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Abstract—Tick-borne diseases are a significant health risk to 

humans and animals worldwide. It is important to understand the 
environmental and climatic factors that contribute to tick 
occurrence rates in order to reduce the proliferation of tick 
borne diseases. Using machine learning and spatial indexing 
techniques, this study covers tick occurrence rates in Europe over 
the last 20 years to understand the environmental and climatic 
factors that contribute to Ixodes ricinus tick abundance. We used 
biodiversity databases to study land cover categories, climate, 
vegetation index, and sociological factors. Areas with agriculture 
and natural vegetation, especially broad-leaved forests, had the 
strongest tick correlation. Waterways and pastures also showed 
significant positive correlations, indicating tick habitats. Ticks 
have moderate associations with urban green spaces, industrial 
units, and mixed forests suggesting their presence in 
ecologically disturbed habitats. Geoclimatic factors namely 
Normalised Difference Vegetation Index and rainfall, showed 
weak to negative correlations with tick population, indicating that 
they were less important than previously assumed. Linear 
Regression, Decision Tree, Random Forest, and Support Vector 
Machine were compared. We found that feature set and outlier 
presence significantly affected model performance. After 
removing outliers, Linear Regression performed best for land use 
features, with a R² value of 0.81, NRMSE of 1.56, SI of 1.56, 
and MAPE of 1.22. Outlier exclusion improved the model 
performance results. This research emphasises the importance of 
specific land uses in predicting the dynamics of tick population. 
Our findings lay the groundwork for focused intervention 
strategies to reduce the spread of tick-borne diseases using an 
innovative and intelligent approach, while also emphasising the 
need for further investigation into the complex interactions 
between environmental factors and tick abundance. 

Index Terms—Tick Borne Diseases, Ixodes ricinus, Linear 
Regression, Decision Tree, Random Forest, Support Vector 
Machine 

 
I. INTRODUCTION 

Ticks have a vast influence on global human and veterinary 
health [1]. The survival of these parasites depends on 
them feeding from a suitable host to obtain their blood 
meals. During this process of feeding, they can transmit 
several pathogens. In Europe, the most frequently transmitted 
tick-borne pathogen is Borrelia burgdorferi sensu lato (the 
causative agent of Lyme Disease/Borreliosis). Other pathogens 
of increasing concern in Europe include Tick-borne 
Encephalitis virus, Anaplasma phagocytophilum, Rickettsia 
species and Babesia species [2, 3, 4]. 

In Europe, Ixodes ricinus (the most common tick species) 
populations are increasing over time thus raising the risk of 
pathogen transmission [4, 5]. It has been hypothesised that 
climatic factors like temperature and rainfall and habitat factors 
including vegetation, land cover features, and habitat 
fragmentation might play a major role as well [5]. However, to 
fully comprehend this, more insights are needed. 

Machine learning applications have become increasingly 
valuable in analysing vector-borne infections because they can 
handle complex multidimensional datasets [6]. These tools will 
allow for better prediction and early warning systems for 
disease outbreaks since they analyse data from multiple sources 
hence promoting proactive public health responses [7]. 
Moreover, machine learning techniques help capture important 
environmental, climatic, and socio-economic predictors which 
govern the spread of vector-borne disease, leading to an 
understanding of their specific impacts [7]. Additionally ML 
models can predict vector population dynamics and abundance 
necessary for assessing disease transmission potential. They 
also do classification as well as diagnosing vector-borne 
diseases based on symptoms lab results among other clinical 
data thereby improving diagnosis speed and accuracy [8]. 
Furthermore, machine learning tools offer highly detailed, 
spatially explicit risk maps that optimise other public health 
interventions such as vector control by predicting their potential 
impact [9], enabling understanding of where diseases are likely 
to occur in space and time. Machine learning also integrates 
different types of data such as climate data, satellite imagery 
and social media thereby enhancing its predictive power and 
enabling real-time surveillance systems for disease activity 
that can constantly monitor and predict [7, 9]. In areas with 
limited surveillance data, sparse datasets can yield valuable 
insights through machine learning approaches that address data 
limitations [6]. Overall, applying ML in analysing vector-borne 
diseases brings significant progress to public health decision-
making and disease management. 

A. Machine Learning algorithms for the analysis of vector 
borne infection 

A study used Bayesian priors and a linear model applied to spatially 
explicit classification models that related the occurrence probability 
of I. ricinus ticks to environmental factors [10]. 



 

 

Their method, which involved blanket-dragging across 
different sites in the Netherlands for tick collection, facilitated 
effective mapping of environmental risks associated with tick 
presence. 

In another unique study, random forests were linked with 
Poisson regression models to analyse volunteered tick bite 
reports from the Netherlands [11]. This technique effectively 
addressed issues like zero-inflation and over-dispersion that 
resulted in accurate spatial prediction of risk areas inhabited by 
ticks. However, as this study focuses on tick bites (relying 
upon tick-host interaction) rather than just tick presence, it is 
arguably not a true indicator of tick abundance in a particular 
region. 

B. Machine learning for tick occurrence rates analysis 
In a study carried out in Scandinavia, Boosted Regression 

Tree (BRT) modelling was used to predict I. ricinus abundance. 
Ticks were counted at ten sites between August-September 
2016, a time when larval ticks would have predominated, yet 
the researchers chose to focus upon nymph abundance to 
overcome the patchy distribution of larval ticks. This data from 
each location was combined with temperature, rainfall and land 
cover category [12]. However, the limitation of this study is the 
fact that it only considered two years. Furthermore, there was 
no attempt to incorporate spatial autocorrelation, which might 
undermine the accuracy of the model. The scope of their 
research was also limited because they employed only boosted 
regression trees for their machine learning analysis. 

MaxEnt which is a tool for species distribution and 
environmental niche modeling [13] was used in Italy over 
two years to determine areas suitable for I. ricinus ticks 
with respect to multiple predictors such as temperature, 
rainfall and vegetation index. However, the most significant 
predictor variables were vegetation index and temperature 
[14]. The study, however, had serious methodical limitations. 
The modeling was based exclusively on presence data for 
MaxEnt, which is a major source of potential bias [15]. This 
is a typical weakness in MaxEnt since it only requires presence 
and background data and does not require any information 
on true absences. Also, the validation of the model was quite 
limited since it was done only in 2017 on 10 new sites without 
including the spatial autocorrelation effects within the dataset. 
The relationship between tick abundance and habitat 
fragmentation has also been previously investigated. A Spanish 
study concluded through statistical modelling that tick 
population growth is associated with habitat connectivity (low 
fragmentation) [16]. 

A 2019 study conducted by Garcia-Marti et al. [11], 
have implemented Random Forest (RF) together with 4 
Poisson-family count data models to classify data into 
homogeneous segments. This fusion of models was able to 
better the standard RF model for highly skewed and 
excessive zero- count data. However, the count data models 
did not reach convergence in 5-9% of the leaf nodes due to 
high data sparsity. Details of the study, for instance the 60-
40 split of data into training and testing with no cross 
validation might have also affected the way the model might 
be generalised in real world conditions [11]. 

Lihou and Wall [17] utilised random forest models to 
analyse machine learning data, primarily derived from 
retrospective questionnaire responses from farmers. This 
methodology has certain drawbacks. Bias might result from the 
farmers’ ability to remember and identify ticks, and not from 
conducting objective scientific sampling, resulting in recall and 
reporting biases affecting data quality. Moreover, the analysis 
of the data did not generate predictions with respect to spatial 
autocorrelation, which may influence prediction ‘accuracy’ 
within the broader geographic scope of the study. The sample, 
however, was quite small compared to the high number of 
predictions mapped out across Great Britain covering 926 
farms. The temporal scope is also limited with one main data 
set at hand for one year (2017- 2018) hence limits 
understanding of long-term trends. 

C. Challenges faced in predicting tick occurrence rates 
It is therefore clear that there are several challenges that 

are faced when attempting to utilise tick occurrence data 
for analysis among them the use of incomplete data, biased data 
and also using non standardised data which makes prediction 
difficult. The majority of studies rely on different sources like 
reviews from literature, reports given by health departments or 
even personal communications rather than employing 
systematic sampling methods that are uniform across all areas. 
Additionally, there is no comprehensive county-level data 
concerning metrics such as density of infected host-seeking 
nymphal ticks coupled with temporal uncertainties associated 
with historical establishment of these tick populations thereby 
rendering current databases unreliable [18]. 

Furthermore, model generalisation poses a challenge as  
models are often developed for particular geographic locations 
or time periods that fail when applied in new regions or 
under different temporal conditions [19]. This therefore calls 
for advanced techniques like careful feature selection and 
cross-validation to enable models to extrapolate well on unseen 
data. Tick occurrences are driven by ecological dynamics in a 
complex manner which involves complex climate-land use-
host population-environmental factors connections. These 
relationships not only vary spatially and temporally but also 
make it difficult to prioritise which factors are more important 
than the others [20]. In addition, difficulties related to scale 
and resolution of analysis further complicate the modeling 
process since tick population dynamics occur at multiple scales 
and coarse national data may not adequately capture fine-scale 
patterns [21]. Indeed, the NUTS3 resolution which is a 
hierarchical system for dividing up the economic territory of 
the European Union for statistical purposes, typically with 
populations between 150,000 and 800,000 may not suffice to 
capture the focal ecological niches that help ticks to thrive [22]. 
Furthermore, climate change adds another layer of complexity 
by potentially disrupting past associations between 
environmental variables and tick occurrences [20]. 

D. Limitations of current research 
In this study we attempt to resolve some of the shortcomings of 

current studies with respect to tick abundance. 
1) Time period: In this study the ticks have been collected 



 

 

over a period of 20 years. In comparison, current research 
tends to look at a period of 1-2 years which may not be 
enough for studying trends in tick behaviour over long 
periods of time. 

2) Spatial Autocorrelation: Various studies which 
considered occurrence rates of ticks failed to incorporate 
spatial autocorrelation in the analysis of the observed tick 
behaviour. In our research, we employ algorithmic 
clustering techniques based purely on the geographical 
coordinates of each tick occurrence. 

3) Data Quality: Some past studies have used data that is 
vulnerable to bias like farmer questionnaires. Some 
standardisation procedures and  approaches are not 
adhered to while carrying out research processes hence 
compromising the reliability of the resulting data. 

4) Model Comparison: A common limitation in many 
of these studies is the use of one machine learning 
approach without any attempt to compare the different 
approaches. We evaluate different algorithms (Linear 
Regression, Decision Tree, Random Forest and Support 
Vector Machine) in a bid to find out the most appropriate 
one to use. 

5) Comprehensive Feature Set: Inherent environmental 
aspects like land use type have been included alongside 
geoclimatic and other observational aspects. This 
provides a better characterisation of the training dataset 
in comparison with current studies where only one subset 
of features is used 

6) Systematic Verification: In contrast to current research 
this study employs validation techniques in a bid to 
achieve robustness of results. 

7) Broader Scope of Performance Assessment: Multiple 
metrics (NRMSE, SI, MAPE, R²) designed to assess 
certain characteristics, are utilised with the aim of 
enhancing the trustworthiness of model results. 

II. METHODOLOGY 
Briefly, our methodology encompasses data collection, 

preprocessing, feature selection, and the application of 
various machine learning techniques. 

Data Description 
A total of 5590 individual tick occurrence records were 

obtained from three online databases: National Biodiversity 
Network Atlas, Global Biodiversity Information Facility and 
Vectormap. Other records were obtained directly from 
Institute of Public Health, Albania. 

Records were exported if they met the following criteria: 
I. ricinus species, 2000-2019 and European location.

 The dataset was filtered to include the following information 
for each record: occurrence ID, date of occurrence, data source, 
latitude and longitude coordinates. For each record, data 
relating to further variables were added (specific to location 
coordinates and date of occurrence). Firstly, temperature and 
rainfall climatic variables were added from an online Weather 
Data and API resource (VisualCrossing). In relation to habitat, 
Normalised Difference Vegetation Index (NDVI) value and 
Land Cover category were added from an online repository 
(EcoDataCube). In the end, from the EcoDataCube repository, 
a Discontinuous Urban Fabric (%) value was added as a 
measure of physical barriers between habitats – thus 
representing habitat fragmentation. 

B. Data Preprocessing 
Initial cleaning of the data by removing entries that lacked 

geographical coordinates, NDVI, or land use variables was 
undertaken. For temporal feature engineering, we simplified 
date information to capture the day of the year, enabling the 
identification of seasonal variations. This conversion of date 
features into a single ’day of year’ feature was justified by 
its ability to capture cyclical patterns within a year while 
reducing dimensionality. We standardised missing or 
inconsistent dates to a common placeholder before 
converting them into a uniform format. In the feature selection 
phase, we chose relevant variables for analysis, including 
geographic coordinates, environmental measures, and temporal 
indicators. Categorical data, such as land use methods, were 
transformed into binary format for easier processing. For 
outlier removal, we implemented a 95th percentile threshold 
instead of the more common 75th. This decision was justified 
by the nature of our data in which potentially important data 
points can be retained while still eliminating the most extreme 
outliers. After outlier removal the number of clusters 
reduced from 343 to 333 while the total tick frequency decreases 
from 24,346 instances of tick occurrences to 4928 instances. 
Finally, we applied the 10 folds cross-validation aimed at 
improving the robustness of our models. By applying this 
strategy, the assessment and reporting of modeling 
performance is done with greater confidence and risk of 
modeling overfitting is reduced. 

C. Methodology Workflow 
Fig. 1 was created to illustrate the Machine learning 

workflow for tick occurrence prediction. The process started 
with cleaning and selecting data so that only high-quality 
data will be used for training models. Then data clustering 
is performed by grouping similar data points together to 
find patterns and increase model accuracy. 



 

 

 
 

Fig. 1. Machine learning workflow for tick occurrence prediction 
 

 
After that, the dataset is split into two parts: 80% for training 
and 20% for testing. Different machine learning models are 
trained with the training set until all the models have been fitted 
and evaluated against some predefined performance metrics 
where the best performing model is selected as per those 
criteria. Finally, the selected model undergoes final fine-tuning 
through extra optimisation parameter changes in order to 
achieve higher precision rates during predictions. This well-
structured approach ensures sound development of models 
which help in identifying key predictors for tick abundance 
therefore leading targeted interventions towards tick borne 
diseases management. 

 
D. Clustering and Feature Selection 

Three geospatial clustering algorithms were used to identify 
areas influencing tick collection: K-Means DBSCAN 
Agglomerative Hierarchical Clustering (AHC). These methods 
helped create distinct neighborhoods which enable localised 
analysis of environmental variables. This paper focuses on 
DBSCAN clustering selected for its ability to identify clusters 
of arbitrary shape without requiring a predefined number of 
clusters. In our research, we set epsilon ( ) equal to 0.005 
degrees (approximately 500 meters at equator). A smaller  
could detect clusters of ticks close to each other indicating 
specific areas or host availability zones while minimum 
samples =1 means any single point forms its own cluster 
resulting frm the absence of other points around it meeting 
required distance threshold. Increasing minimum samples 
would ensure significant clusters but if too many points were 
not within range of other points, it may fail to indicate accurate 
locations of tick occurrence. 

There were 344 clusters produced by the algorithm (Fig.2). 
All these clusters were analysed to establish the most important 
factors contributing towards tick occurrence rates. In this study, 
machine learning models were used to investigate the 
correlation between different environmental 

 
 

 
Fig. 2. Tick occurrence Bubble Map detailing DBSCAN clusters 

 
 
variables and tick occurrences in a methodologically rigorous 
way. The analysis was divided into three groups of features: 

a) Observational factors: These include direct 
observations and counts of ticks which are important for 
understanding immediate impacts on environment but can be 
over-simplistic when it comes to predictive modelling because 
they correlate directly with presence/absence data. 

b) Geo-Climatic factors: Geographical (latitude and 
longitude) and climatic factors (temperature, rainfall, NDVI) 
relating to environment of tick habitats are combined and 
termed as Geo-Climatic Factors. 

c) Land use factors: Land Use Factors include 
agriculture, forest cover, and urban areas which give an idea 
how the man-made environments such as modifications 
disturbs the normal pattern of ticks. 
E. Correlation Analysis 

Correlation analysis was done to measure strength and 
direction between tick count with different environmental 
features. This helped in identifying variables that are highly 
associated with occurrence of ticks hence guiding selection 
process for feature engineering prior machine learning model 
building. 

F. Evaluation Metrics 
In this study, we utilised four different evaluation metrics. 
1) The Normalised Root Mean Square Error (NRMSE) 

which is a standardised variation of RMSE, making it 
usable across datasets of different scales. 

2) The coefficient of determination (R²) which illustrates 
the model’s ability to understand the variance in the 
dataset. 

3) The Scatter Index (SI) which is a dimensionless error 
measure calculated based on the mean of the observed 
values. 

4) The Mean Absolute Percentage Error (MAPE) which 
is a metric used to measure the percentage error 
of a model’s predictions, providing insight into how 
inaccurate the model might be. 



 

 

G. Algorithm selection 
Linear Regression was selected because of its transparency 

and the capability to fit the linear relationship among different 
variables. It acts as a standard on which other more machine 
capability models can be assessed and in addition provides 
information on value of attributes. 

The Decision Tree Regressor captures non-linear 
relationships and interactions among features. 

Decision trees overfit by default but Random Forests aim to 
reduce this issue through ensemble learning thereby increasing 
generalisation error. This algorithm builds multiple decision 
trees then takes vote from each tree to give final prediction for 
regression setting. 

SVM Regressor works well in high-dimensional spaces 
where there may be many independent variables with complex 
relationships that cannot be modeled using linear functions 
alone. 

III. RESULTS 

Initially, we examined the correlations between different 
environmental factors and tick abundance, then compared the 
performance of our machine learning models across various 
feature sets and data preprocessing scenarios. 

A. Model Performance Across Feature Sets 
Table I presents the performance metrics (MAPE, NRMSE, 

SI, and R²) for all models across the different feature sets, both 
with and without outliers. 

1) Geoclimatic Features: With outliers present, models 
trained on geoclimatic features showed poor performance. 
Linear Regression had a high MAPE of 57.73 and a negative 
R² of -0.07. Decision Tree and Random Forest models 
performed similarly poorly (MAPE = 39.37 and 52.24, R² 
= -1.03 and -0.32, respectively). The SVM model showed 
unusually low MAPE (0.78) but still a negative R² (-0.02), 
suggesting potential issues with the model’s fit. 

Removing outliers led to some improvements, particularly 
for Linear Regression and Random Forest (MAPE reduced 
to 8.55 and 6.73, respectively). However, R² values remained 
negative or close to zero for all models, indicating that 
geoclimatic features alone were poor predictors of tick 
presence. 

2) Observational Features: The presence of observational 
features in our dataset led to significant overfitting, particularly 
evident in the Linear Regression (LR) model’s perfect fit (R² = 
1.00) when outliers were included. This overfitting stems from 
the direct one-to-one relationship between tick occurrences and 
observational instances. Each recorded tick presence 
corresponds precisely to one observation event, creating an 
artificial simplification of the prediction task. Consequently, 
models, especially LR, achieve deceptively high-performance 
metrics by essentially memorising this direct relationship rather 
than learning generalisable patterns. The near-perfect 

scores (R² = 0.96) for Decision Tree (DT) and Random Forest 
(RF) models after outlier removal further illustrate this issue. 

3) Land Use Cover Features: Models trained on land use 
cover features showed better performance compared to 
geoclimatic features. With outliers, Linear Regression 
performed reasonably well (MAPE = 3.17, R² = -6.06), while 
Decision Tree and Random Forest showed similar performance 
(MAPE around 3, R² around 0.15). SVM again showed a low 
MAPE (0.76) but a near-zero R². 

Outlier removal improved performance across all models for 
land use features. Linear Regression showed significant 
improvement (MAPE = 1.22, R² = 0.81), as did Decision Tree 
and Random Forest (MAPE around 1.7, R² around 0.40). SVM 
also improved but remained the weakest performer (MAPE = 
0.49, R² = 0.05). 

4) Excluding Observation Features: The results for models 
trained without observation features were identical to those 
trained on land use cover features, both with and without 
outliers. This suggests that the land use cover features were the 
primary drivers of model performance when observation 
features were excluded. The exclusion of observational features 
in the models focuses the analysis on environmental and 
geoclimatic factors, revealing that land use features almost 
exclusively influence tick occurrences. 

IV. DISCUSSION 
The results of our investigation provide several key 

observations regarding the reasons for the variation in tick 
populations with respect to Europe.  

A. Importance of feature sets 
Land use factors such as land principally occupied by 

agriculture, broad-leaved forests and water bodies, resulted in 
the greatest relationship which indicates such areas are 
essential for the ticks Fig. 3. On the other hand, geoclimatic 
factors which include temperature and rainfall were 
surprisingly very weakly to slightly negatively correlated 
related. 

This correlation analysis is crucial in isolating those 
environmental and climate factors that are most likely to be 
associated with tick occurrences. Positive high correlations 
with particular land use types further identifies critical land 
areas that have high concentrations of ticks informative to 
targeted control measures. For example, there is need to focus 
on agricultural lands, particularly  that host natural vegetation 
and broad leaved forests, as they tend to be more conducive for 
supporting tick populations. 

On the other hand, explanation of reasons for some features 
being associated with low correlation or negative correlation is 
necessary in improving the models and their predictions and 
descriptions. To give an example, the rainfall in general had 
negative relationship, and this could be particularly useful 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 3. Correlation Bar Chart of Geo-climatic and Land Use Features 

TABLE I. DBSCAN RESULTS FOR SELECTED MODELS 

Outliers DBSCAN No Outliers DBSCAN 

Feature Set Model MAPE NRMSE SI R2  MAPE NRMSE SI R2  
LR 57.73 7.56 7.56 -0.07  8.55 3.72 3.72 -0.11  

Geoclimatic DT 39.37 10.44 10.44 -1.03  8.73 5.23 5.23 -1.19  
RF 52.24 8.43 8.42 -0.32  6.73 3.67 3.67 -0.08  
SVM 0.78 7.39 7.32 -0.02  0.74 3.63 3.53 -0.06  
LR 3.17 19.46 19.36 -6.06  1.22 1.56 1.56 0.81  

Land use DT 2.99 6.70 6.67 0.16  1.73 2.78 2.76 0.38  
RF 2.86 6.78 6.75 0.14  1.71 2.70 2.69 0.42  

SVM 0.76 7.37 7.31 -0.01  0.49 3.45 3.37 0.05  
LR 0.00 0.00 0.00 1.00  0.84 2.07 2.06 0.66  

Observation DT 0.04 6.38 6.36 0.24  0.04 0.70 0.70 0.96  
RF 0.04 6.47 6.45 0.22  0.04 0.74 0.74 0.96  

SVM 0.73 7.38 7.32 -0.02  0.63 3.50 3.40 0.02  
LR 3.17 19.46 19.36 -6.06  1.22 1.56 1.56 0.81  

Observation Excluded DT 2.99 6.70 6.67 0.16  1.73 2.78 2.76 0.38  
RF 2.86 6.78 6.75 0.14  1.71 2.70 2.69 0.42  

SVM 0.76 7.37 7.31 -0.01  0.49 3.45 3.37 0.05  

 
to explore reasons as to how precipitation influences tick 
dynamics and survival rates. 

 
Analysis of random forest feature importance reveals key 

factors influencing tick abundance across geoclimatic and land 
use categories Table II. Location, for instance latitude is among 
the most important geoclimatic feature (0.33) followed by the 
rainfall whose weight was also significant (0.26). The day of 
year (0.14) NDVI (0.1) and temperature (0.09) do contribute, 
though ‘slightly’ with longitude (0.08). In terms of land use, 
areas principally occupied by agriculture show the highest 
importance (0.52) and in addition broad-leaved forests have 
been found to be another major factor (0.29). Water bodies 
(0.09), complex cultivation patterns (0.03), other such 
agricultural activities entailed exert moderate effect, but others 
such as land cover types including urban areas, natural 
grasslands, pastures showed only miniscule but measurable 
effects on tick model output. 

B. The Impact of Feature Sets and Outliers on model 
performance 

The presence of outliers always reduced the efficiency of the 
geoclimatic features models. In the most models after outliers’ 
removal, the situation was much better than before, especially 
for the Linear Regression model, with the R² rising from -0.07 
to -0.11 and NRMSE declining from 7.56 to 3.72. 

Land use features had greatest influence with outlier 
removal. For instance, in the case of LR model, removal of 
outliers resulted in a fundamental change with R² moving 
from 
-6.06 to 0.81 while NRMSE reduced from 19.46 to 1.56. 

Observation features showed the most striking impact. With 
outliers present, the LR model attained a perfect fit (R² 
=1.00 and NRMSE=0.00), a sign of gross overfitting, where the 
model conforms to noise rather than to underlying data 
structure. 

When the observation features were detached from the 
dataset, the results corresponded with the results obtained with 
land use features and reiterated the need to incorporate land use 
data. 



 

 

TABLE II. MOST SIGNIFICANT FEATURES BY CATEGORY (NO 
OUTLIERS) 

Observation Imp. Geoclimatic Imp. Land Use Imp. 

DCM HUMAN 
OBSERVATION 

0.66 Latitude 0.33 Land princ. 
occ. by 
agriculture 

0.52 

DCM 
RESEARCH 
STUDY 

0.26 Rainfall 0.26 Broad-leaved 
forest 

0.25 

DCM 
PRESERVED 
SPECIMEN 

0.07 DayOfYear 0.14 Water bodies 0.09 

DCM 
MATERIAL 
SAMPLE 

0.00 NDVI 0.10 Complex 
cultivation 
patterns 

0.03 

DCM MACHINE 
OBSERVATION 

0.00 Temperature0.09 Green urban 
areas 

0.03 

DCM LIVING 
SPECIMEN 

0.00 Longitude 0.08 Natural 
grasslands 

0.02 

 Moors and 
heathland 

0.02 

Pastures 0.02 
Sport and 
leisure 
facilities 

0.02 

Inland 
marshes 

0.01 

C. Model Performance Across Feature Sets 

It was determined that even within the data typically used 
for the construction of regression models with a complex 
structure (for example DT, RF or SVM), the Linear 
Regression model (LR) was the best fit in most 
scenarios, especially after outlier exclusion. This is 
surprising in some regard and may be explained by the 
mainly linear link between selected features and tick 
abundance, which we made more efficient than necessary 
through preliminary feature selection. 

While we did take into consideration cross-validation 
techniques to limit any potential effects of overfitting, it 
may be prudent to apply external datasets for further 
validation. 

There are some contradictions in our analysis of land 
use and climate factors with some previous studies. We 
found consistent and powerful relationships between land 
use and its features and much weaker climatic influences, 
while Boulanger et al. [23] highlighted temperature as the 
most relevant driver. This discrepancy may be due to the 
scale of our Europe-wide, 20-year study capturing broader 
patterns that may overshadow local climatic influences, as 
well as the complex interaction effects between land use and 
climatic factors. 

More investigation is required to understand the 

relationship between rainfall and tick abundance. Studies 
show Nymphal and adult ticks were more abundant when 
there had been high cumulative rainfall in the prior months. 
However, larval abundance did not appear to be sensitive to 
prior rainfall, suggesting a complex, non-linear response to 
different rainfall patterns [24]. 

V. CONCLUSION AND FUTURE WORK 

Based on these results, it is evident that adequate 
predictive models can only be built if sufficient 
preprocessing measures such as outlier detection and 
exclusion are undertaken. This assertion is particularly true, 
in Linear Regression models, where the performance of the 
model improves tremendously after outlier removal. We 
demonstrate that it is essential to use sophisticated machine 
learning methods for predictive modeling in environmental 
and public health settings. After outlier removal, the Linear 
Regression model performs well across different feature sets, 
particularly with land use features (R² of 0.81, NRMSE of 
1.56). This study emphasises the role of specific land use 
types on tick population dynamics and paves the way 
towards the development of more efficient tick-borne disease 
control measures. 

 
A. Future Work 

1) Model architecture: The variability in model 
performance across different setups and conditions 
indicates the necessity for dynamic modeling techniques 
that adapt to specific dataset characteristics. Future work 
may look into the hybridisation or ensembling of different 
techniques to enhance the level of prediction accuracy and 
robustness. 

2) Other Outlier Detection Techniques: Here, we used 
a modified IQR method to detect outliers, however there 
are a number of other techniques that can also be 
suggested for use in future research. Future work might 
include, the Z score method, the Local Outlier Factor 
(LOF) method, and Isolation Forest to name a few. These 
methods however lie at the contradictory poles of outlier 
detection which would form a very relevant outlier 
detection baseline in subsequent analyses. 

3) Real Time Data: Future studies can also aim at 
empowering the studies with real time data. This approach 
will not only increase prediction accuracy but also 
strengthen public health interventions against tick-borne 
diseases. Continuous refinement of these models is 
necessitated by ongoing environmental changes, with a 
view to enhancing prediction generalisability and adapting 
to evolving ecological conditions that influence tick 
populations. 

 
REFERENCES 

[1] B. Cull, M. E. Pietzsch, K. M. Hansford, E. L. Gillingham, and J. 



 

 

M. Medlock, “Surveillance of British ticks: An overview of 
species records, host associations, and new records of Ixodes 
ricinus distribution,” Ticks Tick Borne Dis., vol. 9, no. 3, pp. 605–
614, Mar. 2018. 

[2] J. Brites-Neto, K. M. R. Duarte, and T. F. Martins, “Tick-borne 
infections in human and animal population worldwide,” Vet 
World, vol. 8, no. 3, pp. 301–315, Mar. 2015. 

[3] C. F. Köhler, M. L. Holding, H. Sprong, P. A. Jansen, and J. Esser, 
“Biodiversity in the Lyme-light: ecological restoration and tick-
borne diseases in Europe,” Trends Parasitol., vol. 39, no. 5, pp. 
373–385, May 2023. 

[4] J. Gray, O. Kahl, and A. Zintl, “What do we still need to know 
about Ixodes ricinus?” Ticks Tick Borne Dis., vol. 12, no. 3, p. 
101682, May 2021 

[5] J. M. Medlock, K .  M. Hansford, A .  Bormane, M. 
Derdakova, A .  Estrada-Peña, J . -C. George, I. Golovljova, 
T. G. T. Jaenson, J.-K. Jensen, P. M. Jensen, M. Kazimirova, J. 
A. Oteo, A. Papa, K. Pfister, O. Plantard, S. E. Randolph, A. 
Rizzoli, M. M. Santos-Silva, H. Sprong, L. Vial, G. Hendrickx, 
H. Zeller, and W. Van Bortel, “Driving forces for changes in 
geographical distribution of Ixodes ricinus ticks in Europe,” 
Parasit. Vectors, vol. 6, p. 1, Jan. 2013. 

[6] S. Raizada, S. Mala, and A. Shankar, Vector-Borne Disease 
Outbreak Prediction Using Machine Learning Techniques. Cham: 
Springer International Publishing, 2021, pp. 227–241. [Online]. 
Available: https://doi.org/10.1007/978-3-030-66519-7 9 

[7] D. P. C. Peters, D. S. McVey, E. H. Elias, A. M. Pelzel-
McCluskey, J. D. Derner, N. D. Burruss, T. S. Schrader, J. Yao, 
S. J. Pauszek, J. Lombard, and L. L. Rodriguez, “Big data–model 
integration and AI for vector-borne disease prediction,” 
Ecosphere, vol. 11, no. 6, Jun. 2020. 

[8] S. G. Shaikh, B. S. Kumar, G. Narang, and N. N. Pachpor, 
“Hybrid machine learning method for classification and 
recommendation of vector-borne disease,” Journal of 
Autonomous Intelligence, vol. 7, no. 2, Dec. 2023. 

[9] O. E. Santangelo, V. Gentile, S. Pizzo, D. Giordano, and F. 
Cedrone, “Machine learning and prediction of infectious 
diseases: A systematic review,” Machine Learning and 
Knowledge Extraction, vol. 5, no. 1, pp. 175–198, Feb. 2023. 

[10] A. Swart, A. Ibañez-Justicia, J. Buijs, S. E. van Wieren, T. R. 
Hofmeester, H. Sprong, and K. Takumi, “Predicting tick presence 
by environmental risk mapping,” Front Public Health, vol. 2, p. 
238, Nov. 2014. 

[11] I. Garcia-Marti, R. Zurita-Milla, and A. Swart, “Modelling tick 
bite risk by combining random forests and count data regression 
models,” PLoS One, vol. 14, no. 12, p. e0216511, Dec. 2019. 

[12] L. Jung Kjær, A. Soleng, K. S. Edgar, H. E. H. Lindstedt, K. M. 
Paulsen, A . K. Andreassen, L. Korslund,V. Kjelland, A. Slettan, 
S. Stuen, P. Kjellander,M. Christensson, M. Teräväinen, A. Baum, 
K. Klitgaard, and R. Bødker, “Predicting the spatial abundance of 
Ixodes ricinus ticks in southern Scandinavia using environmental 
and climatic data,” Sci. Rep., vol. 9, no. 1, p. 18144, Dec. 2019. 

[13] C. Merow, M. J. Smith, and J. A. Silander Jr, “A practical guide to 
maxent for modeling species’ distributions: what it does, and why 
inputs and settings matter,” Ecography, vol. 36, no. 10, pp. 
1058–1069, 2013. 

[14] M. Signorini, A.-S. Stensgaard, M. Drigo, G. Simonato, Marcer, 
F. Montarsi, M. Martini, and R. Cassini, “Towards improved, 
cost-effective surveillance of Ixodes ricinus ticks and associated 
pathogens using species distribution modelling,” Geospat. 
Health, vol. 14, no. 1, May 2019. 

[15] Y. Fourcade, J. O. Engler, D. R¨odder, and J. Secondi, “Mapping 
species distributions with maxent using a geographically biased 
sample of presence data: a performance assessment of methods 
for correcting sampling bias,” PloS one, vol. 9, no. 5, p. e97122, 
2014. 

[16] A. Estrada-Peña, “The relationships between habitat topology, 
critical scales of connectivity and tick abundance Ixodes ricinus in 
a heterogeneous landscape in northern Spain,” Ecography, vol. 26, 
no. 5, pp. 661–671, Oct. 2003. 

[17] K. Lihou and R. Wall, “Predicting the current and future risk of 
ticks on livestock farms in Britain using random forest models,” 
Vet. Parasitol., vol. 311, p. 109806, Nov. 2022. 

[18] K. J. Kugeler and R. J. Eisen, “Challenges in predicting Lyme 
disease risk,” JAMA Netw Open, vol. 3, no. 3, p. e200328, Mar. 
2020. 

[19] H. S. Tiffin, E. G. Rajotte, J. M. Sakamoto, and E. T. 
Machtinger, “Tick control in a connected world: Challenges, 
solutions, and public policy from a United States border 
perspective,” Trop Med Infect Dis, vol. 7, no. 11, Nov. 2022. 

[20] O. Sparagano, G. Földvári, M. Derdáková, and M. 
Kazim´ rova´, “New challenges posed by ticks and tick-borne 
diseases,” Biologia, vol. 77, no. 6, pp. 1497–1501, Jun. 2022. 

[21] A. M. Gardner, N. C. Pawlikowski, S. A. Hamer, G. J. Hickling, J. 
R. Miller, A. M. Schotthoefer, J. I. Tsao, and B. F. Allan, 
“Landscape features predict the current and forecast the future 
geographic spread of Lyme disease,” Proc. Biol. Sci., vol. 287, no. 
1941, p. 20202278, Dec. 2020. 

[22] P. D’Urso, L. D. Giovanni, F. G. Sica, and V. Vitale, 
“Measuring competitiveness at nuts3 level and territorial 
partitioning of the Italian provinces,” Social Indicators 
Research, vol. 173, no. 1, pp. 9–51, 2024. 

[23] N. Boulanger, D. Aran, A. Maul, B. I. Camara, C. 
Barthel, M. Zaffino, M.-C. Lett, A. Schnitzler, and P. Bauda, 
“Multiple factors affecting Ixodes ricinus ticks and associated 
pathogens in European temperate ecosystems (northeastern 
France),” Sci. Rep., vol. 14, no. 1, p. 9391, Apr. 2024. 

[24] F. Keesing, R. S. Ostfeld, T. P. Young, and B. F. Allan, “Cattle and 
rainfall affect tick abundance in central Kenya,” Parasitology, vol. 
145, no. 3, pp. 345–354, 2018. 


