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Abstract—Photovoltaic (PV) energy is considered one of the
most promising renewable sources. Detecting and monitoring
faults in PV systems ensures optimal efficiency and prevents
safety and hazards. Predictive maintenance (PdM) is the promi-
nent anomaly prediction strategy that predicts health condi-
tions with machine learning (ML) algorithms. However, existing
algorithms overlook the importance of attribute consideration
and fail to account for temporal dependence in final results.
To address such issues, this paper proposes the implementation
of Attribute Attention (A2)-based Long short-term memory
(LSTM) for general PdM framework based on clustering and
anomaly detection in PV array data. The A2-LSTM model is
complemented by an unsupervised K Means clustering technique
to identify patterns within the data. The attention mechanism in
the attribute attention-based LSTM model is used to identify the
most relevant attributes in PV array electrical data for each
cluster, allowing the model to focus on the information that
is most pertinent to predicting the behavior of the PV arrays
within that cluster. The results indicate that the proposed model
identified anomalies in the predicted data of the PV array more
accurately. The proposed model could help the plant operator
perform Remaining Useful Life (RUL) for PdM to carry out PV
array maintenance. To the best of our knowledge, the A2 method
is not been used for the PdM problem of PV plants.

Index Terms—Photovoltaic System, Anomaly detection,
KMeans, Attribute attention, Long-short term memory

I. INTRODUCTION

Predictive maintenance (PdM) for solar farms has become
a crucial element in effectively operating and maintaining the
plant [1]. PdM can be utilized in the PV plant to anticipate the
probable failure of components such as PV modules, inverters,
and battery systems. Anomaly detection is one of the key
stages in PdM to detect abnormalities within the system that
may result in future system failures [2]. Detecting anomalies
in PV plants poses challenges due to the vast number of
string modules and extensive data volumes. However, Machine
Learning (ML) algorithms offer faster, cost-effective, and
more accurate analysis, facilitating anomaly detection amid
the substantial data collected by the system. The increasing
adoption of ML in the engineering sector, especially in PV,
has led to diverse applications for PdM and anomaly detec-
tion. Researchers in [3] proposed a KMeans and LSTM-

based prediction algorithm for electricity load prediction by
clustering high and low temperature, humidity, and other
load characteristics. Authors in [4] implemented a prediction
model by combining KMeans clustering of training set and
prediction day data and LSTM for short-term power prediction
in PV plants. A data-driven fault prediction based on LSTM
and auto-encoder has been proposed in [5] for the solar
array. Work in [6] addressed anomaly detection in the PV
components by evaluating the performance of autoencoder
LSTM, isolation forest, and Facebook prophet. It helped in
identifying the PV system’s healthy and abnormal behavior.
Isolation forest-based anomaly detection for solar power plants
has been implemented in [7]. It also used a rule-based fault
localization technique to locate the abnormal behavior of the
solar plant. Several approaches have been proposed such as
[8] about survey-related anomaly detection techniques, [9] for
monitoring PV systems by identifying anomalies by One-Class
Support Vector Machine and K nearest Neighbor, and [10]
for PdM and anomaly detection approach for PV designs.
Anomaly detection using a semi-supervised ML model to
predetermine solar panel settings, as suggested by [11], to
prevent PV component failure. Another study [12] introduced
anomaly detection for PdM of large-scale solar PV plants
using KMeans and LSTM. Specifically, the study developed
a clustering model focusing on the modules’s output current
for anomaly detection.

While PdM is effective in fault detection, anomaly
detection in PdM faces challenges related to feature relevance
and the dynamic nature of data. PV systems generate
vast amounts of data (Voltage, current, temperature, yield
measurements), etc. Traditional anomaly detection algorithm
usually fails to select and prioritize relevant features at each
time step. Deficiencies in attribute features and the presence
of redundant attributes contribute to poor performance. Also,
the PV system exhibits high variability due to environmental
conditions e.g., temperatures and irradiance level. Another
significant challenge is the nonlinear relationship between
features and their impact on the system’s behavior, making
it difficult to accurately capture and analyze anomaly



patterns. These issues, make it more difficult for traditional
anomaly detection techniques to accurately identify anomalies.

To solve this problem, this paper proposed an KMeans
based A2 −LSTM for anomaly detection based on electrical
data of the PV array. KMeans clustering preprocess the
input data by grouping similar instances (time series segments)
based on their attribute values. This segmentation create more
meaningful input representations for LSTM models. KMeans
simplifies the learning task for A2-LSTM, allowing it to focus
on learning patterns within homogeneous clusters rather than
dealing with the entire dataset at once. A2-LSTM employs
an attention mechanism to dynamically select which features
(attributes) are most relevant at each time step. Unlike tradi-
tional LSTMs which treat all input features equally, A2-LSTM
assigns higher weights to attributes that are more informative
for anomaly detection at a particular time. This includes three
distinct parts namely feature extraction and fusions, attribute
attention mechanism, and anomaly detection. Varying window
sizes, representing the length of the sequence, have been taken
into account as input to the model for prediction purposes.
Starting with KMeans clustering to group instances of data,
distinct clusters based on features like power, current, voltage,
solar irradiance, and total yield are created. The attribute
attention mechanism based on Global average pooling (GAP)
is applied to the features (F), condensing temporal features
into a fixed-length vector representation. This pooled output
is subsequently fed into Fully Connected Neural Network
(FCNN) layers to refine the attribute impact (reweighted
attributes - Q). Finally, the Q are input into the anomaly
detection layer including LSTM with a Fully connected (FC)
layer to create a robust anomaly detection system capable of
effectively detecting anomalies in the data.

The paper is organized as follows: Section II presents the PV
system and data description. In Section III, the methodology
has been demonstrated. Section IV presents the results and
discussion. Section V focuses on the conclusion and future
recommendations

II. PV SYSTEM AND DATA DESCRIPTION

This section presents two PV systems: Grid-Connected
Photovoltaic System (GCPVS) model and real PV plant lo-
cation in Greece. This system serves as the basis for anomaly
detection and PdM study. The detailed description and data
characteristics of each system are described below:

A. Grid Connected Photovoltaic System (GCPVS)

A historical dataset including current, voltage, solar irra-
diance, and power has been synthetically generated using a
MATLAB Simulink model of a GCPVS. The dataset spans
480 days, with measurements recorded at 10-minute intervals
throughout the recorded period. A GCPVS has been modeled
shown in Fig.(1) to construct the current dataset to be used
for anomaly detection. The modeled system involves 36 PV
modules interconnected within a 6× 6 PV array TCT config-

uration. Using the historical weather data, the current dataset
is generated shown in Fig.(3).

Fig. 1. PV Grid Connected System

1) PV Array configuration: TCT: The configuration under
consideration is Total-Cross-Tied (TCT) and MATLAB simu-
lation is employed to model this configuration, allowing for a
comprehensive analysis and performance evaluation. The sim-
ulation involves 36 PV modules interconnected within a 6×6
PV array configuration. The aforementioned configurations are
operated under normal as well as faulty conditions.
The TCT configuration is modeled as follows: initially, PV
modules in strings are arranged in parallel as rows, and these
rows are then connected in series. In this configuration, each
row has the same voltage as each module, and the PV array’s
output voltage is the sum of individual row voltages. The
array’s output current is the sum of individual module currents
in a row. The 6× 6 TCT PV configuration is depicted in Fig.
(2). Inter and intra line-to-line faults and Partial Shading faults
are induced individually as anomalies one by one into the PV
arrays, and the voltage, current, and total yield were calculated
and compared with the normal condition of the PV array as
shown in Fig.(3). Fig.(4) depicts the distribution of the normal
and anomaly clusters based on features comparison (V vs I, V
vs P, P vs G), etc. It clearly distinguished the normal region
denoted by 0 and the anomaly region denoted by 1.

B. Real PV plant

The used data was collected at the PV plant located in
Greece over 365 days, with 20 min intervals. The plant sensors
measure the generation rate, DC and AC powers known as
internal factors that could cause anomalies. The inverters at
the plant level measured external factors such as ambient
and module temperature, windspeed, and solar irradiance.
The inverter DC power is sourced from the PV array. The
correlation matrix depicted in Fig.(6) represents the linear
correlation between internal and external variables. The value
of the linear correlation ranges from −1 to 1, where −1
indicates a strong negative correlation between variables, and
1 indicates a strong positive correlation. It shows both the
strength and direction of the correlation relationship which is
determined by the Spearman’s rank correlation [13] as follows:

ϱ = 1− 6
∑
κ2i

τ(τ2 − 1)
(1)



Fig. 2. TCT configuration of PV array.

Fig. 3. Normal and Fault data distributions.

Where, ϱ is the correlation coefficient, κ is the difference
between two ranks for every data point and τ is the number
of the data points. Fig.(6) depicts that PV production, invert-
ers’ energy, irradiance, and module temperature are highly
correlated except for the ambient temperature and digital
windspeed. The PV production power is the sum of all power
provided by the 23 inverters (Energy - Fronius IG TL 3.6i and
Energy - Fronius IG TL 4.0i). It displays 6 out of 23 inverters’

Fig. 4. Dataset for A2 attribute selection..

DC power because all the inverters show highly correlated
data.

III. PROPOSED ANOMALY DETECTION AND PDM
FRAMEWORK

The proposed methodology involves data preparation,
K Means clustering, attribute selections, and anomaly detection
with LSTM, depicted in Fig. (5). A2-based LSTM with K-
Means has been employed which is well suited for handling
large datasets including historical as well as current data. The
clustering by K-Means is followed by the attribute attention
layer where GAP and FCNN are added to adjust the impor-
tance of attributes automatically. After reweighting attributes,
it is input to the LSTM and FC layer for anomaly detection.

A. Feature Extraction and Fusion

This study uses KMeans to cluster PV array electro-power
matrics with solar irradiance and module temperature. The
KMeans method divides a dataset into K clusters, with

each cluster distinguished by its centroid. Each data point is
iteratively assigned to the nearest centroid by the algorithm
after choosing K initial centroids. Applying KMeans clustering
to the dataset to group similar points:

γk =
1

|Ck|
∑

xi∈Ck

xi∀k = 1, 2, ...,K (2)



Fig. 5. A2 LSTM based Anamoly detection overview

Fig. 6. Correlation matrix illustrating linear correlation among the internal
and external elements for PV plant

Where γk is the centroid of cluster k and Ck represents a set
of points in the cluster. Extract features from each cluster k:
Fk = Feature extraction*(Ck) and combining, we have:

Ffusion = Fusion(F1, F2, ...Fk) (3)

B. Attribute attention Mechanism

The A2 architecture comprises multiple layers: shrinking,
learning, and reweighting. Further, within A2 layer, The
shrinking step corresponds to the GAP, applied to fused
features within each cluster for data dimensionality reduction.
The GAP operation computes the average of the features for
all data points assigned to a specific cluster, resulting in a
fixed-length vector representation for that cluster. It takes fused
features (Ffusion) as input and is implemented as a timestamp.

Favg =
1

n

n∑
i=1

Ffusion[i] (4)

Where n is the number of features in Ffusion. The fixed-length
vectors representing each cluster are then fed into an FCNN
for further processing. The learning step is to take the pooled
Favg as input which is processed through FCNN layers to
generate Q− features.

The attention score A as output through multiple layers is
stated as:

A = softmax (σ(Gfn1 ∗ Favg + yfn1)) (5)

Where Gfn1 and yfn1 are the parameters of the the first layer
of FCNN. The second layer’s reweighting step corresponds
to the multiplication process of A and Ffusion as input. The
reweighted Q-feature as output, formulated as:

Qt = Ffusion ∗A = Ffusion ∗ softmax
(σ(Gfn1 ∗ Favg + yfn1))

(6)

C. Anamoly detection
Following the FCNN, the output is passed into the final

component of anomaly detection. It consists of two units, i.e.,
LSTM and FC. LSTM network, which is a type of recurrent
neural network (RNN) well-suited for modeling sequential
data. The LSTM network captures temporal dependencies
within the data, allowing it to learn patterns and detect
anomalies over time. The LSTM takes reweighted features
Qt as input as shown in Fig.(7) and the FC takes these
features to identify deviations from normal behavior indicative
of anomalies. Each unit is discussed as follows:
LSTM module consists of a cell state, hidden state, and three

Fig. 7. LSTM Network for anomaly detection

gates (forget, Input, and output gate). The information between
states and gates to be carried is automatically managed by the
LSTM unit which adds or removes information as needed.
The information dropped from the cell state is managed by



the forget gate to determine what information should be
removed. This decision is made by sigmoid function denoted
by σ and its value is in between ’0’ and ’1’. ’1’ represents
completely keeping this information and ’0’ shows removing
the information completely. The forget gate is formulated as:

ft = σ (Gf · [ψt−1, Qt] + yf ) (7)

Where Gf and yf are the forgat gate’s parameters. The next
step is to determine what new information going to store in
the cell state Ωt. This step has two parts: First, the sigmoid
layer called the ’Input gate layer’ denoted by ’it’ will update
the value, and next, ’tanh’ creates a new vector candidate Ω̂t,
that could be added to the state, as:

it = σ (Gi · [ψt−1, Qt] + yi) (8)

Ω̃t = tanh (GC · [ht−1, Qt] + yC) (9)

where, Gi, yi, GC and yC are the parameters of the input gate.
Equations.(8 and 9) are combined to update the state and can
be represented as:

Ωt = ft ∗ Ωt−1 + it ∗ Ω̃t (10)

The old state Ωt−1 is multiplied by the forget state ft to
forget the things, that decided to be forgotten earlier. then new
candidate value it ∗ Ω̂t is added to decide how many updates
it should be for each state value. LSTM output gate updates
the hidden state and determines which portion of the cell state
is to be output, formulated as:

ot = σ (Go [ψt−1, Qt] + yo) (11)

ψt = ot ∗ tanh (Ωt) (12)

Where, Go, yo are the output gates’s parameters. The tanh
represents the tanh activation function (values to be between
-1 and 1).
Given the output from the LSTM, FC performs a linear
transformation followed by a nonlinear activation function
formulated as:

ϵ = GFC ∗ ψt + yFC (13)

Where GFC and yFC are the parameters of the FC layer. α
is an activation function ( sigmoid or Rectified Linear Unit
(RLU)).

α = ϑ(ϵ) (14)

The output of the FC layers α can be used in a regression-
based approach to detect the anomaly. The value ŷ predicted
by the model, ŷ = α and the anomaly score is computed
based on the difference between the actual and predicted one.
If the score crosses a certain limit, the anomaly is detected.

Anamoly score = |y − ŷ| (15)

The algorithm for A2-LSTM is summarized in Table.(I) for
anomaly detection:

TABLE I
STEP-WISE EXECUTION OF KMeans BASED A2-LSTM

Algorithm: A2 - LSTM

1: Perform KMeans clustering on the dataset to get cluster assignment
γk .
2: Extract features Fk and fuse them in a fixed-length vector representation
Ffusion.
3: Apply GAP Favg on fused features.
4: Feed the GAP-fused features into FCNN to extract Qt.
5: For sequential processing, give Qt as input to the LSTM.
6: Feed the LSTM output ψt to FC layer for anomaly detection.
7: Perform Anomaly score.

IV. RESULTS AND DISCUSSION

In this section, we present the experimental evaluation of the
proposed algorithm for two distinct scenarios: The Simulink
model of the GCPV System and a real PV plant. The primary
focus is to assess the effectiveness of the proposed algorithm
for anomaly detection in both simulated and real-world PV
system applications.

A. Case 1: GCPV System

In the first case, we evaluate the algorithm performance
using the simulink model of the GCPV system. K Means
has been applied to the simulation data to form the clusters
and identify patterns indicative of normal and faulty behavior
depicted in Fig.(8). The elbow technique has been used to
determine the optimal number of clusters in the dataset which
are 5 here. The elbow method heuristic is used to determine
the optimal number of clusters in a clustering algorithm. It
involves plotting the sum of squared distances (SSE) from
each data point to its assigned centroid for different values of
K and then identifying the “elbow” or bend in the plot where
the rate of decrease in SSE slows down. To assess the quality
of clusters, we examined their purity which quantifies the
degree to which each cluster consists of data points belonging
to a normal denoted by (0) or anomaly region denoted by
fault (1). The purity analysis provides valuable information
on the clustering accuracy and the algorithm’s efficacy in
detecting anomalies. The cluster purity for clusters 0 to 4 is
0.99, 1.00, 1.00, 0.98, and 1.00 respectively.

The effectiveness of anomaly detection can be enhanced
by deploying clusters for the training of A2-LSTM, enabling
feature extraction and dynamically weighting critical features
such as module electrical data and solar irradiance. The
processed data is fed into the pooling layer followed by FCNN
to abstract and reduce dimensionality. After training the A2-
LSTM, the model was used to detect and predict anomalies by
establishing a threshold by identifying the instance where the
error between actual and predicted was notably high. Fig.(9)
depicts A2-LSTM detected anomalies and classified as fault
’0’ for different clusters based on learned patterns and attribute
weighted features.



Fig. 8. K Means Clusters on attributes

Fig. 9. Actual vs Predicted Fault Values for Selected Clusters

B. Case 2: Real PV Plant

The study detailed an analysis of the power production
from 23 inverters and the aggregate PV production output,
highlighting an anomaly in the dataset. Fig.(10) illustrates the
relationship between the PV plant power production, module
temperature, and solar irradiance for January month. Covering
the period from January 1, 2012, to December 31, 2012,
the analysis spans the entirety of the PV plant’s operational
timeline. The initial examination contrasts total PV production
with irradiance. Notably, on August 18, between 15:30 and
16:00, a significant irregularity emerges. During this interval,
there is a discernible glitch in PV production, as depicted in
Fig.(11). This glitch occurs simultaneously in all the provided
inverter data (Energy — Fronius IG TL 3.6 (i) series and
4.0(i) series. This should be investigated and A2-LSTM is
being developed to detect such anomalies. By leveraging
these predictions, the maintenance team can schedule proper
maintenance activities to address and remove these anomalies

for successful PdM proactively.

To achieve this, the first phase involved investigating differ-
ent parameters, with a particular focus on those that received
high attention scores such as total PV power production, mod-
ule temperature, and solar irradiance. Total Power production
is a most holistic measurement of the plant performance.
Similarly, module temperature and solar irradiance more di-
rectly impact the efficiency of the plant power production
as compared to windspeed and ambient temperature. These
feature selections can improve the A2-LSTM Performance by
removing the redundant attributes. The network parameters
Gfn1

, Gyn1
, Gf , yf , Gi, Gc, yc, yi, Go, yo, GFC and yFC are

randomly initialized. The second phase focuses on the training
of the proposed model. The A2-LSTM has trained 120 epochs,
with a batch size of 32. To access the overall performance of
the A2-LSTM, a confusion matrix has been used to quantify
the anomaly detection performance. Accuracy, Precision, F1
score, and Recall based on the confusion matrix have been
used as evaluation metrics.

Fig. 10. Plant power production Vs Irridance Vs Modular temperature

Fig. 11. Plant anomaly behavior



Fig. 12. A2-LSTM Anomaly detection outcome for PV production

Fig. 13. A2-LSTM PV Power production prediction

The A2-LSTM successfully detected a significant power
glitch that happened between August 18 to 19. This anomaly
is marked by the sudden drop in PV power production,
which was correctly identified and depicted in Fig.(12),
demonstrating its ability to identify deviation from the
normal operational pattern of the PV plant. Although other
anomalies are present, successfully detecting this malfunction
demonstrates the robustness of the A2-LSTM in real-world
PV systems. The anomaly was detected as a notable deviation
from the forecasted values by comparing the actual PV
production power data with forecasted power by the proposed
model as shown in Fig.(13).

The A2-LSTM has been evaluated using different window
lengths: 1, 2, 4,8, 16, 32, and 64-time stamps. This allowed
the assessment of the influence on the anomaly detection
capabilities by the A2-LSTM. This comparison showed how
sensitive the model is to window length and how it affects
the detection and prediction of anomalies and the optimal
window size for effective anomaly detection. Fig. (14). shows
the comparison based on different window sizes for accuracy,
precision, recall, and F1-score of the A2-LSTM with LSTM
provides valuable insights into the performance of both mod-

els. A2-LSTM demonstrate impressive accuracy, precision,
recall, and F1-score as compared to LSTM across various
window length. With large window lengths ( 8 and 16), A2-
LSTM showed noticeable improvement in precision and F1-
Score, indicating its improved ability to balance false positive
and true positive rates. On the other hand, LSTM performed
consistently but less across performance matrics and different
windows. Handling computational resources for A2-LSTM
becomes challenging when window length exceeds 32, as
computational complexity increases significantly, and also, the
anomaly detection becomes irrelevant to the data from longer
intervals. Finally, the window length is chosen to be 8, since
it covers the most relevant anomaly detection data for the
PV System. A2-LSTM showed better performance in handling
anomaly detection due to its advanced architecture.

Fig. 14. Evaluation metrics of the A2 − LSTM vs. LSTM at different
lengths of window size.

V. CONCLUSION

This paper proposed KMeans based A2-LSTM framework
for anomaly detection in PV array for PdM. During the
experimental evaluation, it was observed that the clustering of
data, the attribute attention mechanism for feature extraction,
and window size choice significantly impacted the final perfor-
mance of the model for anomaly detection. The effectiveness
of the proposed algorithm was demonstrated through a real-
world application (a real PV plant), and comparison results
suggested that the A2-LSTM achieved superior performance.
Future work includes gathering real-time data using a 3 × 3
indoor PV setup, Remaining Useful Life (RUL) insights into
the health and condition of PV plant equipment, classifying
detected anomalies into specific fault classes, and utilization
of a combination of expert knowledge with generational mod-
els such as variational autoencoders to improve the feature
extraction.
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