
MUSA: A Scalable Multi-Touch and
Multi-Perspective Variability Management Tool

Muhammad Garba, Adel Noureddine, and Rabih Bashroush
School of Architecture, Computing and Engineering

University of East London, United Kingdom
Email: u1036584@uel.ac.uk, a.noureddine@uel.ac.uk, r.bashroush@qub.ac.uk

Abstract—Variability management is one of the main activities
in the Software Product Line Engineering process. Common and
varied features of related products are modelled along with the
dependencies and relationships among them. With the increase
in size and complexity of product lines and the more holistic
systems approach to the design process, managing the ever-
growing variability models has become a challenge. In this paper,
we present MUSA, a tool for managing variability and features
in large-scale models. MUSA adopts the Separation of Concerns
design principle by providing multiple perspectives to the model,
each conveying different set of information. The demonstration is
conducted using a real-life model (comprising of 1000+ features)
particularly showing the Structural View, which is displayed
using a mind-mapping visualisation technique (hyperbolic trees),
and the Dependency View, which is displayed graphically using
logic gates.

I. INTRODUCTION

Variability Management is one of the essential activities that
determines the success of the software product line engineer-
ing process [1], [2]. The process entails the identification and
cataloguing of the common and varied features of products
within a product line. Feature models have been widely
recognised as a viable approach to identify, capture, represent
and visualise such commonality and variability within the
product line. Feature models are information models that
describe a set of possible products presented in a single
coherent model [3], [4]. Because of the increased demand for
software products, variability models tend to grow very large
in size (comprising thousands of features in several cases)
and increase in complexity due to the myriad of relationships
that could exist among the features in the model, making it
a challenge and error-prone to handle, manage and visualise
these large-scale models using current existing approaches [5],
[6], [7], [8]. However, in a real-life context, feature relation-
ships can emerge in a number of ways. For instance, some
variation points depend upon other variation points in a non-
hierarchical way, and thus cannot be easily represented in a
tree structure. Product line developers are being challenged by
the scalability of dependency management within variability
models. An excessive amount of time and effort is being spent
on fixing dependencies in order to ensure valid derivation of
products [9], [10].

To address these challenges, we present a new version of
MUSA, a variability management tool developed to provide
effective ways to deal with the challenges faced during: (1)

the creation, representation and visualisation of large-scale
variability models and (2) the definition and visualisation of
constraints and dependency relationships among variants and
their variation points in a large-scale product line. It treats
the dependency and constraints, relationships separately from
the main variability representation, where simple and complex
relationships can be modelled graphically using logic gates.
We demonstrate these capabilities of MUSA using a small
case study as well as an industrial case study of more than
1000 features.

II. BACKGROUND OF THE MUSA TOOL

MUSA (A Multi-touch Variability Modelling Solution for
Software Product Lines) is designed to implement our the-
oretical work [6], [11] on multiple perspective-based vari-
ability management, which provides a successful modelling
framework while using the concept of Separation of Con-
cerns to alleviate the problem of information overloading. As
stakeholders have interest in different views of a product line
variability model [12], it is important for a variability model to
be able to represent and extract relevant information without
overloading the graphical representation of the model. The
Four View Model for Variability Management (4VM) aims to
alleviate this overload [5]. We follow 4VM in the design and
implementation of our MUSA tool. The model proposes the
distribution of feature modelling information into four views
with each view dedicated to a particular theme and group
of stakeholders. The views are: Business, Hierarchical and
Behavioural, Dependency and Interaction and an Intermediate
View.

Business view is where the information related to the project
management, cost/benefit analysis, closed/open sets of features
and others is presented. Hierarchical and Behavioural View is
where the different features are organised (usually presented
in a tree structure) along with the behaviour attached to
each feature. Dependency & Interaction View presents the
dependency and interaction relationships among features (e.g.
inclusion, exclusion, etc.). And the Intermediate View is where
some design decisions are introduced into the feature model
to take it one step further towards the architecture domain in
an attempt to bridge the gap between the feature model and
the system architecture.

The MUSA tool suit was initially implemented on the
Microsoft Surface platform and Windows 7, with a touch



pack platform. It uses hyperbolic trees and supporting gesture-
based interaction (multi-touch interaction) for representing and
visualising the variability models, which makes it a powerful
solution for creating and managing large-scale product lines.
However, the initial version of MUSA was developed as a
prototype due to some limitations with the surface platform
such as hardware issues inherited from surface technology and
software issues such as platform dependency.

In this paper, we present the new version of MUSA based on
mind mapping technique that uses hyperbolic trees as a better
way of exploiting smaller screen surfaces to represent large
amount of data and features without graphical overloading.
We also added the dependency view which uses logic gates to
input complex relationships.

III. THE MUSA TOOL

The new version of MUSA tool is implemented in Java
and uses XML files to input/output data. It provides two
different collaborative interfaces (i.e. views) for managing
variability models, and their consistencies are maintained with
the help of a centralised database (see Figure 1). The Develop-
ment/Browser View is the default view when the application
is initially launched (see Figure 2). Main functionalities con-
cerned with this view are: (1) Product line variability models
are represented using a hyperbolic browser; (2) a new feature
tree for managing variability can be created either based on
existing feature models or from scratch; and (3) feature models
can be modified (i.e. feature behaviour), such as changing a
particular feature name, its properties and description, adding
and deleting features, etc.

Fig. 1. Description of MUSA’s architecture.

The hyper-tree browser uses hyperbolic geometry to place
nodes around the root and provides smooth and continuous
animation of the tree so that users can bring other nodes
into focus by clicking, tapping on or dragging them [13].
The advantage of using hyperbolic trees is reducing visual
clutter compared to standard trees when the number of child
nodes grow exponentially. The former employs hyperbolic
space which provides more room than Euclidean space. Using
hyperbolic trees give our MUSA tool an important advantage
in scalability. The tool can display models with large number
of features, counting more than 1000+ features in our case
study (see Section IV).

When focusing on a particular node, MUSA places it at the
centre of the screen with all its children, while nodes out of
focus reduce in size and are displayed towards the edge of the
view. On double tapping a feature node, the option menu with
a number of possible options pop-up; this can be used to add a
new feature to the existing tree, delete a feature from the tree or
view dependency relationships that exist among the features.
Users can also use different gestures, such as pinching (for
expanding nodes), panning (by moving two fingers on the
screen to shift the feature model) or three fingers to centre
the model to its root node.

From the dependency perspective, a separate view is pro-
posed within the MUSA tool, using Logic Design to capture
and model the dependency relationships. Once the user makes
his/her selection of features from the browser view, the depen-
dency model will take the user-selected feature set as an input
and verifies it against the model, pointing out any dependency
relationships associated with that feature, while at the same
time if no relationship for that selection exists, a new window
in the dependency view opens to create new dependencies
if needed. This provides simplicity in managing dependency
relationships within large and complex variability models. We
used three basic Logic gate symbols, from which a user, such
as an architect, can generate and resolve any (from simple to
complex dependency) relationships (see Figure 3).

IV. CASE STUDY

In this section, we present the main features of the new
MUSA tool using a product line case study. The later consists
of more than 1,000 features. We aim to show how effective
our approach is in terms of managing and visualising large-
scale variability models. The use of this case study enables us
to determine and assess the extent to which MUSA satisfies
the design needs as compared to other tools available today.

As shown in Figure 2, MUSA’s browser view shows all
features of the case study in a hyperbolic tree. By default, the
root of the tree is centred, while further leaf names are hidden
(but their connections remain in order to provide a visual
feedback for the user). The user can cycle through the features
by swiping on any direction with a mouse or directly on a
touchscreen. Selecting a feature will centre the screen over
it, zooming if necessary and displaying more connections to
related features. Double clicking anywhere on the background
will centre the view back to the root of the model.

Search in MUSA is straightforward by ’touch and hold’ on
any space (or right clicking) which brings up the search box.
In the popup box, users can type the desired search keyword
and a list of potential features will be displayed. Touching
or clicking any result will centre the view to that particular
feature. Figure 4 illustrates the search process.

Adding or removing a feature in the model can be achieved
by double tapping or clicking on a feature node. A menu will
appear with options to add or remove features. If for instance,
the Add button is selected, the user will be prompted with a
window where he can type the name of a feature such as
TestFeature and select its type as mandatory, optional



Fig. 2. MUSA’s Browser View.

Fig. 3. MUSA’s Dependency View.

or alternative. The same menu displays an option to view
dependencies in a different view. On tapping or clicking on the
dependency option, the Dependency View will open showing
the selected feature with all its associated relationships. From
this view, different kinds of dependency relationships can be
created, edited or modified using Logicf visualisation (see
Figure 3).

V. CONCLUSIONS

We present a new version of MUSA tool that exhibits a
number of features that enable it to deal with large-scale
systems. MUSA adopts the idea of Separation of Concerns
design principle by providing multiple perspectives to the

model, each conveying a distinct set of information. The tool
was demonstrated on an industrial case study consisting of
more than 1,000 features. The demonstration conducted to
show the Structural View, which is displayed using a mind-
mapping visualisation technique (hyperbolic trees), and the
Dependency View, which is graphically represented using
Logic gates.

ACKNOWLEDGMENT

The work on the MUSA project has been funded by the
European RD Fund through INI under the Proof of Concept
funding scheme (2008-2010). It has received further funding
under the Challenge Fund scheme at the University of East
London (2010-2011).

REFERENCES

[1] Software Product Lines: Practices and Patterns. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 2001.

[2] Klaus Pohl, Günter Böckle, and Frank J. van der Linden. Software
Product Line Engineering: Foundations, Principles and Techniques.
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2005.

[3] David Benavides, Sergio Segura, and Antonio Ruiz-Corts. Automated
analysis of feature models 20 years later: A literature review. Information
Systems, 35(6):615 – 636, 2010.

[4] Krzysztof Czarnecki and Ulrich W. Eisenecker. Generative Program-
ming: Methods, Tools, and Applications. ACM Press/Addison-Wesley
Publishing Co., New York, NY, USA, 2000.

[5] R. Bashroush. A nui based multiple perspective variability modeling
case tool. In MuhammadAli Babar and Ian Gorton, editors, Software
Architecture, volume 6285 of Lecture Notes in Computer Science, pages
523–526. Springer Berlin Heidelberg, 2010.



Fig. 4. The search process in MUSA.

[6] Rabih Bashroush, Ameer Al-Nemrat, Mohammad Bachrouch, and
Hamid Jahankhani. Visualizing variability models using hyperbolic
trees. In Proceedings of the 23rd International Conference on Advanced
Information Systems Engineering Forum(CAiSE Forum 2011), 2011.
Citation: R. Bashroush, A. Al-Nemrat, M. Bachrouch and H. Jahankhani,
?Visualizing Variability Models Using Hyperbolic Trees?, in Proceed-
ings of the 23rd International Conference on Advanced Information
Systems Engineering Forum(CAiSE Forum 2011), London, June 2011..

[7] Goetz Botterweck, S. Thiel, D. Nestor, S. bin Abid, and C. Cawley.
Visual tool support for configuring and understanding software product
lines. In Software Product Line Conference, 2008. SPLC ’08. 12th
International, pages 77–86, Sept 2008.

[8] F. Loesch and E. Ploedereder. Optimization of variability in software
product lines. In Software Product Line Conference, 2007. SPLC 2007.
11th International, pages 151–162, Sept 2007.

[9] Thorsten Berger, Ralf Rublack, Divya Nair, Joanne M. Atlee, Martin
Becker, Krzysztof Czarnecki, and Andrzej Wasowski. A survey of
variability modeling in industrial practice. In Proceedings of the Seventh
International Workshop on Variability Modelling of Software-intensive
Systems, VaMoS ’13, pages 7:1–7:8, New York, NY, USA, 2013. ACM.

[10] M. Sinnema, S. Deelstra, J. Nijhuis, and J. Bosch. Modeling dependen-
cies in product families with covamof. In Engineering of Computer

Based Systems, 2006. ECBS 2006. 13th Annual IEEE International
Symposium and Workshop on, pages 9 pp.–307, March 2006.

[11] Hassan Gomaa and MichaelE. Shin. A multiple-view meta-modeling
approach for variability management in software product lines. In
Jan Bosch and Charles Krueger, editors, Software Reuse: Methods,
Techniques, and Tools, volume 3107 of Lecture Notes in Computer
Science, pages 274–285. Springer Berlin Heidelberg, 2004.

[12] B. Nuseibeh, J. Kramer, and A. Finkelstein. A framework for expressing
the relationships between multiple views in requirements specification.
Software Engineering, IEEE Transactions on, 20(10):760–773, Oct
1994.

[13] John Lamping, Ramana Rao, and Peter Pirolli. A focus+context tech-
nique based on hyperbolic geometry for visualizing large hierarchies. In
Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, CHI ’95, pages 401–408, New York, NY, USA, 1995. ACM
Press/Addison-Wesley Publishing Co.


