded) * Floor level (4 groups) 

 
 

 
 

 
Figure S.4.4: Occupants’ TSVs in bedroom 2 by floor level. 
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Supplementary Material 4: Sample of A Correlation Analysis 
 

Thermal sensation in bedroom 3 (recoded) * Floor level (4 groups) 

 
 

 
 

 
Figure S.4.5: Occupants’ TSVs in bedroom 3 by floor level. 
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Supplementary Material 4: Sample of A Correlation Analysis 
 

Thermal sensation in livingroom (recoded) * Orientation (4 groups) 

 
 

 
 

 
Figure S.4.6: Occupants’ TSVs in living-room by orientation. 
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Supplementary Material 4: Sample of A Correlation Analysis 
 

Thermal sensation in kitchen (recoded) * Orientation (4 groups) 

 
 

 
 

 
Figure S.4.7: Occupants’ TSVs in kitchen by orientation. 
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Supplementary Material 4: Sample of A Correlation Analysis 
 

Thermal sensation in bedroom 1 (recoded) * Orientation (4 groups) 

 
 

 
 

 
Figure S.4.8: Occupants’ TSVs in bedroom 1 by orientation. 
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Supplementary Material 4: Sample of A Correlation Analysis 
 

Thermal sensation in bedroom 2 (recoded) * Orientation (4 groups) 

 
 

 
 

 
Figure S.4.9: Occupants’ TSVs in bedroom 2 by orientation. 
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Supplementary Material 4: Sample of A Correlation Analysis 
 

Thermal sensation in bedroom 3 (recoded) * Orientation (4 groups) 

 
 

 
 

 
Figure S.4.10: Occupants’ TSVs in bedroom 3 by orientation. 
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Supplementary Material 4: Sample of A Correlation Analysis 
 

 
Figure S.4.11: Pearson’s correlation analysis by exploring occupants’ TSVs. 
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Supplementary Material 5: Contingency Tables 
 
Information on the Presentation of Contingency Tables 

In this study, whilst correlations are indicative of association, there is scope with the data to perform hypothesis testing of significant differences 

between variables that would add weight to the results. To provide a clear representation of the study findings and report research outcomes in 

accordance with the research questions, which were set out to develop a novel methodological framework for the universal applicability of the 

Energy Performance of Buildings Directives (EPBD) in the residential sector, the relevant concepts of statistical convention were presented in 

Chapter 3 Subsection 3.3.1 (The Concept of Statistical Representativeness), Subsection 3.3.2 (References to the Works of Other Scholars on 

Representativeness) and Subsection 3.3.3 (Sample Size Calculation Criteria). 

This appendix presents the contingency tables that support the findings of the statistical analysis presented in Tables 4.3 and 4.4(a) and (b) in 

Chapter 4. These findings are presented in the appendix to provide guidance on the applied statistical method in order to comply with the convention 

of supporting research outcomes. It should be noted that Chapter 4 presents the identification of a “neutral” adaptive thermal comfort threshold by 

conducting statistical analysis with in-situ measurements, on-site environmental monitoring, and a thermal comfort assessment questionnaire 

survey to develop benchmarking criteria for the South-eastern Mediterranean climate of Cyprus. These contingency tables are presented in the 

appendix because, according to the conventions of thermal comfort studies, representation of households’ thermal sensation by using descriptive 

statistics, frequencies, Cramér’s V test, Pearson’s correlations and further ordinal logistic regression analysis methods could provide a valid 

background for the development of reliable thermal comfort thresholds. In Chapter 4, the convention of the thermal comfort assessment method 

was applied in accordance with the concept of a statistically representative sampling size, which was achieved by undertaking a longitudinal field 

survey. This field study enables researchers to present households’ in-vivo experiences on thermal satisfaction.  
It must be stressed that the contingency tables were also produced for the S.6.1–4, S.6.5(a) and (b) and S.6.6(a) and (b) at the time of conducting 

Cramér’s V test to understand households’ socio-demographic characteristics and their habitual adaptive behaviour on energy use. The relevant 
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Cramer’s V tests are presented in Appendix L, but, in order to avoid lengthy documentation, only the Cramer’s V tests of the contingency tables 

for Tables 4.3(1) and (2) and Tables 4.4(b-1)–(b-5) are presented. In this appendix, the researcher decided to demonstrate the below-listed 

contingency tables because they are noteworthy contributions to the building and environment field where researchers could apply and adopt the 

statistical conventions presented in Chapter 4. At the same time, in Chapter 3, Subsections 3.3.1 and 3.3.2, scholars in the literature review 

recommend that reliable representativeness of sampling size within the variables identified to develop the concept of statistical convention plays 

an important role at the time of developing an evidence-based energy policy design. This is the reason that contingency tables for thermal comfort 

studies are not the primary factor used for identifying “neutral” adaptive thermal comfort thresholds, but the contingency tables are still presented. 

In this present study, Chapter 4 aims to demonstrate the longitudinal field survey findings with occupants’ TSVs and, because of this, contingency 

tables are not presented in Chapter 4 but instead in the appendix to provide useful guidance for future scholars.  

 

Important note about Tables 4.4(b-1)–(b-5): These are the contingency tables that support the statistical analysis in Table 4.3 in Chapter 4. In 

this statistical analysis, occupants’ TSVs were identified as ordinal variables to conduct the Cramér’s V test accurately. In the contingency tables 

presented in this appendix, it can be seen that household thermal sensation is represented by the terminology of “thermal feeling” indicators to 

provide a clear understanding to readers about household thermal sensation. It must be stressed that, in the dataset, the TSV code was set to [0 to 

6] which represents the [-3, +3] thermal sensation band according to thermal comfort convention. Hence, the researcher decided to report the 

findings by using the terminology of each thermal feeling at the time of undertaking the statistical analysis for the contingency tables (Tables 

4.4(b-1)–(b-5)).  
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Supplementary Material 5: Contingency Tables 
Table S.5.1 [S.6.2]: Relationships Between Occupation, Age Bands, Economic Status and Education. 

_________________________________________________________________________________________________________ 

__________________________________________________________________________________________________________ 
Note.  For each row category, pairs of column proportions with different superscripts differed significantly, p < 0,05. 

% % % %
Fisher's 

Exact p Cramer's V

44,81 <0,001 0,399

Less than 35 10 23,8 a 2 15,4 a 0 0,0 a 0 0,0 a

35−45 10 23,8 a 2 15,4 a 4 23,5 a 0 0,0 a

45−55 11 26,2 a 4 30,8 a 3 17,6 a 2 9,1 a

55−65 9 21,4 a 4 30,8 a 9 52,9 a 8 36,4 a

65 or over 2 4,8 a 1 7,7 a 1 5,9 a 12 54,5 b

8,69 0,743 0,171

Full time 18 42,9 a 4 30,8 a 7 41,2 a 6 27,3 a

Part time 6 14,3 a 2 15,4 a 2 11,8 a 2 9,1 a

Self employed 3 7,1 a 2 15,4 a 4 23,5 a 6 27,3 a

Unemployed 5 11,9 a 1 7,7 a 2 11,8 a 4 18,2 a

Pensioner 10 23,8 a 4 30,8 a 2 11,8 a 4 18,2 a

7,49 0,591 0,162

Elementary school 9 24,3 a 2 16,7 a 0 0,0 a 4 18,2 a

Secondary school 12 32,4 a 4 33,3 a 6 35,3 a 8 36,4 a

High school 13 35,1 a 5 41,7 a 7 41,2 a 7 31,8 a

Undergraduate/Post
graduate 3 8,1 a 1 8,3 a 4 23,5 a 3 13,6 a

Occupation Retired

n n n n

Work outside the 
home

Age bands

Economic status

Education

Work at home Household activities
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Supplementary Material 5: Contingency Tables 
Table S.5.2 [S.6.3]: Relationships Between Household Age Bands, Tenure Type and Length of Residency. 

__________________________________________________________________________________________________________ 

 

__________________________________________________________________________________________________________ 
Note.  For each row category, pairs of column proportions with different superscripts differed significantly, p < 0,05. 

 

 
 

% % %
Fisher's 

Exact p Cramer's V

56,03 <0,001 0,582
Less than 35 11 64,7 a 2 20,0 a, b 3 4,1 b

35−45 5 29,4 a 6 60,0 a 5 6,8 b

45−55 0 0,0 a 1 10,0 a 19 26,0 a

55−65 1 5,9 a 1 10,0 a, b 30 41,1 b

65 or over 0 0,0 a 0 0,0 a 16 21,9 a

32 <0,001 0,595
Owner occupied 8 47,1 a 5 50,0 a 71 97,3 b

Rented 9 52,9 a 5 50,0 a 2 2,7 b

Age bands

Tenure type

Residency Less than 5 years 5-10 years More than 10 years

n n n
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Supplementary Material 5: Contingency Tables 
Table S.5.3 [S.6.4]: Relationships Between Household Income, Energy Advice and Energy Savings. 

__________________________________________________________________________________________________________ 

 
__________________________________________________________________________________________________________ 
Note.  For each row category, pairs of column proportions with different superscripts differed significantly, p < 0,05. 

 
 
 

 
 
 
 

% % % %
Fisher's 

Exact p Cramer's V

11,55 0,194 0,199
Famagusta Municipality 2 8,7 a 3 11,5 a 5 17,9 a 2 8,7 a

The Electricity Authority 1 4,3 a 6 23,1 a 1 3,6 a 7 30,4 a

None 18 78,3 a 16 61,5 a 20 71,4 a 13 56,5 a

Other 2 8,7 a 1 3,8 a 2 7,1 a 1 4,3 a

16,24 0,049 0,233
Nothing 4 17,4 a, b 8 30,8 b 1 3,6 a 2 8,7 a, b

A little 3 13,0 a 5 19,2 a 4 14,3 a 0 0,0 a

Some 9 39,1 a 9 34,6 a 17 60,7 a 15 65,2 a

A lot 7 30,4 a 4 15,4 a 6 21,4 a 6 26,1 a

2500−5000 TL

n

Energy advice

Energy savings

Income Less than 2500 TL

n

More than 7000 TL

n

5000−7000 TL

n
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Supplementary Material 5: Contingency Tables 
Table S.5.4. [S.6.5-(a)]: Relationships Between Household Occupation and Cooling and Heating Energy Consumption Patterns. 

________________________________________________________________________________________________ 

_________________________________________________________________________________________________ 
Note.  For each row category, pairs of column proportions with different superscripts differed significantly, p < 0,05. * indicates the chi-square 
test 

 

% % %
Fisher's 

Exact p Cramer's V

12,49 0,042 0,253

Work outside the home 15 42,9 a 23 52,3 a 4 26,7 a

Work at home 4 11,4 a 7 15,9 a 2 13,3 a

Household activities 9 25,7 a 2 4,5 b 6 40,0 a

Retired 7 20,0 a 12 27,3 a 3 20,0 a

74,57* <0,001 0,611

0−4 hours 21 58,3 a 0 0,0 b 0 0,0 b

5−9 hours 15 41,7 a 23 47,9 a 0 0,0 b

More than 10 hours 0 0,0 a 25 52,1 b 16 100,0 c

49,70 <0,001 0,504

0−4 hours 20 55,6 a 0 0,0 b 0 0,0 b

5−9 hours 6 16,7 a 15 31,3 a 3 18,8 a

10−12 hours 8 22,2 a 21 43,8 a 5 31,3 a

More than 12 hours 2 5,6 a 12 25,0 a, b 8 50,0 b

0−4 hours

Occupation

5−9 hours More than 10 hours

n n n

Heating consumption 
patterns on the weekdays

Cooling consumption 
patterns on weekdays

Cooling consumption 
patterns on the weekend
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Supplementary Material 5: Contingency Tables 
Table S.5.5 [S.6.6-(a)]: Relationships Between Household Occupation, Window-Opening Patterns in the Winter, Window-Opening Patterns in 
the Summer and Heating Control.  
__________________________________________________________________________________________________________ 

__________________________________________________________________________________________________________ 
Note.  For each row category, pairs of column proportions with different superscripts differed significantly, p < 0,05. 

 

% % % % %

Fisher's 

Exact p Cramer's V

16,23 0,142 0,260

Work outside the home 16 59,3
a

7 41,2
a

4 36,4
a

11 39,3
a

4 36,4
a

Work at home 4 14,8
a

4 23,5
a

1 9,1
a

4 14,3
a

0 0,0
a

Household activities 4 14,8
a

1 5,9
a

5 45,5
a

6 21,4
a

1 9,1
a

Retired 3 11,1
a

5 29,4
a, b

1 9,1
a, b

7 25,0
a, b

6 54,5
b

15,02 0,197 0,230

0−2 hours 3 10,3
a

0 0,0
a

3 23,1
a

3 10,7
a

0 0,0
a

2−4 hours 6 20,7
a

6 33,3
a

7 53,8
a

13 46,4
a

6 50,0
a

4−6 hours 7 24,1
a

4 22,2
a

1 7,7
a

6 21,4
a

3 25,0
a

More than 6 hours 13 44,8
a

8 44,4
a

2 15,4
a

6 21,4
a

3 25,0
a

11,44 0,153 0,234

2−6 hours 6 20,7
a

0 0,0
a

3 23,1
a

4 14,3
a

1 8,3
a

6−8 hours 5 17,2
a

5 27,8
a

6 46,2
a

11 39,3
a

4 33,3
a

More than 8 hours 18 62,1
a

13 72,2
a

4 30,8
a

13 46,4
a

7 58,3
a

6,22 0,994 0,118

Wall mounted thermostat 4 13,8
a

3 16,7
a

2 15,4
a

5 17,9
a

3 25,0
a

Other types 1 3,4
a

3 16,7
a

1 7,7
a

2 7,1
a

2 16,7
a

Remote controller 4 13,8
a

1 5,6
a

1 7,7
a

2 7,1
a

1 8,3
a

Automatic thermostat and remote controller7 24,1
a

4 22,2
a

3 23,1
a

6 21,4
a

2 16,7
a

None 13 44,8
a

7 38,9
a

6 46,2
a

13 46,4
a

4 33,3
a

Windows closing reasons

Windows opening patterns in 

winter

Windows opening patterns in 

summer

Type of heating control at 

home

For safety reasons

n

Dust Open always

n n

Against the warm air

To block outside 

disturbances/annoya

n n

Occupation
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Table S.6.1: Relationship Between Respondents, Orientation and Floor Level. 

Variables  Participants Orientation Floor Level 
Participants Partial η

2
 1 0,781 0,046 

Significance — <0,001 0,205 

Orientation Partial η
2
/ Cramer's V 0,781 1 0,197 

Significance <0,001 — 0,234 

Floor Level Partial η
2
/ Cramer's V 0,046 0,197 1 

Significance 0,205 0,188 — 

Participants - Floor Level, F(3, 96) = 1,56, p = 0,205, Partial η2 = 0,046 
Orientation - Participants, F(3, 96) = 113,90, p < 0,001, Partial η2 = 0,781 
Orientation - Floor Level, Fisher’s exact = 12,11, p = 0,188, Cramer’s V = 0,197 

 
Outcome: The relationship between orientation and floor level was examined by 
crosstabulation using chi-square test. As seen in Table S.6.1, no significant relationship 
was found, Fisher’s exact = 12,11, p = 0,188, Cramer’s V = 0,197. 
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Table S.6.2: Relationship Between Age Band, Occupation, Income and Health Conditions. 

Research Questions 
Age 

Band 
Economic 

Status 
Education 

Level 
Occupa-

tion Income Health 
Q 1.1: What is your age? 1 0,201 0,114 0,399* 0,213 0,496* 

— 0,447 0,991 <0,001 0,245 0,001 

Q 1.2: What is your 
economic status? 

0,201 1 0,416* 0,171 0,136 0,178 

0,447 — <0,001 0,743 0,950 0,708 

Q 1.3: What is your highest 
level of education? 

0,114 0,416* 1 0,162 0,190 0,196 

0,991 <0,001 — 0,591 0,386 0,315 

Q 1.4: What is your 
occupation? 

0,399* 0,171 0,162 1 0,174 0,342* 

<0,001 0,743 0,591 — 0,488 <0,001 

Q 29: What is your 
monthly income? 

0,213 0,136 0,190 0,174 1 0,174 

0,245 0,950 0,386 0,488 — 0,480 

Q 28: How is your health 
in general? 

0,496* 0,178 0,196 0,342* 0,174 1 

0,001 0,708 0,315 <0,001 0,480 — 

Health condition - Age, Fisher’s exact = 73,74, p < 0,001, Cramer’s V = 0,496 

Health condition – Employment status, Fisher’s exact = 9,06, p = 0,708, Cramer’s V = 0,178 

Health condition – Education level, Fisher’s exact = 10,20, p = 0,315, Cramer’s V = 0,196 

Health condition – Occupation, Fisher’s exact = 33,81, p < 0,001, Cramer’s V = 0,342 

Health condition – Income, Fisher’s exact = 8,63, p = 0,472, Cramer’s V = 0,170 

Income - Age, Fisher’s exact = 14.71, p = 0,245, Cramer’s V = 0,213 

Income – Employment status, Fisher’s exact = 5,64, p = 0,950, Cramer’s V = 0,136 

Income – Education level, Fisher’s exact = 9.53, p = 0,386, Cramer’s V = 0,190 

Income – Occupation, Fisher’s exact = 8,49, p = 0,488, Cramer’s V = 0,174 

Occupation – Age, Fisher’s exact = 44,81, p < 0,001, Cramer’s V = 0,399 

Occupation – Employment status, Fisher’s exact = 8.69, p = 0,743, Cramer’s V = 0,171 

Occupation – Education, Fisher’s exact = 7,49, p = 0,591, Cramer’s V = 0,162 

Age – Education, Fisher’s exact = 4,08, p = 0,991, Cramer’s V = 0,114 

Age – Employment status, Fisher’s exact = 16.09, p = 0,447, Cramer’s V = 0,201 

Employment status – Education, Fisher’s exact = 48.81, p < 0,001, Cramer’s V = 0,416 

 
Outcome: Age bands were significantly related to the health conditions, and this relationship was 

strong (Fisher’s exact = 73,74, p < 0,001, Cramer’s V = 0,496). Younger age appeared to report 

better health condition (good or very good) than older age. Household occupation was significantly 

related to health conditions, and the relationship was moderate (Fisher’s exact = 33,81, p < 0,001, 

Cramer’s V = 0,342). A greater proportion of participants with very good condition worked outside 

the home than those with mediocre health conditions, whereas none of the participants who retired 

had very good conditions. Household occupations were also significantly associated with age with a 

moderate-strong relationship (Fisher’s exact = 44,81, p < 0,001, Cramer’s V = 0,399). Economic 

status was significantly related to educational level (Fisher’s exact = 48.81, p < 0,001, Cramer’s V 

= 0,416). 

 

Note: The relationships between occupant age, economic status, education level, occupation, 

income, and health conditions were examined using crosstabulations with chi-square tests or Fisher’s 

Exact tests if over 25% of cells had less than 5 expected counts, as shown in Table S.6.2. 
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Table S.6.3: Relationships Between Household Age Band, Tenancy Status and Length of 
Residency. 

Research Questions Age Band 
Tenancy 
Status 

Length of 
Residency 

Q 1.1: What is your age? 1 0,595* 0,582* 

— <0,001 <0,001 

Q 3: Do you own or rent your dwelling? 0,595* 1 0,494* 

<0,001 — <0,001 

Q 2: How many years have you lived in this flat? 0,582* 0,494* 1 

<0,001 <0,001 — 

Age – Length of Residency, Fisher’s exact = 56.03, p < 0,001, Cramer’s V = 0,582 
Age – Tenure Type, Fisher’s exact = 21.28, p < 0,001, Cramer’s V = 0,494 
Tenure Type – Length of Residency, Fisher’s exact = 32.00, p < 0,001, Cramer’s V = 0,595 

 
Outcome: Age band and tenancy status were significantly and strongly related to each other 
(Fisher’s exact = 21.28, p < 0,001, Cramer’s V = 0,494). Most participants who rented were 
45 years old and younger. Age band and length of residency were also correlated (Fisher’s 
exact = 56.03, p < 0,001, Cramer’s V = 0,582). It appeared that younger participants had 
shorter length of residency. A strong relationship was discerned between tenancy status and 
length of residency (Fisher’s exact = 32.00, p < 0,001, Cramer’s V = 0,595). A greater 
proportion of participants with more than 10 years of residency were owner-occupied than 
those had 10 years or less residency. 
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Table S.6.4: Relationships Between Household Income, Energy Consumption, Energy 
Advice, Energy Usage and Energy Savings.  

Research Questions Income 

Energy 
Consump- 

tion 
Energy 
Advice 

Energy 
Usage 

Energy 
Savings 

Q 29: What is your monthly income? 1 0,247 0,199 0,176 0,233* 

— 0,108 0,194 0,340 0,049 

Q 30: How much electricity (in kWh) 
did you consume in May through 
September according to this last 
overview? 

0,247 1 0,116 0,080 0,106 

0,108 — 0,702 0,416 0,754 

Q 31: Have you received advice on 
how to reduce your energy bills? 

0,199 0,116 1 0,117 0,182 

0,194 0,702 — 0,826 0,364 

Q 4: Do you check your use of 
electricity by taking frequent meter 
readings? 

0,176 0,080 0,117 1 0,291* 

0,340 0,416 0,826 — 0,040 

Q 6: Do you know anything about 
energy-saving methods? 

0,233* 0,106 0,182 0,291* 1 

0,049 0,754 0,364 0,040 — 

Energy Advise – Income, Fisher’s exact = 11,55, p = 0,194, Cramer’s V = 0,199 

Energy Advise – Energy Savings, Fisher’s exact = 9,07, p = 0,364, Cramer’s V = 0,182 

Energy Advise – Energy Usage, Fisher’s exact = 1,09, p = 0,826, Cramer’s V = 0,117 

Energy Advise – Energy Consumption, Fisher’s exact = 1,42, p = 0,702, Cramer’s V = 0,116 

Energy Savings – Income, Fisher’s exact = 16,24, p = 0,049, Cramer’s V = 0,233 

Energy Savings – Energy Usage, Fisher’s exact = 7,87, p = 0,040, Cramer’s V = 0,291 

Energy Savings – Energy Consumption, Fisher’s exact = 1,27, p = 0,754, Cramer’s V = 0,106 

Income – Energy Usage, Fisher’s exact = 3,26, p = 0,340, Cramer’s V = 0,176 

Income – Energy Consumption, χ²(3) = 6,09, p = 0,107, Cramer’s V = 0,247 

Energy Consumption – Energy Usage, χ²(1) = 0,64, p = 0,424, Cramer’s V = 0,080 

 

Outcome: A moderate relationship was found between energy efficiency awareness and 
energy conservation (Fisher’s exact = 7,87, p = 0,040, Cramer’s V = 0,291). A greater 
proportion of participants with energy conservation had a lot of energy efficiency awareness 
while a greater proportion of participants without energy conservation did not have 
efficiency awareness at all. Income was moderately associated with energy savings (Fisher’s 
exact = 16,24, p = 0,049, Cramer’s V = 0,233), but income was not significantly associated 
with energy consumption, energy efficiency awareness, and energy advice.  

 
Note: Table S.6.4 demonstrates the crosstabulation using chi-square analysis or or Fisher’s 
Exact tests if over 25% of cells had less than 5 expected counts that revealed relationships 
between household income level and occupant awareness of energy consumption. 
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Table S.6.5(a): Relationships Between Household Occupation and Cooling and Heating 
Energy Consumption Patterns.  

Research Questions Occupation 

Weekday 
Heating- 

Consumption 
Patterns 

Weekend 
Heating- 

Consumption 
Patterns 

Weekday 
Cooling- 

Consumption 
Patterns 

Weekend 
Cooling- 

Consumption 
Patterns 

Q 1.4: What is your 
occupation? 

1 0,253* 0,109 0,098 0,167 

— 0,042 0,896 0,955 0,579 

Q 16: When do you turn on 
heating device(s) on 
weekdays? 

0,253* 1 0,373* 0,611* 0,504* 

0,042 — <0,001 <0,001 <0,001 

Q 17: When do you turn on 
heating device(s) on the 
weekend? 

0,109 0,373* 1 0,522* 0,706* 

0,896 <0,001 — <0,001 <0,001 

Q 12: When do you turn on 
cooling device(s) on 
weekdays? 

0,098 0,611* 0,522* 1 0,774* 

0,955 <0,001 <0,001 — <0,001 

Q 13: When do you turn on 
cooling device(s) on the 
weekend? 

0,167 0,504* 0,706* 0,774* — 

0,579 <0,001 <0,001 <0,001 1 

Occupation – Weekend heating consumption, Fisher’s exact = 2,41, p = 0,896, Cramer’s V = 0,109 

Occupation – Weekday heating consumption, Fisher’s exact = 12,49, p = 0,042, Cramer’s V = 0,253 

Occupation – Weekend cooling consumption, Fisher’s exact = 7,63, p = 0,579, Cramer’s V = 0,167 

Occupation – Weekday cooling consumption, Fisher’s exact = 1,76, p = 0,955, Cramer’s V = 0,098 

Weekday cooling consumption – Weekend heating consumption, χ²(4) = 54,59, p < 0,001, Cramer’s V 

= 0,522 

Weekday cooling consumption – Weekday heating consumption, χ²(4) = 74,57, p < 0,001, Cramer’s V 

= 0,611 

Weekday cooling consumption – Weekend cooling consumption, χ²(6) = 119,77, p < 0,001, Cramer’s 
V = 0,774 

Weekend cooling consumption– Weekend heating consumption, χ²(6) = 99,69, p < 0,001, Cramer’s V 

= 0,706 

Weekend cooling consumption– Weekday heating consumption, Fisher’s exact = 49,70, p < 0,001, 

Cramer’s V = 0,504 

Weekday heating consumption– Weekend heating consumption, χ²(4) = 27,89, p < 0,001, Cramer’s V 

= 0,373 
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Table S.6.5(b): Relationships Between Household Occupation, and Cooling and Heating 
Energy Consumption Patterns. (Continued). 

Outcome: Weekday cooling consumption patterns were significantly and strongly related to 
weekend heating consumption patterns on weekend (χ² = 54,59, p < 0,001, Cramer’s V = 
0,522). Specifically, longer duration of heating consumption was related to longer duration of 
cooling consumption. Similar result was also found between weekend cooling consumption 
patterns and weekend heating consumption patterns (χ² = 99,69, p < 0,001, Cramer’s V = 
0,706), between weekday cooling consumption patterns and weekday heating consumption 
patterns (χ² = 74,57, p < 0,001, Cramer’s V = 0,611), and weekend cooling consumption 
patterns and weekday heating consumption patterns (Fisher’s exact = 49,70, p < 0,001, 
Cramer’s V = 0,504). For heating patterns, weekday consumption was moderately associated 
with weekend consumption (χ² = 27,89, p < 0,001, Cramer’s V = 0,373). For cooling patterns, 
weekday consumption was strongly associated with weekend consumption (χ² = 119,77, p < 
0,001, Cramer’s V = 0,774). Occupation was only significantly and moderately related to 
weekly heating consumption (Fisher’s exact = 12,49, p = 0,042, Cramer’s V = 0,253), but it 
was not significant related to any other cooling or heating consumption patterns.  

 
Note: The relationships between household occupation and cooling and heating energy 
consumption patterns were examined using crosstabulations with chi-square tests or Fisher’s 
Exact tests if over 25% of cells had less than 5 expected counts, as shown in Table S.6.5(a). 
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Table S.6.6(a): Relationships Between Household Occupation, Window-Opening Patterns in 
the Winter, Window-Opening Patterns in the Summer and Heating Control.  

Research Questions Occupation Winter Summer 
Heating 
Control 

Q 1.4: What is your occupation? 1 0,164 0,167 0,170 

— 0,594 0,525 0,709 

Q 23: When do you open your 
windows in the winter? 

0,164 1 0,459* 0,139 

0,594 — <0,001 0,961 

Q 18: When do you open your 
windows in the summer? 

0,167 0,459* 1 0,283 

0,525 <0,001 — 0,053 

Q 24: Do you keep room doors 
open when you do not have heating 
on? 

0,114 0,246 0,030 1 

0,747 0,109 0,956 — 

Q 19: Do you keep room doors 
open when you do not have cooling 
on? 

0,114 0,262 0,168 0,229 

0,746 0,113 0,245 0,262 

Q 20: Why do you open the 
windows? 

0,201 0,124 0,185 0,200 

0,291 0,676 0,182 0,410 

Q 21: Why do you close the 
windows? 

0,260 0,230 0,234 0,118 

0,142 0,197 0,153 0,994 
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Table S.6.6(b): Relationships Between Household Occupation, Window-Opening Patterns in 
the Winter, Window-Opening Patterns in the Summer and Heating Control (Continued). 

Windows opening patterns winter – Doors opening preference in summer, Fisher’s exact = 5,82, p 

= 0,113, Cramer’s V = 0,262 

Windows opening patterns winter – Windows opening pattern in summer, Fisher’s exact = 36.80, p 

< 0,001, Cramer’s V = 0,459 

Windows opening patterns winter – Doors opening preference in winter, χ²(3) = 6,05, p = 0,109, 

Cramer’s V = 0,246 

Windows opening patterns winter – Windows opening reason, χ²(3) = 1,53, p = 0,676, Cramer’s V 

= 0,124 

Windows opening patterns winter – Windows closing reason, Fisher’s exact = 15,02, p = 0,197, 

Cramer’s V = 0,230 

Windows opening patterns summer – Doors opening preference in summer, χ²(2) = 2,81, p = 0,245, 

Cramer’s V = 0,168 

Windows opening patterns summer – Doors opening preference in winter, χ²(2) = 0,09, p = 0,956, 

Cramer’s V = 0,030 

Windows opening patterns summer – Windows opening reason, χ²(2) = 3,41, p = 0,182, Cramer’s 

V = 0,185 

Windows opening patterns summer – Windows closing reason, Fisher’s exact = 11,44, p = 0,153, 

Cramer’s V = 0,234 

Occupation – Windows opening pattern in summer, Fisher’s exact = 5,18, p = 0,525, Cramer’s V = 

0,167 

Occupation – Windows opening pattern in winter, Fisher’s exact = 7,35, p = 0,594, Cramer’s V = 

0,164 

Occupation – Windows opening reasons, χ²(3) = 3,74, p = 0,291, Cramer’s V = 0,201 

Occupation – Windows closing reasons, Fisher’s exact = 16,23, p = 0,142, Cramer’s V = 0,260 

Occupation – Heating control, Fisher’s exact = 8,94, p = 0,709, Cramer’s V = 0,170 

Heating control – Windows opening pattern in winter, Fisher’s exact = 5,41, p = 0,961, Cramer’s V 

= 0,139 

Heating control – Windows opening pattern in summer, Fisher’s exact = 14,14, p = 0,053, 

Cramer’s V = 0,283 

Heating control – Windows opening reason, χ²(4) = 3,93, p = 0,410, Cramer’s V = 0,200 

Heating control – Windows closing reason, Fisher’s exact = 6,22, p = 0,994, Cramer’s V = 0,118 

 

Outcome: As seen in Table L.6(b), windows opening patterns in winter was significantly 
associated with that in summer (Fisher’s exact = 36.80, p < 0,001, Cramer’s V = 0,459), and 
this relationship was moderate-strong. It appears that longer opening duration in winter was 
related to longer opening duration in summer. Heating control type at home and occupation 
were not significantly associated with any opening patterns or opening reasons. 

 
Note: The relationships between household occupation, window-opening patterns in the 
winter, window-opening patterns in the summer and heating control were examined using 
crosstabulations with chi-square tests or Fisher’s Exact tests if over 25% of cells had less 
than 5 expected counts, as shown in Table S.6.6(a). 
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Table S.7.1: The Literature on Building Stock Aggregation through Archetype Buildings – Energy Modelling.  

References A. Study 
Location 

B. Building Type C. Sampling Size D. Primary Aim of Model E. Methodology F. Main Findings 

Streicher et 
al. (2018) 

Sweden SFHs and MFHs 
located in urban, 
suburban and 
rural regions 

10,400 Cantonal 
Building Energy 
Certificates; 54 
archetypes were 
identified; SFHs 
represent 14.4% and 
14.1% of the total 
housing stock; 
MFHs represent 
55% of the total 
housing stock 

To provide the current 
thermal performance level 
of the Swiss residential 
building stock in 2015 
based on an analysis of the 
data available from energy 
certificates; to estimate a 
thermal performance level 
of archetype buildings and 
their respective building 
elements 

Cantonal Building Energy Performance 
Certificate data was used; archetype 
housing stock data was analysed; the 
statistics of the Federal Register of 
Buildings and Dwellings were examined; 
current state of the Swiss residential 
building stock was assessed; potential 
improvements in the building stock were 
proposed 

Approximately 75% of 
all building elements do 
not yet reach the 
thermal performance of 
buildings constructed in 
the last 15 years; the U-
values of building 
elements would have to 
be reduced by an 
additional 0.3-0.7 
W/m2K to reach low-
energy standards 

Yi and Peng 
(2019) 

Seoul, South 
Korea 

High-rise 
apartment stock, 
MFHs 

The total number of 
households was 
2,830,857, of which 
about 58% 
(1,641,383) lived in 
apartments 

To introduce an ‘archetype-
in-neighbourhood’ 
framework to develop 
cooling energy supply 
planning; to demonstrate 
estimated increases of the 
maximal month cooling 
energy demand 

A bottom-up hybrid approach was 
adopted; empirical urban data modelling 
was used; EnergyPlus was used for model 
calibration; electricity use data of 659 
apartment buildings (51,351 households) 
sampled from 18 city districts; 
characteristics of residential energy use 
during the hottest month (August) was 
examined 

The coefficient of 
determination from the 
scatter plot between the 
observed and the 
predicted was 0.969, 
representing about 97% 
variance in observed 
peak cooling energy use 

Li et al. 
(2019) 

Chongqing, 
China 

Urban residential 
blocks; MFHs in 
urban residential 
districts  

Households with 
one elderly retiree 
and elderly retired 
couples accounted 
for 4.86% and 
4.40%, respectively, 
of all households 

To develop a localised 
residential building stock-
space heating and cooling 
modelling approach to 
estimate energy 
consumption and related 
carbon emissions 

A bottom-up engineering approach was 
used; development of residential 
archetypes; space heating and cooling 
energy consumption simulation and 
aggregation; stock total floor area 
calculation and construction age 
distribution; EnergyPlus was used for 
model calibration 

The total energy 
consumption for space 
heating and cooling can 
be significantly reduced, 
with estimated 
reductions of 57.6%–
60.70% in 2020 and 
55.3%–57.2% in 2050 

Pittau et al. 
(2019) 

EU 28 SFHs; MFHs Post-war buildings 
built between 1945 
and 1969, 
representing 30% of 
housing stock  

To investigate the effect of 
massively storing carbon in 
bio-based construction 
products 

A statistic-based geo-cluster model was 
developed; a dynamic life-cycle 
assessment was performed; Eurostat data 
was used for the archetype housing 
identification  

Up to 3% of the total 
GHG annually emitted 
by all sectors in 2015 
can be removed by 2050 
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Table S.7.2: The Literature on Building Stock Aggregation through Archetype Buildings – Energy Modelling. (Continued) 

References A. Study 
Location 

B. Building 
Type 

C. Sampling Size D. Primary Aim of Model E. Methodology F. Main Findings 

Wang et al. 
(2020) 

Netherlands, 
Amsterdam 

Residential 
buildings 

- 2178 buildings were 
included then this data 
was aggregated at the 
post code level rather 
than an individual 
building 
- 84 residential postcodes 
fulfil simulation data 
requirements 

To present a data-driven 
urban scale energy 
modelling framework from 
open-source data 
harmonization, sensitivity 
analysis, heating demand 
simulation at the postcode 
level to develop energy 
modelling phase 

- City Sim energy modelling software 
was used to undertake dynamic thermal 
simulations 
- Data inputs; weather data, building 
geometry, construction data, system 
data, operation data, energy 
consumption data 
- Energy model was validated with six 
years of measured consumption data 
 

- Generalizability of the 
methodology was 
developed 
- Data availability and 
levels of detail integrated 
into the BEM. 
- Accelerating building 
stock retrofit was 
presented in urban scale 

Molina et al. 
(2019) 

South 
America, 
Chile 

Residential 
buildings 

- 83,887 households and 
266,968 people living in 
15 regions of the country 
is considered nationally 
representative  
- 15,312 dwellings were 
selected a representative 
and randomly sampled 
group 
- 496 archetypes were 
used to classify the 
housing stock 

- To develop archetypal 
Chilean houses with 
statistically significant 
representative values for 
design optimization 
parameters related to 
energy use and indoor air 
quality 
- To analyse data and 
develop housing archetypes 
can be applied to other 
building stocks in 
comparable economically 
developed countries 
 

- National census data was gathered  
- Building Permit’s dataset was 
gathered 
-National socioeconomic 
characterization survey was used 
- The Use of Time National Survey 
database was used to demonstrate a 
nationwide cross-sectional study 
- National housing monitoring network 
data was used 
- Dwelling quantity, year of 
construction, occupancy, cooking and 
heating, construction and finishing 
materials were used 

- Models of the archetypes 
require calibration after the 
simulation process to 
minimize the predictive 
error 
- A stochastic approach is 
required to capture both 
stock variability and 
parametric uncertainty 
- Categorical descriptors 
and occupant behaviors 
and poor granularity of 
physical data were 
identified as knowledge 
gap 
 

Molina et al. 
(2019) 

Santiago,  
Chile 

Residential 
buildings 

- In their database set, 
7,19 and 46 archetypes 
were found to represent 
32%, 58% and 83% of 
the national stock 
- A detached single 
storey house was 
identified as nationally 
representative archetype 

To demonstrate the 
simulation of indoor 
environment conditions 
using representative models 
of a housing stock, is a 
more common method of 
investigation for policy 
making decisions 

-A single multi-zone archetype is 
modelled in CONTAM where model 
inputs are randomly selected 
- The archetypes were identified by 
geometry, building size, dwelling type 
and construction period, values for the 
floor area and the number of storeys 
and number of occupants assigned into 
a simulation model 

The outputs can be used to 
inform future standards and 
guidelines for Chilean 
houses that simultaneously 
focus on energy demand 
reduction 
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Table S.7.3: The Literature on Building Stock Aggregation through Archetype Buildings – Energy Modelling. (Continued) 

References A. Study 
Location 

B. Building Type C. Sampling Size D. Primary Aim of Model E. Methodology F. Main Findings 

Molina et 
al. 

(2019) 

Santiago,  
Chile 

Residential 
buildings 

- 496 common 
Chilean archetypes 
were used 
- A detached single 
storey house was 
identified as 
nationally 
representative 
archetype 
- 8 probabilistic 
inputs were used 

- To demonstrate the 
Chilean Housing 
Archetypes Air quality 
model and a stochastic 
framework for predicting 
uncertainties in indoor 
pollutant concentrations 
- To predict uncertainties in 
indoor pollutant 
concentrations, ventilation 
and infiltration rates and 
their associated energy 
demand 

- CONTAM – open-source freely 
available multi-zone indoor ventilation 
and pollutant transport tool was used 
- Dwelling parameters – airflow paths and 
envelope air permeability were used 
- Both indoor and outdoor environment 
parameters were used 
-Pollutants – emission rates from cooking, 
emission rates from heating were used 
- Occupancy and activity data were 
assigned 
- Sensitivity analysis and statistical tests 
were conducted 

- 34% of Chilean 
dwellings are predicted 
to have unacceptable 
daily !"!.# 
concentrations if their 
windows are closed at 
all times. 
- Many houses require 
remediation measures to 
improve airtightness 
and to reduce their 
annual space heating 
demand 

Li et al. 
(2018) 

Yuzhong 
District, 

Chongqing 
(China) 

Residential 
buildings 

- A population of 
around 649.500 was 
identified in the 
district 
- 334 of residential 
buildings accounting 
for 60% of the total 
as a sampling size 

- To test and demonstrate a 
regional district retrofitting 
scheme by comparing the 
Energy Use Intensity (EUI) 
of the nationally 
representative archetypes  

- Building shape, the glazing ratio, 
building envelope properties, occupancy 
pattern and heating/cooling equipment 
were used in the BES model 
- Correlation analysis for cluster variable 
selection was conducted 
- Energy consumption simulations – 
building-by-building approach were 
undertaken 

A very small variation 
was found in the 
estimated stock (+0.03% 
in heating energy 
consumption and 
+2.97% in cooling 
energy consumption) 

De Lemos 
Martins et 
al. (2019) 

Toulouse, 
France 

Residential 
buildings 

Three representative 
urban blocks were 
identified 

- To identify the statistical 
sensitivity of multi-scale 
urban design factors 
regarding buildings’ energy 
demand 

- Urban archetypes characterization and 
parametrization 
- Sensitivity analysis was conducted 
- Statistical sensitivity analysis with a 
variance-based method was applied 
 

The courtyard aspect 
ratio and the standard-
deviation of the built 
height account for 
almost 50% of the 
overall impact on 
heating demand 

Tardioli et 
al. (2018) 

Geneva, 
Switzerland 

Residential 
buildings 

A total of 67 
representative 
buildings were 
identified in the 
urban dataset 

- To present a novel 
methodology for 
identifying building groups 
and associated 
representative buildings in 
urban datasets 

- Clustering algorithms are applied to the 
datasets 
- Data-cleaning, skew distributions and 
the presence of outliers were conducted 
- Datasets are classified using building 
typology information 

Clustering techniques 
achieved an average 
accuracy of 89.6% 
across many building 
typologies and up to 
97% in some instances 
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Table S.7.4: The Literature on Building Stock Aggregation through Archetype Buildings – Energy Modelling. (Continued) 

References A. Study 
Location 

B. Building Type C. Sampling Size D. Primary Aim of Model E. Methodology F. Main Findings 

Bianco and 
Marmori 

(2021) 

Italy Single and 
Multi-family 

houses 

Typology 6 was 
selected as an 
archetype to 
represent housing 
stock built after 
2005 – represents 
8,000 new buildings 
per year 

- To estimate the energy 
savings obtained when 
specific energy efficiency 
measures are applied 
- To bridge the identified 
gap and introduce a novel 
calculation tool 
 

- Geometric and thermal features of 
buildings were used 
- I-REM energy modelling framework 
was used 
- Energy consumption data was extracted 
from the Eurostat and Odysee databases 
for the validation study 

- A saving of 76.8 kWh 
is fixed for 2030, the 
double with respect to 
EU Policy scenario, and 
100 kWh for 2040 

McKenna et 
al. (2013) 

Germany - Single- and two-
family houses 
- Multi-family 

houses 

-10,000 objects 
related to energy use 
was used 
- 4,575 single- and 
two-family houses  
- 5,491 multi-family 
houses were selected 
as an archetype 

-To analyse the role of 
refurbishment measures on 
the reaching, or not of these 
energy political goals by 
developing an aggregated 
building-stock model 

- Building stock projections data 2011 to 
2050 was gathered 
- Micro-census survey data was used 
- Age categorization of housing stock was 
applied 
- Renovation measures were predicted by 
using statistical analysis methods 
- Sensitivity analysis was conducted to 
identify effective renovation measures 

-The renovation 
probability of the SFH is 
increased by 2020 from 
1% to 4%. 
-The model results 
regarding total final 
energy demand are 
significantly higher than 
in other studies 
 

Famuyibo 
et al. (2012) 

Ireland Residential 
buildings 

13 representative 
archetypes were 
identified for the 
statistical analysis 

-To present a methodology 
for the development of 
archetypes based on 
information from literature 
and a sample of detailed 
energy-related housing data 

- Multilinear regression analysis, 
clustering and descriptive statistics were 
used 
- A housing database was used 
- The Energy Performance Survey of Irish 
Housing and the Irish National Survey of 
Housing Quality databases were used 

The linear regression 
indicates a coefficient of 

determination #!	0.391, 
indicating that 39.1% of 
the variance in 
household total energy 
use 

Ahern and 
Norton 
(2020) 

Ireland Residential 
buildings 

35 reference 
dwellings were 
selected to 
appropriately 
characterize 406,918 
dwellings 

-To present a methodology 
for the derivation of 
simplified default-free 
inputs to a bottom-up 
energy modelling 

- Energy Use Intensity of housing stock 
was calculated 
- Housing typology was identified 
- Analysis of single field empirical data 
was applied 
-Heat loss throughout the building fabric 
was investigated 
-Orientation factor was considered  

The recommended 
default U-values for 
walls and roofs for a 
different dwelling 
typology correlate with 
those recommended for 
the building typology 
examined 
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Table S.7.5: The Literature on Building Stock Aggregation through Archetype Buildings – Energy Modelling. (Continued) 

References A. Study 
Location 

B. Building Type C. Sampling Size D. Primary Aim of Model E. Methodology F. Main Findings 

Pittam et al. 
(2014) 

Cork 
City, Ireland 

Residential 
buildings 

- 20 house 
typologies represent 
a total of 10,449 
housing units 
- 4 representative 
archetypes were 
selected 

-To develop representative 
archetypes using a bottom-
up approach for stock 
modelling  

-The GIS web-based mapping application 
was used 
-Geometric properties and thermal 
characteristics for each typology were 
used 
-Statistical analysis was used to aggregate 
bottom-up housing model 

-A 6% variation is 
recorded when 
compared to an 
averaged 121 
archetypes 
 

Kazas et al. 
(2017) 

Turin, Italy  Residential 
buildings 

-Representative 
urban district was 
selected to develop 
energy model 
-300 scenarios were 
developed and 
simulated in a 
parametric analysis 
 

-To generate detailed 
thermal energy profiles, at 
an urban district scale has 
been developed 
-To developed engineering 
bottom-up housing model 
for policy making decisions 
in energy use 

-A parametric analysis of the variables of 
building energy performance was carried 
at an urban scale 
-Thermal energy demand profile database 
was developed 
-The application of the aggregation 
method to generate the average thermal 
energy demand profile was developed 
-Parametric analysis was conducted to 
develop cost-effective and energy 
efficient design scenarios 

The development of an 
aggregation method, 
which could cover the 
uncertainties of a 
parametric analysis and 
would be sufficiently 
precise and general to be 
suitable for the existing 
housing stock 

Allacker et 
al. (2018) 

EU-27 
Member states  

Residential 
buildings 

-24 representative 
residential buildings 
were selected as an 
archetype within the 
EU 

- To develop a 
methodological framework 
that bridges a gap by using 
the outcomes from the BES 
and LCCA studies  
- To evaluate both energy- 
and cost- effectiveness of 
optimization scenarios  

- Dynamic thermal simulations were 
undertaken 
- Life-cycle-cost-assessment method was 
applied 
- Archetypes were selected from the 
Typology Approach for Building Stock 
Energy Assessment database 

The use of archetypes is 
useful for analyzing the 
effects of scenarios 
acting at the European 
level but implies also a 
certain degree of 
approximation at the 
building level 

Ortiz and 
Bluyssen 

(2018) 

Netherlands, 
Amsterdam 

Residential 
buildings 

-316 emails were 
sent out inviting 
participants to 
complete the 
questionnaire 
-Six groups were 
represented with the 
25 final predicting 
variables 

-To demonstrate the 
effectiveness of the 
TwoStep cluster analysis 
and the development 
-To present the results of a 
new questionnaire survey 
for measuring comfort, 
health and energy habits 

-The questionnaire survey was developed 
-The questionnaire was developed with 
the Qualtrics online platform 
-SPSS software suite was used to conduct 
the relevant statistical analysis 
 

The archetype analysis 
represents the greatest 
social challenge and thus 
should be considered a 
‘high priority’ method of 
design to explore subject 
respondents’ behaviour 
on energy use 
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Table S.7.6: The Literature on Building Stock Aggregation through Archetype Buildings – Energy Modelling. (Continued) 

References A. Study 
Location 

B. Building Type C. Sampling Size D. Primary Aim of Model E. Methodology F. Main Findings 

Zhang et al. 
(2019) 

Singapore High-rise 
residential 
buildings 

30 urban blocks in 
six typologies that 
represent a diverse 
range of urban 
forms were 
examined 

- To identify correlations 
between solar harvesting 
potential and energy 
consumption 
- To develop optimization 
scenarios for planning of 
appropriate building 
geometry 

- Building energy modelling approach 
was adopted 
- EnergyPlus software suite was used 
- Urban planning layout and geometric 
parameters were constructed  
- Sky Exposure Factor and Sky View 
Factor were calculated concurrently 
- Solar energy harvesting potential was 
calculated  
- Regression analysis was conducted for 
the energy optimization scenarios 

- The building cooling 
load intensity of the 
proposed hybrid urban 
block design was 4.7% 
lower than that of the 
current linear slab 
building typology, 
which can be attributed 
to the combined effects 
of the reduction of solar 
gain (13.2%) 

Guevara-
Sanchez et 
al. (2016) 

Spain Linear type 
medium-rise 

residential blocks 

ASHRAE RP-884 
database  

- To develop a 
methodological framework 
to identify acceptable 
temperature thresholds 

- Spanish climate data was used for Avila, 
Seville and Madrid 
- Vulnerable household population was 
selected by using census data 
- EnergyPlus software suite was used 
- Spanish Technical Code criteria were 
used for the BPE studies 
- Adaptive temperature thresholds for 
selected climates were investigated  
 

-This study can set the 
basis for fuel poverty 
definitions for all 
Mediterranean and 
Southern European 
countries developing 
their own methodologies 

Calama-
Gonzalez et 
al. (2021) 

Spain H-typology of 
social housing 

estates 

H-typology 
represents around 
13,890 social 
housing dwellings, 
in contrast to 
approximately 
10,715 linear-
typology buildings 

- To assess the current 
performance of 
representative building 
typologies in social housing 
stock 

- Open-access energy simulation tool was 
used 
- Statistical analysis was conducted 
- The Andalusian Agency for Housing 
and Retrofitting dataset was used 
- On-site environmental monitoring was 
conducted 
- Sensitivity analysis was conducted 
- Statistical analysis was undertaken by 
using R v.3.5.3 software suite 

An average annual 
discomfort hours of 
around 68% with higher 
percentage of annual 
undercooling discomfort 
hours 
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Table S.7.7: The Literature on Building Stock Aggregation through Archetype Buildings – Energy Modelling. (Continued) 

References A. Study 
Location 

B. Building Type C. Sampling Size D. Primary Aim of Model E. Methodology F. Main Findings 

Pasichnyi et 
al. (2019) 

Stockholm, 
Sweden 

Residential 
buildings 

5,532 buildings 
from seven 
retrofitting packages 
were selected 

- To present a 
methodological framework 
by using rich datasets to 
develop different building 
archetype for bottom-up 
energy modelling approach 

- Urban building energy modelling 
approach was adopted by using 
archetyping approaches 
- The case study method was applied 
- Energy performance certificates data 
were used 
- Climate data and reference data on 
standardized use and building envelope 
were used 
- Mean Absolute Scaled Error was applied 
for the statistical analysis 

Archetype subsets 
would be not only 
sufficiently large, but 
also sufficiently 
homogenous to ensure 
feasibility of the 
proposed retrofitting 
measures 
 

Wang and 
Holmberg 
(2014) 

Sweden, 
Switzerland 

Residential 
buildings 

1,400 existing 
Swedish building 
stock statistics from 
derived field studies 
were employed to 
validate the base-
line scenario 

-To present a 
methodological framework 
combines energy demand 
modelling and retrofit 
option rankings with life-
cycle cost analysis 

- The archetypes and the representative 
housing stock were developed  
- The ranking of implementing different 
retrofit alternatives to the energy saving 
potential is identified 
- Sensitivity analysis was conducted 
- Cost-effectiveness model was conducted 
- Life-cycle-cost-assessment method was 
applied 

- Energy saving 
potential of retrofitting 
is 36-54% in the 
archetypes 
- If larger contingents of 
similar archetypes 
magnitude the 
retrofitting on a 
municipal level, it would 
contribute to energy-
policy design 

Nageli et al. 
(2018) 

Sweden, 
Switzerland 

Residential 
buildings 

The building stock 
size is limited to a 
representative 
sample stock of 
10,000 synthetic 
buildings 

-To present a new method 
of building stock modelling 
based on the generation of 
synthetic building stocks 

- Data available from national statistics 
was used 
- Building typology analysis was 
conducted through Monte Carlo sampling 
from a distribution 
- Building characteristics, age, structural 
type were used for the statistical analysis 

-The variation within 
common classifications 
of building type and 
construction period can 
be much larger than the 
average differences 
between construction 
periods or building types 
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Table S.7.8: The Literature on Building Stock Aggregation through Archetype Buildings – Energy Modelling. (Continued) 

References A. Study 
Location 

B. Building Type C. Sampling Size D. Primary Aim of Model E. Methodology F. Main Findings 

Dodoo and 
Gustavsson 
(2016) 

Sweden, 
Switzerland 

Residential 
buildings 

T.1 – a prefab 
concrete-frame 
T.2 – a massive 
timber frame 
T.3 – a light timber 
frame 

-To determine the impacts 
of climate change on the 
performance of different 
building configurations 

-Dynamic hour-by-hour energy balance 
modelling and systems analysis were 
conducted 
-Climate datasets were used 
-Hourly downscaling of future climate 
dataset was applied 
-Overheating risk assessment was 
conducted 

- Overheating risk was 
found to be slightly 
higher for the massive-
frame building and 
slightly lower for the 
light-frame building 

Froemelt et 
al. (2018) 

Zurich, 
Switzerland 

Residential 
buildings 

Detailed information 
on the 
characteristics and 
consumption 
behaviour of 9,734 
households were 
identified 

-To provide an appropriate 
basis in support of effective 
environmental 
policymaking decisions 

- Two-tiered clustering method was 
applied 
- Wald-clustering method was applied for 
the statistical analysis 
- Swiss Household Budget Survey was 
used 
- Swiss energy consumption data was 
used 
- Pattern recognition and clustering of 
households were explored 
- Individual archetypes and their 
interrelations were explored 

- Delivering tailor-made 
insights into households’ 
consumption behaviour 
for policymakers to 
derive and prioritize 
targeted measures 
 

Heeren et 
al. (2012) 

Zurich, 
Switzerland 

Residential 
buildings 

The building stock 
is clustered into 13 
construction periods 
according to their 
year of construction 

- To demonstrate an 
innovative assessment 
methodology in the form of 
a life-cycle-based building 
stock model 
- To investigate the 
feasibility of a sustainable 
energy vision 

- Bottom-up energy framework was 
adopted 
- Archetype analysis was applied for 
retrofitting of building envelope 
- LCCA analysis was applied 
- Swiss building stock was analyzed 
- Algorithms were developed for the 
statistical analysis 

- Developed model will 
be enhanced by means 
of GIS-integration of 
Zurich, the city will be 
clustered in supply and 
demand regions in order 
to increase the model’s 
resolution 

Lopez-
Moreno et 
al. (2021) 

Madrid, Spain Residential 
buildings 

Eight residential 
urban classes 
selected for an 
archetype analysis 

-To present a systematic 
methodology to identify 
and classify residential 
urban areas according to 
representative homogenous 
urban zones 

-Data detailing urban classifications and 
indicators were collected from previous 
studies 
-Cluster analysis was conducted to define 
and validate archetypes 
-Statistical Institute of the Community of 
Madrid dataset was used 

The correlation is higher 
for the open mid-rise, 
with values greater than 
55% for both low- and 
mid-rise urban blocks 
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Table S.7.9: The Literature on Building Stock Aggregation through Archetype Buildings – Energy Modelling. (Continued) 

References A. Study 
Location 

B. Building Type C. Sampling Size D. Primary Aim of Model E. Methodology F. Main Findings 

Brogger 
and 
Wittchen 
(2017) 

Denmark Residential 
buildings 

Using data from the 
Danish Energy 
Performance 
Certificate (EPC) 
scheme – 27 
archetypes were 
identified as 
nationally 
representative 
sample size 

-To identify characteristics 
of building stock models 
that are essential for 
determining the energy-
saving potential in national 
building stocks accurately 
 

-Example building approach was adopted 
-Statistical approach was adopted to 
determine bottom-up energy policy design 
-Heat and electricity supply models were 
investigated to provide a valid 
background for the BES analysis 
-Building energy simulation models were 
built at a disaggregated level 
 

It was found that the 
most cost-effective to 
reduce the energy 
demand in buildings by 
only 12%-17%, even 
though an energy-
saving potential of 
around 40% was 
identified 

Perera et al. 
(2018) 

Nablus, 
Palestine 

Residential 
buildings 

The study is limited 
the scope to a single 
urban archetype 
focusing more on 
the urban density 

-To quantify the impact of 
urban climate on energy 
system design and 
assessing the consequences 
of neglecting this specific 
aspect on energy system 
performance  

-Urban microclimatic conditions, urban 
design, energy demand and optimization 
of energy system modelling were 
conducted 
-BES analysis method was applied 
-CitySim – open-source software suite 
was used 
- Pareto optimization of selected urban 
blocks parameters were conducted 

-Energy use increase by 
5-8% while grid 
dependency increases by 
up to 57% 
-More fluctuations in 
demand profile are 
observed when moving 
from standalone 
buildings to dense urban 
areas 

Ben and 
Steemers 
(2018) 

Cambridge, 
United 

Kingdom 

Residential 
buildings 

A total 78 
households 
participated in the 
surveys, including 
55 usable cases 
(response rate 28%) 
from face-to-face 
surveys and 23 
usable cases 
(response rate 12%) 
from postal surveys 

-To identify household 
archetypes and behavioral 
patterns in order to allow a 
targeted approach in 
energy-saving policy and 
retrofit improvement 

- A statistical approach to cluster 
households based on empirical data 
collected from a household survey 
- Non-parametric correlation analysis was 
carried out in order to determine the 
relationship between behavioral factors 
and the households or dwellings 
characteristics  
- The questionnaire was paired with data 
on building characteristics obtained from 
the Domestic Energy Performance 
Certificates dataset 
- Factor analysis method was applied by 
using SPSS software suite 

-The research has 
identified five different 
household archetypes to 
serve as a basis for 
targeted policy 
interventions tailored to 
specific socio-
demographic groups 
regarding domestic 
energy demand 
reduction 
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Table S.7.10: The Literature on Building Stock Aggregation through Archetype Buildings – Energy Modelling. (Continued) 

References A. Study 
Location 

B. Building Type C. Sampling Size D. Primary Aim of Model E. Methodology F. Main Findings 

Taylor et al. 
(2014) 

London, 
United 

Kingdom 

Residential 
buildings 

3,456 dwelling 
variants identified 
for an archetype 
analysis, identified 
through six different 
Design Summer 
Year (DSY) climate 
files from locations 
within the UK 

- To examine the 
overheating risk in London 
dwelling archetypes when 
simulated under different 
UK climates, both in the 
present and under ‘hot 
future’ conditions 

- Dynamic thermal simulations were 
undertaken 
- EnergyPlus – open-source energy 
simulation tool was used 
- 15 dwelling archetypes (27 variants 
including ground-, mid- and top-floor 
flats) 
- Risk of overheating risk in UK cities 
was predicted 
- Regression analysis was conducted  
- The Kendall’s computation criterion was 
applied to determine statistically 
representative findings 

- The weather files can 
influence the ranking of 
relative overheating risk 
between dwelling types, 
with significant 
variations in the relative 
ranking criterion 
- The calculated 
overheating metrics of 
dwelling archetypes 
could be found within a 
central range 2 -3 °C 

Oikonomou 
et al. (2012) 

London, 
United 

Kingdom 

Residential 
buildings 

Amongst 92 
different built form 
and dwelling age 
combinations 
identified, the 15 
most common were 
selected for 
simulation 

-To assess variations in 
indoor temperatures in 
London dwellings during 
periods of hot weather, and 
the degree to which those 
dwelling-to-dwelling 
variations influences the 
BEM 

- EnergyPlus – open-source energy 
simulation tool was used 
- Geometry and structure of analytical 
energy model were constructed 
- English House Condition Survey data 
was used 
- Occupancy schedules were assigned into 
the BEM 
- Weather files were assigned into the 
BEM 
- Housing typology analysis was 
conducted 

- The effects of built 
form and other dwelling 
characteristics appear to 
be more important 
determinants of variation 
in high indoor 
temperatures than the 
location of a dwelling 
within London’s urban 
heat island effect 

Nishimwe 
and Reiter 
(2021) 

Wallonia 
Region, 
Belgium  

Building stock in 
general 

- Using cadastral 
data of more than 
1,700,000 Walloon 
buildings 
- 9,876 statistical 
sectors were 
identified as an 
archetype for the 
statistical analysis 

- To assess the Energy 
Performance Certificates of 
the whole building stock 
and test to what extent 
different types of variables 
(building factors and socio-
demographics) explain 
annual domestic energy use 

- Cadastral map data was used 
- GIS software suite was used to develop 
building geometry into the model 
- Data mining process was conducted 
- Ordinal logistic regression analysis 
method was used to test the parameters 
for an archetype analysis 
- Lasso regression method was applied 
- Descriptive statistics of predictors were 
conducted 

- Considering residential 
buildings, the building 
usages explained 
66.46% of EPCs, 
whereas tertiary building 
usages explained 
50.53%.  



Supplementary Material 

 49 

Supplementary Material 7: Worldwide Statistically Representative Archetypes 
Table S.7.11: Pilot studies that evaluated on the literature on infrared thermography for the energy audit of buildings. 

References A. Study Location B. Building Type C. Primary Aim of Model C. Methodology D. Main Findings 
Tejedor et 
al. (2021) 

Italy, all the regions 
including the 
Mediterranean 
island of Sicily 

Buildings (i.e., 
residential, offices) 

- To propose a critical review on 
the employment of the 
quantitative IRT survey for the 
assessment of the U-value of the 
building envelope. 
- To demonstrate a novel 
methodological framework for the 
IRT technique and its impact on 
building performance evaluation 
studies. 
- To highlight the necessity for 
specialized thermographs who 
deal with an evolving 
methodology. 

- A systematic literature review 
was conducted. 
- Laboratory test, in-situ 
measurements and infrared 
radiometer thermography 
approaches were selected main 
keyword for the bibliographic 
analysis.  
- Common approaches to the U-
value assessment were discussed 
as follows; (i) analogies with 
coeval buildings; (ii) calculation 
method; (iii) heat flow meter 
measurements; (iv) laboratory 
testing; (v) IRT survey. 

- The U-value can be calculated by 
using IRT. 
- Further research is required between 
simulation and experimental data in 
order to provide reliable results for the 
development of new techniques based 
on IRT. 
- Experimental field-testing studies 
demonstrate more reliable findings 
than steady-state analysis of U-values 
of building envelopes. 
- Sensitivity analysis is required to 
validate discrepancies between the 
effects of radiations and boundary 
conditions. 

Cardani et 
al. (2021) 

Worldwide Buildings (i.e., 
residential, offices) 

- To provide an analytical 
framework for energy auditors 
and thermographers. 
- To present a critical review of 
the use of the IRT survey in the 
building energy audit. 

- Bibliographic analysis was 
conducted. 
- Current energy audit approaches 
in energy audit were conducted.  
- Both passive and active 
thermography measures and its 
implications on building 
performance evaluation were 
conducted. 
 

- Passive approach was found to be the 
most common driver to detect 
thermally significant defects. 
- Significance of integration of 
different non-destructive testing of 
building envelopes could contribute to 
the IRT survey development 
framework. 
- Further research is required to 
represent archetype housing stock 
analysis for the development of 
benchmarking criterion in residential 
sector. 

Habaibeh et 
al. (2021) 

San Siro – Milan, 
Italy 

Social housing stock To identify an innovative and up-
to-date methodological didactic 
approach for defining the most 
appropriate solutions for the 
refurbishment of a social housing 
stock. 

Exploratory case study approach 
was conducted. Design driven 
approach was adopted with 
employing the historical research 
and survey, on-site visit, hands-
on-training and on-site exposition. 

To improve the awareness of the 
students on the possibilities of 
building renovation and design 
applications for social housing stock.  
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Table S.7.12: Pilot studies that evaluated on the literature on infrared thermography for the energy audit of buildings. (Continued) 

References A. Study 
Location 

B. Building Type C. Primary Aim of Model C. Methodology D. Main Findings 

Sbrogio et 
al. (2021) 

Worldwide Buildings (i.e., 
residential, offices) 

To present a methodological 
framework for evaluating energy 
and environmental performance 
of building stock by the use of 
non-invasive techniques. 

A review of instrumental analysis was 
conducted as follows (i) visual testing; 
(ii) thermographic inspection; (iii) 
thermal comfort; (iv) post-occupancy 
evaluation. 

Only the use of coring showed the 
presence of moisture and water percolation 
on thermal insulation. 
Sonic trial proved the presence of some 
mechanical anomalies revealed by 
different velocities of the sound 
propagation in the masonry. 

Gupta and 
Gregg 
(2021) 

Victoria, 
Canada 

On-site 
experimental 
structure  

To develop an external IRT 
method to determine clear wall 
U-values.  
To determine the viability of an 
external thermographic survey 
technique for use in energy 
audits.  

The IRT measures were conducted on a 
conditioned at-scale insulated wood-
frame wall structure. FLIR A65 IR 
camera was used. 
A 3D thermal modelling the Nx 
software package was used to validate 
IRT survey findings. 

U-value measurement with IRT in the best-
case scenario deviated between 6.25%-
25.00%. 
The U-value results with IRT were 
validated and ranged between 11.53% - 
%10.00 in the best-case scenario.  

Abrahao et 
al. (2021) 

Porto, 
Portugal  

On-site 
experimental 
structure  

To develop a thermographic 2D 
U-value map for the 
characterization of heavy walls 
in stationary regime. 
To assess the temperature 
distribution of each transition 
phase between each defect and 
its undisturbed surroundings. 

Measurements were conducted in a 
walk-in climatic chamber – 
FITOCLIMA 1000. 2D U-value map is 
created. 2D colour map was developed 
to identify the distribution of the 
thermal transmittance of the walls. 
In-situ QIRT test was conducted. 

Optimisation of a TWALL mesh 
comprised of 1600 elements of 8 x 6 
pixels.  
Image quality losses were estimated at 
6.65%.  
2D correlation coefficient, R was equal to 
0.287 which means that only 8.23% of the 
processed thermal image can be attributed 
to the original thermogram. 

Bartesaghi-
Koc et al. 

(2021) 

Brescia, 
Italy 

Residential Tower 
Block 

To verify the applicability of the 
energy rating system which was 
newly drawn up by the Green 
Building Council in Italy. 
To design a methodological 
framework for low-energy 
design and retrofitting. 

On-site building diagnostic method was 
used. EnergyPlus software suite was 
used to undertake dynamic thermal 
simulations.  
IRT survey was carried out. The PAN 
software used to process the IRT survey 
findings. 

The rock wool insulation under the 
ventilated façade with a density of 70 
kg/m3 and a thickness of 12 cm which is 
highly breathable allows surface 
temperatures of over 18° C to be reached 
and guarantees good hygrometric 
behaviour.  
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Supplementary Material 7: Worldwide Statistically Representative Archetypes 
Table S.7.13: Pilot studies that evaluated on the literature on infrared thermography for the energy audit of buildings. (Continued) 

References A. Study 
Location 

B. Building Type C. Primary Aim of Model C. Methodology D. Main Findings 

De Angelis 
et al. (2020) 

Nottingham, 
United 
Kingdom 

19th century 
detached house 
(renovated cottage 
house) 

To develop a novel 
methodological framework 
where infrared thermography 
of a deep retrofitted building is 
combined with deep learning 
neural networks.  
To predict the future 
effectiveness and economic 
viability of wall insulation in 
terms of energy savings. 

Exploratory case study approach 
was adopted.  
A mathematical model was 
developed to predict the accuracy of 
life-long monitoring of buildings. 
Infrared thermography and 
temperature sensors were used to 
assess building fabric thermal 
performance. FLIR E25 thermal 
camera was used as building 
diagnostic tool. The Matlab was 
used to validate temperature 
recordings. 

High accuracy of predicting the actual 
energy savings with success rate of 
about 82% when compared with the 
calculated values. 
The Artificial Neural Networks (ANN) 
predicted heat losses are slightly higher 
than the calculated ones in 14 out 21 
cases for each wall type. 
The range of error for the insulated 
wall is -13% to +15% and for the 
uninsulated wall is -14% to +17.5%. 

Lei et al. 
(2021) 

Mestre-
Venice, 
Northern Italy 

20th century 
multi-family 
medium-rise 
apartment 
building 

To assess the current condition 
and propose cost effective and 
energy-efficient retrofit design 
interventions. 
To develop a methodological 
workflow to provide a guidance 
on the development of retrofit 
interventions in order to 
improve structural resistance of 
existing housing stock.  

The housing typology classification 
was conducted to identify nationally 
representative housing type for 
archetype analysis. 
IRT survey was conducted. 
3D analytical model was developed 
to perform structural seismic 
analysis. The 3Muri software suite 
was used to perform overall seismic 
behaviour of building.  

In respect to out-of-plane mechanisms, 
the weakest panel was n.1 in wall 15 in 
the north wing and n. 1 in the west 
wing. 
Building fabric thermal performance 
analysis confirmed that low 
temperatures on internal surfaces (10-
14° C) close to the dew point 
temperatures, especially in the 
junctions between floor slabs and walls 
and between the roof and the walls. 

Sakiyama et 
al. (2021) 

The city of 
York – 
England, 
United 
Kingdom 

Low-energy 
dwellings which 
were built 
according to 
Passivhaus 
standard 

To present the methodology 
and results of in-situ testing of 
building fabric thermal 
performance to calibrate as-
built energy models. 
 

Integrated Environmental Solutions 
(IES) software suite was used.  
The in-situ tests included repeat 
testing of air permeability integrated 
with thermal imaging survey and 
heat flux measurements of the 
building fabric elements. 

Validation of the model by altering the 
wall U-value to 0.26 W/ m2 K made 
sense as this brought the external wall 
U-values closer to the BRUKL limiting 
parameter of 0.30 W/ m2 K.  
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Supplementary Material 8: Step-by-Step Development of Statistically 
Representative Archetypes in South-eastern Europe - Cyprus 

Step 1: Benchmarking indicators for the development of representative archetypes 

 
Figure S.8.1: Data model and identification criteria for the representativeness of archetypes in 
this study. 

 
Figure S.8.2: 3D model of the coastal city of Famagusta. 
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Supplementary Material 8: Step-by-Step Development of Statistically 
Representative Archetypes in South-eastern Europe - Cyprus 

Step 2: Census data  

 
Figure S.8.3: Distribution of population by household type – single occupant. Source: Eurostat, 
2018 
Information: Figure S.8.3 shows the population of single-person occupancy in both the EU-27 
and South-eastern Mediterranean countries. This figure indicates that 7% of the population lives 
as a sole occupant in Cyprus. 

 
Figure S.8.4: Distribution of population by household type – two adults younger than 65 years. 
Source: Eurostat, 2018 
Information: Figure S.8.4 shows the population distribution of the household type of two adults 
younger than 65. In this analysis, the data predominantly examines the census data in the South-
eastern Mediterranean region that has been applied to identify aggregate housing stock analysis for 
the energy modelling of this study. The data shows that 11.5% of Cypriot households are comprised 
of two adults younger than 65 years. Household type is the determinant variable for exploring the 
correlations between occupancy type and energy consumption in the energy modelling phase of 
this study. As shown here, 11.5% for this type of occupancy is very close to the EU-27 average of 
12.5%.  
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Supplementary Material 8: Step-by-Step Development of Statistically 
Representative Archetypes in South-eastern Europe - Cyprus 

Step 2: Census data (Continued) 

 
Figure S.8.5: Distribution of population by household type – three or more adults. Source: 
Eurostat, 2018 
Information: Figure S.8.5 shows the distribution of household occupancy of three or more adults, 
which represents 12.1% of Cypriot households. This data demonstrates the moderate occupancy 
type that was applied to determine representative occupancy profiles for the energy modelling 
phase of the study. It should be noted that identification of representative occupancy profiles though 
use of census data could lead to obtaining more reliable results to validate the data from the building 
energy modelling phase of the study. 

 
Figure S.8.6: Overcrowding rate by age group – 65 years or over. Source: Eurostat, 2018 
Information: Figure S.8.6 shows the distribution of age group in both the EU-27 and in South-
eastern Mediterranean countries. As can be seen from the graph, the ageing population accounts 
for less than 1% in Cyprus while approximately 7% of EU-27 population is 65 years or over. This 
data indicates that the younger population is the dominant population in Cyprus and this is the 
reason that there is a demand for affordable housing schemes on this South-eastern Mediterranean 
island.  
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Supplementary Material 8: Step-by-Step Development of Statistically 
Representative Archetypes in South-eastern Europe - Cyprus 

Step 2: Census data (Continued) 

 
Figure S.8.7: Overcrowding rate by tenure status – owners with no outstanding mortgage or 
housing loan. Source: Eurostat, 2018 
Information: Figure S.8.7 shows the distribution of tenure type. This graph shows that only 2% of 
Cypriot households are owner occupiers with no outstanding mortgage or housing loan, while 
approximately 17.5% of households are owner occupiers with no outstanding mortgage or housing 
loan in the EU-27 countries. The results show that fewer households were not having to pay any 
loans when they were first-time property buyers in Cyprus in comparison to other South-eastern 
Mediterranean countries.  

 
Figure S.8.8: Overcrowding rate by tenure status – tenants renting at market price. Source: 
Eurostat, 2018 
Information: Figure S.8.8 shows the distribution of tenure type. It can be seen that 6% of Cypriot 
households were renters, while renters accounted for approximately 20% of households in the EU-
27 region. The data demonstrates that private renters should be considered when evaluating the 
development of energy performance certificates (EPCs) in the South-eastern Mediterranean region.  
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Supplementary Material 8: Step-by-Step Development of Statistically 
Representative Archetypes in South-eastern Europe - Cyprus 

Step 3: Household size 

 
Figure S.8.9: Distribution of households by household size – solo occupancy. Source: 
Eurostat, 2018 
Information: Figure S.8.9 shows the distribution of households for solo occupants. It shows 
that 21% of households were comprised of sole occupants in Cyprus, while more than 32.5% 
of households were comprised of sole occupants in the EU-27 countries.  

 
Figure S.8.10: Distribution of households by household size – two people. Source: 
Eurostat, 2018 
Information: Figure S.8.10 shows the distribution of households that are comprised of two 
people. It was recorded that Cypriot households that consist of two people are mainly 
comprised of married couples or professionals. Therefore, two-person occupancy correlates 
with the younger population recorded in Cyprus. This type of household could have a direct 
effect on the identification of energy consumption profiles in the South-eastern 
Mediterranean region. In this study, the energy modelling approach adopted this indicator to 
validate energy simulation results with households’ actual energy bills.  
By contrast, more than 30% of EU-27 households are comprised of two people in residential 
buildings. This data demonstrates that the Cypriot household profile of two residents is 
relatively higher than the EU-27 average, which proves that two-person households should 
be considered in the building energy modelling phase of this study. 
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Supplementary Material 8: Step-by-Step Development of Statistically 
Representative Archetypes in South-eastern Europe - Cyprus 

Step 3: Household size (Continued) 

 
Figure S.8.11: Distribution of households by household size – three people. Source: Eurostat, 
2018 
Information: Figure S.8.11 shows the percentage of households with three people. In Cyprus, 
approximately 17% of households are comprised of three people in residential buildings, while the 
average for EU-27 countries is 16%.  

 
Figure S.8.12: Distribution of households by household size – four people. Source: Eurostat, 
2018 
Information: Figure S.8.12 shows the percentage of households with four people. This household 
type is approximately 18% for Cyprus while for the EU-27 countries it is less at nearly 14%.  
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Supplementary Material 8: Step-by-Step Development of Statistically 
Representative Archetypes in South-eastern Europe - Cyprus 

Step 3: Household size (Continued) 

 
Figure S.8.13: Distribution of households by household size – five people. Source: Eurostat, 
2018 
Information: Figure S.8.13 shows the percentage of households comprised of five people. For 
Cyprus this is approximately 8%, while for the EU-27 countries this is 4.3%. This difference is due 
to the presence of different age groups in given households. This data correlates with household 
energy consumption by considering the high-occupancy pattern type in the building energy model 
to undertake dynamic thermal simulations. 

 
Figure S.8.14: Distribution of households by household size – six or more people. Source: 
Eurostat, 2018 
Information: Figure S.8.14 shows the distribution of household size for six people. In Cyprus, 
2.4% of households consist of six or more people, while 2% of this household type is recorded for 
the EU-27 region. The data demonstrates that the high-occupancy profile type is relatively higher 
for Cyprus than for the EU-27 average; this data should be considered when evaluating the reasons 
for high energy bills and to validate the data in conjunction with building energy simulation 
findings.  

 
 



Supplementary Material 

 59 

Supplementary Material 8: Step-by-Step Development of Statistically 
Representative Archetypes in South-eastern Europe - Cyprus 

Step 4: Household data  

 
Figure S.8.15: Average number of bedrooms per person by type of household. Source: Eurostat, 
2018 
Information: Figure S.8.15 shows the average number of occupied rooms by household type. For 
a Cypriot household with one adult aged over 65 years, the household owned an average of a 5-
bedroom property, while households with two adults with at least one adult aged over 65 owned an 
average of a 2.5-bedroom property. This data demonstrates that, in Cyprus, ageing households 
occupy dwellings with a high number of bedrooms; relatively higher than the EU-27 average.  

 
Figure S.8.16: Mapping of household type in the Mediterranean basin. Source: Eurostat, 2018 
Information: Figure S.8.16 demonstrates occupancy density in residential buildings in the South-
eastern Mediterranean basin. An average of over 2.62% people per household was recorded both 
in Cyprus and Croatia; this data should be considered when identifying representative occupancy 
profiles in building energy models. In this present study, the representative occupancy profiles were 
identified using both the Eurostat data and the data gathered from the questionnaire survey findings 
on post-war social housing estates in order to validate the data concurrently. 
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Supplementary Material 8: Step-by-Step Development of Statistically 
Representative Archetypes in South-eastern Europe - Cyprus 

Step 4: Household data (Continued) 

 
Figure S.8.17: Distribution of household type – two adults under 65. Source: Eurostat, 2018 
Information: Figure S.8.17 shows the distribution of the household type of two adults younger 
than 65 years old. For Cyprus, this household type is 11%, while for the EU-28 the average was 
found to be 13%. The data demonstrates that this younger age group is the dominant household 
type for the Cypriot context; this variable should be taken into consideration while developing 
representative aggregate energy models. 

 
Figure S.8.18(a) and (b): Distribution of household type considering age and sex. Source: 
Eurostat, 2018 
Information: Figure S.8.18 (a) and (b) demonstrate the distribution of household type by age (over 
65 years) and sex. In Cyprus, 75% of this age group of men lives in a couple without an additional 
(third) person, while the EU-27 average for this type is 60%. Over 50% of this age group of women 
lives in a couple without an additional (third)person, while the EU-27 average for this type is 40%. 
This data shows that an elderly couple is a representative dominant occupancy profile and should 
be considered when developing aggregate energy models for building energy models. 
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Supplementary Material 8: Step-by-Step Development of Statistically 
Representative Archetypes in South-eastern Europe - Cyprus 

Step 4: Household data (Continued) 

 
Figure S.8.19: Thermal conditions by household type. Source: Eurostat, 2019 
Information: Figure S.8.19 shows the thermal condition of households unable to keep their homes 
adequately warm. It can be seen that 15% of households with two adults with at least one occupant 
aged over 65 years reported that they were unable to keep their home thermally comfortable in the 
winter in Cyprus, while the EU-27 average was recorded at 8%. While many EU countries found 
the thermal comfort of their dwellings to be below the EU-27 average, Cyprus was slightly higher 
than the EU-27 average. Considering each EU country, it was found that the 15% rate was higher 
than each EU country categorisation. The reason for this is that Cyprus joined the EU in 2004 while 
the first EPBD mandates were recommended in 2010, the implementation wasn’t applied until 
2016. Since then, the Republic of Cyprus (RoC) has not been able to achieve the common 
implementation measures to improve the energy efficiency of its housing stock. 

 
Figure S.8.20: Physical conditions of EU buildings. Source: Eurostat, 2019 
Information: Figure S.8.20 shows the condition of housing stock in the EU. The data shows that, 
in Cyprus, approximately 35% of houses belonging to households with two adults at least one of 
whom is aged 65 years or over had structural issues, while the EU-27 average was recorded as just 
less than 10% for the same household type. It can be seen that worse housing conditions were 
recorded in Cyprus than in most other EU-27 countries. This is due to the late implementation of 
EPCs for buildings in the RoC and a lack of awareness around the energy efficiency measures 
needed to improve the physical quality of the existing housing stock.  
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Supplementary Material 8: Step-by-Step Development of Statistically 
Representative Archetypes in South-eastern Europe - Cyprus 

Step 4: Household data (Continued) 

 
Figure S.8.21: Physical conditions of housing stock in general in the EU. Source: Eurostat, 2019 
Information: Figure S.8.21 demonstrates the physical condition of housing stock in the EU 
between 2018 and 2019. The data shows that only 2% of Cypriot housing stock is of inadequate 
quality while the EU-27 average was less than 5%. This data highlights that the EPBD 
implementation schemes both in 2010 and 2016 and the mandates of issuing EPCs in 2016 had an 
impact on the overall quality of housing stock in the RoC.  

 
Figure S.8.22: Map of the physical conditions of EU housing stock in general. Source: Eurostat, 
2019 
Information: Figure S.8.22 maps the physical conditions of housing stock. It can be seen that 
Cypriot housing stock falls in the range of 1.5 to 4, and this in the lowest ranking category across 
Europe. This factor is due to the presence of mostly newly built housing stock across the island, 
while, in other EU countries, the housing stock dates back to the post–World War II era. 
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Supplementary Material 8: Step-by-Step Development of Statistically 
Representative Archetypes in South-eastern Europe - Cyprus 

Step 5: Building materials 

 
Figure S.8.23: Thermal conditions of Mediterranean housing stock. Source: Eurostat, 2018 
Information: Figure S.8.23 shows the thermal condition of housing stock. It can be seen that in 
Cyprus only 1% of the population who lives in cities report that they have poor quality homes in 
comparison to other EU-27 regions. This is because in the dataset a relatively high population 
sample was extracted for the EU-27 countries but due to the small population of Cyprus, the 
extracted data has no shown effect size on the thermal quality of housing stock in Cyprus. This 
confirms that there is a research gap when comparing small cities with small population sizes like 
those in Cyprus with any other European country with a relatively large population size. Most 
importantly, in this comparison, the data illustrates that population size and housing stock figures 
are determinant factors that can make a reliable analysis for benchmarking. Despite the RoC having 
a relatively small population size in comparison to other EU countries, the data findings reveal that 
inadequate housing conditions have led to an overheating risk in the summer. This data was used 
to evaluate the aggregation of housing stock during the building performance evaluation phase of 
this study. 

 
Figure S.8.24: Physical condition of housing stock. Source: Eurostat, 2019 
Information: Figure S.8.24 shows the physical condition of housing stock in 2010 and 2019. In 
Cyprus, approximately 10% of buildings were inadequately built, while in the EU-27, this was 5%. 
The results reveal that Cypriot housing stock is twice as likely to be inadequately built as housing 
stock in other EU-27 countries. This is due to the absence of insulation materials during the 
construction phase of housing projects and a lack of implementation of the EPBD mandates. This 
data proves that in Cyprus, most homes are vulnerable to overheating risks and this condition has 
also led households to not be able to keep their homes warm in the winter.  
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Supplementary Material 8: Step-by-Step Development of Statistically 
Representative Archetypes in South-eastern Europe - Cyprus 

Step 5: Building materials (Continued) 

 
Figure S.8.25: Physical condition of housing stock in the South-eastern Mediterranean basin. 
Source: Eurostat, 2019 
Information: Figure S.8.25 shows the physical condition of housing stock in Cyprus and two other 
two major Mediterranean countries, namely Italy and Spain. It can be seen that in Cyprus, over 9% 
of housing stock was physically inadequate, and this was the highest rate amongst these three 
countries. This is due to the absence of thermal insulation material during the construction phase 
of housing projects and the lack of implementation of the EPBD in the RoC.   
 
Step 6: Construction period of European housing stock 

 
Figure S.8.26: Construction period of housing stock in Europe. Source: Eurostat, 2018 
Information: Figure S.8.26 shows classification of housing stock by construction period. In 
Cyprus, 36.5% of housing stock was built between 2000 and 2008. Cypriot housing stock is 
relatively newly built-in comparison to other EU countries. Despite the high amount of newly built 
housing, the lack of regulatory bodies to implement the EPBD has led to thermally uncomfortable 
indoor conditions in many of its households.  
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Supplementary Material 8: Step-by-Step Development of Statistically 
Representative Archetypes in South-eastern Europe - Cyprus 

Step 7: Living conditions 

 
Figure S.8.27: Living conditions by number of rooms per person and urbanisation. Source: 
Eurostat, 2019 
Information: Figure S.8.27 demonstrates the distribution of average number of occupied rooms 
by urbanisation type in EU countries in 2019. In Cyprus, households living in cities averaged just 
over two rooms per person, while households living in rural areas averaged just below two rooms 
per person. The EU average was just over 1.5 rooms per person in both cities and rural areas.  

 
Figure S.8.28: Housing typology classification in Europe. Source: Eurostat, 2019 
Information: Figure S.8.28 demonstrates housing typology classification by using census data for 
the EU. In Cyprus, in 2019, 26% of the population lived in flats and 18% lived in semi-detached or 
terraced houses. An average of 47% of the EU-27 population lived in flats. This data highlights 
that flats (apartments) are the most representative housing archetype for the Cyprus which is 
noteworthy in developing aggregate building energy models for energy policy design.  
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Supplementary Material 8: Step-by-Step Development of Statistically 
Representative Archetypes in South-eastern Europe - Cyprus 

Step 8: Urbanisation 

 
Figure S.8.29: Map of urbanisation in Mediterranean cities. Source: Eurostat, 2019 
Information: Figure S.8.29 maps the degree of urbanisation in countries in the Mediterranean 
basin. Cyprus shows the smallest degree of urbanisation, between 1.6 to 5.44 – the data represents 
percent of the population that lives in urban versus rural environments, in comparison to the other 
EU countries. This is due to the relatively small population size of Cyprus compared to other 
European countries with larger populations and high numbers of housing stock.  

 
Figure S.8.30: Map of urbanisation in towns and suburban areas. Source: Eurostat, 2019 
Information: Figure S.8.30 shows a map of degree of urbanisation in towns and suburban areas in 
Mediterranean countries. In Cyprus, 3.2% to 5.52% of households live in towns and suburban areas. 
In comparison to data presented in Figure S.28, this data proves that very low Cypriot households 
are located in towns due to the geographical conditions of the island. This is the reason that the 
identified post-war social housing stock were built the same in both cities and suburban areas 
without distinction to form. This representative archetype typology can therefore be applied to 
either urban or suburban regions for developing energy-policy design.  
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Supplementary Material 8: Step-by-Step Development of Statistically 
Representative Archetypes in South-eastern Europe - Cyprus 

Step 8: Urbanisation (Continued) 

 
Figure S.8.31: Population living in cities. Source: Eurostat, 2018 
Information: Figure S.8.31 shows the degree of urbanisation in cities. In Cyprus, 5% of the 
population lives in cities, while the EU-28 average was recorded at 16%. This finding demonstrates 
that the urbanisation rate is relatively small in Cyprus in comparison to other EU-27 countries. This 
is due to the smaller population of Cyprus. 
Step 9: Identification of nationally representative archetypes  

 
Figure S.8.32: Representativeness versus benchmarking criterion. 
Information: Figure S.8.32 shows the representation of archetypes by analysing other scholars’ 
work. After thorough evaluation of census data, household size, buildings’ physical condition, 
building materials, construction period of the housing stock, living conditions and degree of 
urbanisation, this study set out to conceptualise the dataset to identify nationally representative 
archetypes. Representativeness of archetypes can help to determine the effect size, which is useful 
for reporting statistical findings. 
 
In this present study, sample size was calculated using an online calculator and power estimator 
tool to identify the error margin for benchmarking. Statistical data was constructed to identify the 
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effect size of the selected archetypes and to explore the generalisability of the housing stock, which 
had a direct impact on the research outcome.  
 
In Supplementary Material 8, all the secondary data resources that were necessary to establish the 
theoretical foundation developed by Persily et al. in 2006 are followed and step-by-step 
development stages are presented.  
 
Figure S.8.32 illustrates that the post-war social housing estates selected to undertake the building 
energy modelling analysis in this study represent 77% of the housing stock in Cyprus. This is the 
benchmarking criterion that was applied to interpret the statistical findings and demonstrate a 
reliable energy policy design in the residential sector. To provide a reliable assessment method for 
the analysis of building energy simulations, this study also considered the nationally representative 
archetype percentage identified by Persily et al. in 2006. The methodological framework developed 
by Persily et al. in 2006 demonstrates that 80% representativeness is a reasonable fraction to 
represent the U.S. housing stock, while the pilot study conducted by Shi et al. in 2015 demonstrated 
that 90% representativeness is required to represent housing stock in Beijing.  
 
In comparison to both the U.S. and Beijing pilot studies, population size is relatively small in 
Cyprus. Thus, the identified 77% representativeness could result in a reliable assessment criterion 
for benchmarking in the South-eastern Mediterranean climate of Cyprus. 
 
Note: The statistical data presented in Figure S.8.32 represents secondary data resources gathered 
for the Republic of Cyprus and does not represent the housing stock in Northern Cyprus.  
 
In this study, the necessary secondary data sources were collected to identify the representativeness 
of housing stock in Northern Cyprus. It was found that, in Northern Cyprus, residential buildings 
represent 36% of the entire building stock, and low-, medium- and high- residential tower blocks 
represent another 56% of the building stock. All of this data was considered to develop a nationally 
representative archetype analysis criterion for energy modelling in this study.  

 
 


