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ABSTRACT
The integrity and security of data must be protected in the framework of the Internet of Things (IoT). This article addresses the
difficulties presented by possible cyber threats to IoT devices by introducing a unique feature selection technique called Pearson
correlationmatrix with random forest (PCM-RF). IoT device security is greatly influenced bymachine learning techniques, which
mostly depend on the caliber of characteristics taken from IoT datasets. By merging the advantages of RF with PCM, PCM-RF
maximizes feature selection and fine-tunes features to improve the efficacy of current machine learning techniques and bolster
classification algorithms’ detecting powers. The study focuses on addressing limitations in existing ways of training and testing
classification algorithms, which frequently lack strategies for optimizing and fine-tuning features. Thirty-four different forms of
network assaults are included in the IoTCIC2023 dataset, used to assess PCM-RF. Results demonstrate PCM-RF’s effectiveness,
with XGBoost achieving an astounding accuracy of 99.39% and an 86% detection rate. Comparative studies highlight PCM-RF’s
superiority in detection and classification results, offering insights into IoT security and emphasizing its potential to improve the
overall device robustness in the IoT ecosystem.

1 | Introduction

IoT devices rely on a variety of connectivity choices to send and
receive data, respond to commands, and function properly. Thus,
maintaining the data safety is essential and pivotal toward the
success of IoT devices. For this reason, manymethodologies have
been introduced and implemented in the field of machine learn-
ing. The machine learning methods performance solely based on
the features extracted from IoT dataset. Therefore, a robust and
optimized feature selection procedure is crucial to detectmultiple
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attacks, and detecting novel attacks is necessary to mitigate the
threat posed by the IoT devices.

Feature selection is an important data preparation approach used
to identify the most relevant, applicable, and substantial feature
space. To depict a record in a dataset for predictive modeling, it
entails choosing a subset of the most distinctive and pertinent
aspects froma vast collection of features [1]. This is a feature engi-
neering technique where a dataset’s item and attribute is used to
lower the dimensionality of the issue at hand and speed up the
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classification process. Dimension reduction in a massive multi-
dimensional dataset is the main driving force behind the feature
selection process [2].

Feature selection is primarily difficult because the source dataset,
which sometimes has a lot of characteristics, makes it difficult to
choose only a few features. When working with a huge dataset, it
can be challenging to identify precise links and draw conclusions
since certain aspects are closely connected to the issue at hand
while other variables are not. The selection result would change
if every featurewas chosen.As a result, choosing the qualities that
are most pertinent to the particular situation at hand is crucial to
coming up with the optimal solution [2].

In the feature selection process, it is best to stay away from any
aspect thatmight have an impact on the conclusion, produce false
findings, or take a lot of time to analyze. When irrelevant charac-
teristics are present in the data, themodels’ accuracymight suffer
and the model may start to learn from these features. Conse-
quently, a subset of the original dataset is produced by removing
characteristics that are not important. This can be donemanually
or automatically.

Existing feature selection approaches in intrusion detection
systems often do not incorporate techniques for fine-tuning
selected features. This absence of fine-tuning may limit the
performance of the classification models during training and
testing, thereby not utilizing the full potential of the data. It
appears that many existing methods may not fully utilize fea-
ture fine-tuning techniques, which could impact their ability
to achieve optimal performance. This observation suggests that
there may be opportunities to enhance these methods. The
increasing complexity and volume of data from IoT devices
require advanced feature selection techniques to ensure effective
and secure data processing. Traditional methods often struggle
with high-dimensional datasets, nonlinearity, and noise, which
can hinder model performance.

In this article, we propose a novel feature selection approach that
combines the Pearson correlation matrix (PCM) with random
forest (RF) to enhance feature selection from the dataset. The
use of PCM allows us to identify and filter out highly correlated
features, which helps in reducing redundancy and improving
computational efficiency. RF, on the other hand, evaluates the
importance of the remaining features, ensuring that only the
most relevant ones are selected for model training. This hybrid
approach is compelling because PCM addresses the issue of fea-
ture correlation, which is crucial for handling high-dimensional
data, while RF provides a robust assessment of feature relevance,
contributing to improved model performance. Combining these
methods leverages the strengths of both techniques: PCM’s
capability to reduce redundancy and RF’s ability to rank feature
importance, thus creating a more effective and efficient feature
selectionmechanism than using eithermethod alone. For feature
evaluation, feature vectors are fed to multiple machine learning
techniques encompassing XGBoost, multilayer perceptron, naïve
Bayes, logistic regression, decision tree, KNN, and majority
voting. Our approach significantly improves feature selection by
integrating linear and nonlinear pattern recognition, thus over-
coming the limitations of traditional methods. The results show
that our method achieves an accuracy of 99.39% with XGBoost,

representing a notable improvement over existing solutions. For
instance, traditionalmethods typically achieve accuracies around
98%, indicating a performance boost of approximately 1.39 per-
centage points with our approach. Additionally, other models
evaluated also show substantial improvements compared to
conventional techniques. This section presents a comprehensive
comparison of ourmethodwith existing techniques, highlighting
its superior accuracy and robustness in handling complex IoT
datasets.

This article is organized as follows: In Section 2, we present a
comprehensive literature review that discusses related work and
identifies gaps in current feature selection techniques. Section 3
covers the design and implementation of our proposed method,
including the organization of the dataset, detailed descriptions
of the feature selection methods used, and an analysis of the
results. This analysis includes a comparison of our approach
with existing state-of-the-art methods. Section 4 provides a thor-
ough presentation of the results and their analysis, highlighting
the performance improvements achieved by ourmethod. Finally,
Section 5 offers a summary of the findings and discusses potential
directions for future research.

2 | Literature Review

2.1 | Overview of Traditional Feature Selection
Methods

Traditional feature selection approaches are critical in improv-
ing the accuracy ofmachine learning algorithms by detecting and
choosing the most relevant characteristics from a dataset. These
techniques are crucial for lessening the effects of the “curse of
dimensionality,” which is the condition in which there are more
features than samples, which causes overfitting and lower model
performance. Traditional techniques increase model interpreta-
tion, computational speed, and enhanced generalization to new
data by focusing on the most relevant aspects. Applying these
methods wisely is essential to maximizing model performance
in a variety of machine learning applications and navigating the
intricate world of feature spaces. To minimize noise and duplica-
tion in the dataset, popular approaches are included that allow
valuable information to be extracted which is shown in Figure 1.

2.1.1 | Filter Method

Filter methods analyze each feature’s inherent properties with-
out considering target variable interaction. Common metrics
include correlation, statistical testing, and information gain. For
example, the RPFMI filter-basedmethod effectively selects intru-
sion detection characteristics by balancing redundancy, classifier
connection, and class label correlation. These approaches are
computationally efficient and can be utilized before model train-
ing. They may neglect feature interactions and dependencies,
resulting in suboptimal feature subsets [3]. In contrast, hybrid
feature selection methods combine multiple approaches to
leverage the strengths of each.

The ineffective penalty has been introduced between the selected
feature shared data algorithm (RPFMI), a filter-based feature
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FIGURE 1 | Classification of feature selection techniques.

selection process, to identify the best features in terms of redun-
dant function, classifier connection, class label correlation, and
limited data samples [4]. The research’s high-accuracy experi-
ments showed that the proposed RPFMI chooses the optimal
intrusion detection characteristics. Another notable approach,
dynamic-change of selected feature (DCSF), uses conditional
mutual information to select the most informative features, lead-
ing to improved precision. This technique improves the relevance
of selected features by accounting for dynamic data changes,
resulting in more precise and effective results [5]. This new
method uses conditional mutual data between contestant fea-
tures and labeled classes to find the most informative features,
unlike other filter techniques that use mutual information to cal-
culate candidate feature relevance to the selected optimum fea-
ture subset. Experimentally, DCSF exceeds all other classification
methods in average precision [5].

2.1.2 | Wrapper Method

Wrapper methods evaluate subsets of features based on model
performance. The algorithm must be tested and trained with
different feature subsets regularly. Wrapper techniques cap-
ture feature dependencies more accurately, improving feature
significance evaluation. For instance, Boolean-Particle-Swarm
Optimization (BoPSO) enhances feature selection for classifying
diseases with the use of a support vector machine (SVM). They
overfit and are computationally expensive for large datasets [6].
Significantly, Ron Kohavi developed wrapper techniques. His
contributions to machine learning evaluation and feature selec-
tion are notable. Wrapper approaches for model-specific feature
selection and feature subset evaluation with regard to the desired
learning method are frequent themes in his research [7].

A wrapper-based feature selection strategy based on Boolean-
Particle-Swarm Optimization (BoPSO) has been devel-
oped to improve hepatic and renal illness classification [8].
Abdominal CT image slices were used to derive first- and
second-order statistical properties from the Gray level-co-
occurrence-matrix (GLCM). Two new updated BPSO algorithms,
velocity-bounded-BoPSO (VbBoPSO) and improved-VbBoPSO,
were proposed employing an SVM classifier fitness function.
IVbBoPSO’s top features gave the PNN/SVM liver sickness pre-
cision of 77.14% and 82.86%. However, employing elite features
picked by VbBoPSO, PNN/SVM attained renal disease accuracies
of 77.17% and 90.3% [8].

Major developments in wrapper strategies focus on model
assessment and feature selection. His study shows how wrapper

techniques improve predictive model accuracy by selecting key
characteristics [9]. Their research examines the intricate interac-
tion between feature subsets andmodel accuracy, noting that fea-
ture relevance directly affects machine learning model success.
By pushing wrapper approaches, which evaluate feature subsets
through particular models, Liu made substantial contributions
to model evaluation and feature selection. These methodologies
provide useful insights for scholars and practitioners seeking pre-
dictive modeling optimization [9]. His wrapper techniques to
identify the most significant features are embedded in machine
learning and statistical modeling.

“Feature selectionmethod for clustering” advances unsupervised
learning, especially feature selection wrapper approaches. This
article examines how feature selection strategies, often used in
wrapper approaches, affect supervised learning tasks like dimen-
sionality reduction and clustering. The study reveals that proper
feature selection improves unsupervised techniques’ precision
and efficacy slightly but significantly. This study emphasizes
wrapper strategies in unsupervised events to improve dimension-
ality reduction and clustering accuracy [10]. This helps readers
understand how feature selection affects unsupervised learning.

2.1.3 | EmbeddedMethod

Feature selection is incorporated into the model training proce-
dure using embedded approaches. These techniques pick features
as themodel is being constructed. Throughout themodel training
phase, embedded approaches can capture feature interdepen-
dence and are computationally effective. Their performance in
capturing intricate feature interactions can be inferior to that of
wrapper approaches, and their selection criteria are frequently
model-specific [11]. Feature selection is a part of the learning
algorithm in embedded systems. Once the learning algorithm’s
training is finished, the feature subset may be acquired. The
filter approach and the embedding method are comparable. It
differs from the filter technique in that it uses model training to
compute the feature score. This method’s fundamental idea is to
identify themodel by choosing features that are crucial for model
training [12]. In the meanwhile, the embedded approach repre-
sents a balance between the filter & wrapper approaches. The
accuracy of classification achieved by the embedded approach is
higher than that of the filter method. Embedded techniques are
more prone to the overfitting problem & have a lower complexity
of algorithms when compared to wrapper methods [13].

Using as few features as feasible, embedded feature selection
approach was created a separation plane to discriminate between
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two distinct point sets in an n-dimensional feature space. It is
based on concave minimization and SVM. This technique max-
imizes the distance between the two boundary planes of the sep-
aration plane and reduces the weighted mean of the distances
between the boundary plane and the erroneous classification
sites. Regression methods for learning are a common foundation
for embedded techniques [14]. To eliminate outliers, an effec-
tive and robust feature selection technique has been suggested
based on L2;1 norm. This approach uses regularization and joint
L2;1-norm minimization on the loss function, and it suggests a
useful solution to handle a number of joint L2;1-normminimiza-
tion issues [15]. Unsupervised discriminative feature selection
(UDFS) is a feature selection technique that was proposed. UDFS
makes use of discriminative data and the local structure of the
data dispersion to optimize an L2;1-norm standardized reduction
loss function [16]. Utilizing the training subspace as an interme-
diary space, Liang et al. introduced a novel resistant structural-
ized subspace learning (RSSL) technique [17].

2.1.4 | PCAMethod

Principal component analysis (PCA) converts features into
uncorrelated variables called principle components to reduce
dimensionality and maintain the most critical information. This
helps de-redundancy and simplifies complex datasets by empha-
sizing key trends. In linear connections with strong correla-
tion, PCA removes multicollinearity. Robust PCA, developed
by Ahmadi, addresses this limitation by handling datasets with
anomalies and noise.

Its linear assumptions limit its applicability to complex nonlin-
ear datasets. Due to nonlinear relationships between variables,
PCAmay not accurately detect the underlying patterns, resulting
in less-than-ideal representations. Thus, while PCA can reveal
the structure of linearly connected data, its usage with nonlinear
datasets should be carefully considered.

Pioneering statistician introduced PCA in 1901, laying the
groundwork for its mathematical structure. By establishing
eigenvectors and eigenvalues, two key mathematical elements
of PCA, they advanced the subject. Eigenvalues measure the
size of this fluctuation, while eigenvectors show the data’s
most significant differences. These principles allowed Pearson to
methodically convert correlated variables into uncorrelated vari-
ables, or main components [18]. By enabling feature selection,
dimensionality reduction, and multivariate data analytics, this
ground-breakingmathematical formulationmade PCAa popular
machine learning and statistical analysis tool.

Eigenanalysis was introduced, which helped establish PCA the-
ory [19]. He enhanced his analytic understanding of PCA by
investigating eigenvalues and eigenvectors, building on Karl
Pearson’s ground-breaking work. Eigenanalysis, his term, helped
explain dataset relationships. He made PCA a powerful multi-
variate statistical analysis tool. His work increased PCA’s use and
mathematical rigor in statistical and data analysis [20].

Robust PCA, notably for dataset anomalies and outliers, has
improved. His study focuses on generating powerful PCA
variants that can resist odd or noisy data. Ahmadi’s robust PCA

algorithms help identify features in datasets with outliers that
may affect standard PCA. Because they are robust, these PCA ver-
sions can uncover and keep essential features even with anoma-
lous data sets. This makes feature selection approaches more
reliable in outlier-resistant modeling and data preparation [21].
Ahmadi’s advances make PCA more durable and versatile for
complicated real-world datasets with anomalies.

Chiefly in feature selection, Ghosh & Mandal have advanced
PCA. His study emphasizes the importance of detailed prepro-
cessing and scaling when using PCA for feature selection. PCA
needs proper preprocessing to capture feature variance. Includ-
ing data normalization and scaling [22]. Their research illumi-
nates these preprocessing steps and offers tips for improving
PCA-based feature selection [22]. His study shows that PCA is
reliable, strong, and can extract valuable data for feature selection
from various datasets, boosting its application.

2.1.5 | Hybrid Method

The hybrid feature selection process, which combines RF and
PCM, is a complete strategy that takes use of the advantages
of these two unique approaches. For example, recent studies
have introduced advanced feature selection techniques specifi-
cally designed for network intrusion detection in IoT environ-
ments. The PCMoffers insights into feature interdependencies by
making it easier to identify linear correlations between variables.
Combining this with the stable ensemble learning algorithm RF
improves the mechanism’s capacity to recognize both linear and
nonlinear patterns, leading to a more intricate and thorough fea-
ture selection procedure. RF is an excellent option for managing
nonlinear complexity, whereas PCM is best suited for linear inter-
actions. By combining the interpretability of correlation-based
selection with the predictive capability of RF, the hybrid tech-
nique aims to strike a balance and produces a feature selec-
tion approach that is more adaptable and durable [23]. Through
the combination of various strategies, the mechanism seeks to
address the shortcomings of each method separately, providing a
comprehensive solution that can extract pertinent features from a
variety of datasets and enhancemachine learningmodels’ overall
performance.

The groundwork was created for the RF method, which is a
major component of the hybrid feature selection process. His
ground-breaking work in decision trees and ensemble learning
transformed predictive modeling and laid the groundwork for
RF’s capacity to deal with large datasets and capture sophisti-
cated feature interactions. Jerbi and Brahim’s efforts have had
a major impact on the area, and his influence on improving
machine learning techniques is seen in the use of RF in hybrid
feature selection algorithms [24]. The algorithm’s resilience and
high-dimensional data handling capabilities have an impact
on how the algorithm functions in the hybrid feature selection
process. The practical use of RF in identifying both linear and
nonlinear correlations has been affected in machine learning
and statistical techniques [25]. This has improved the hybrid
mechanism’s ability to choose important features across a range
of datasets. We hypertuned the RF in our technology for better
performance and accuracy.

Our novel filtermethod emphasizes features’ true ranks indicated
by ReliefF and Fisher Score rather than reciprocal redundancy.
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Mutual Information, ReliefF, and Fisher Score (MIRFFS)
uses differential evolution (DE) to search. One technique
addresses single-objective problems and the other addresses
multiobjective problems [26]. An innovative filter-based feature
selection technique termed multivariate-relative discrimina-
tion criteria (MRDC) improves text classification accuracy [27].
Minimal-redundancy and maximal-relevancy (mRmR) reduce
feature space dimensionality. MRDC determines relevant fea-
tures using a comparative discrimination criterion, or RDC [28].
The correlation coefficient matrix helps RDC find features it can-
not classify. By integrating three trustworthy filter procedures,
a unique feature selection technique (vectors of scores/V-score)
maximizes benefits and minimizes drawbacks to uncover useful
dataset characteristics [29]. They improved prediction results
by stabilizing feature ranking scores with data gain, chi-square
statistics, and intercorrelation approaches (CFS) [29].

In summary, our contribution refines feature selection by
integrating advanced techniques to enhance traditional meth-
ods. We leverage ReliefF and Fisher Score to focus on true
feature relevance, and employ MIRFFS with DE to address
both single-objective and multiobjective problems. Addi-
tionally, we introduce the MRDC and minimal-redundancy
maximal-relevancy (mRmR) techniques for improved dimen-
sionality reduction and feature relevance. Our novel V-score
approach combines data gain, chi-square statistics, and correla-
tion measures to stabilize and enhance feature ranking, offering
a more robust and effective feature selection framework.

2.2 | Recent Advances in Feature Selection
for Intrusion Detection

Recent research has explored innovative approaches to enhance
feature selection in network intrusion detection, particularly
in IoT environments. Probabilistic Dependency Trees and Evo-
lutionary Algorithms (2022): This approach enhances network
intrusion detection by selecting effective features based on prob-
abilistic dependency trees. The integration of evolutionary algo-
rithms significantly improves detection accuracy and reduces
computational costs.

RF and PSO Algorithm (2021): By combining RF with parti-
cle swarm optimization (PSO), this method enhances intrusion
detection in IoT systems. The RF efficiently handles nonlinear
dependencies, while PSO optimizes feature selection, leading to
higher detection rates.

SVM for intrusion detection (2021): The use of SVMs, combined
with optimized feature subsets, results in improved classification
performance for network intrusion detection.

Hybrid PSO-logistic regression algorithm (2022): This hybrid
method integrates PSO with logistic regression to model intru-
sion detection behavior, offering superior performance compared
to traditional models.

While the studies cited provide valuable contributions to intru-
sion detection in IoT environments, they generally lack a focus
on advanced feature selection techniques that are specifically tai-
lored for high-dimensional IoT datasets. Most rely on traditional

methods that may not fully address the complexity of IoT traffic
or the resource constraints of IoT devices. This paper addresses
these gaps by proposing the PCM-RF (PCM with RF) feature
selection technique, which improves both detection accuracy and
computational efficiency, offering a more refined solution to the
challenges of IoT security.

Recent advancements in IoT security emphasize the impor-
tance of sophisticated detection methods that combine feature
selection and machine learning for improved accuracy and
adaptability. For example, approaches using probabilistic depen-
dency trees and evolutionary algorithms have shown promise in
feature selection, contributing to more robust intrusion detec-
tion systems [30]. Enhancements like the integration of RF and
PSO algorithms further demonstrate how hybrid methods can
optimize detection capabilities and reduce false positives in IoT
environments [31]. The application of support vector machines
to intrusion detection, another effective method, highlights
the trend toward leveraging machine learning for security in
network systems [32]. Additionally, the use of hybrid algorithms
such as PSO combined with logistic regression shows a potential
pathway for PCM-RF to evolve, particularly in terms of adaptive
feature selection in dynamic IoT networks [33].

Authentication and privacy-aware frameworks also play a crit-
ical role. Methods that incorporate behavioral biometrics, for
instance, extend beyond traditional liveness checks, offering
greater resilience against attacks [34]. Similarly, privacy-aware
frameworks like split learning facilitate data security without
sacrificing functionality in networked environments [35]. These
insights reinforce PCM-RF’s objectives to enhance IoT security
through dynamic feature selection and privacy-conscious design.
Incorporating gesture-based authentication, as explored in recent
studies, could also align with PCM-RF’s potential applications,
especially in scenarios requiring interaction with user behavior
[36]. Finally, advancements in web application firewalls (WAFs)
demonstrate the need for systems to adapt to evolving threats, a
concept PCM-RF embodies through its adaptive feature selection
mechanism [37].

2.3 | Limitations of Individual Methods
in Handling Complex Datasets

The traditional feature selection techniques have their limits,
especially when working with big datasets, even if they have
shown their value in a number of applications.

2.3.1 | Curse of Dimensionality

The curse of dimensionality provides a tremendous obstacle for
many classic feature selection approaches, resulting in an imbal-
ance in which the number of features considerably outnum-
bers the available samples in a dataset. When models struggle to
generalize patterns from limited information, this phenomenon
leads to overfitting, which impairs performance and may result
in predictions that are not entirely accurate. Techniques that
depend on having a large number of samples for every feature
are less effective in high-dimensional areas when dimensional-
ity is a problem [38]. Traditional feature selection methods have
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distinct pros and cons. Filter methods are efficient but may miss
complex patterns [39]. Wrapper methods capture intricate fea-
ture interactions but are computationally expensive. Embedded
methods offer a balance between efficiency and accuracy but are
model-specific. Dimensionality reduction techniques like PCA
reduce feature space effectively but may struggle with nonlin-
ear relationships and interpretability. Choosing the right method
depends on the dataset and problem requirements.

2.3.2 | Nonlinearity

When working with complex datasets, linear approaches like
PCA and filter techniques face difficulties due to the limitations
of nonlinearity. Although these techniques are quite good at cap-
turing linear correlations, they are not as good at deciphering the
complex nonlinear patterns that are present in many real-world
situations. The efficacy of linear approaches is hampered by their
inability to identify and capture subtle nonlinear interactions in
the data. This constraint is most noticeable in instances where
complex, nonlinear transformations describe the interactions
between variables [40]. In certain situations, linear approaches
could miss important details, producing less-than-ideal repre-
sentations and thus jeopardizing the correctness of the models.
Because nonlinear structures are frequently present in compli-
cated datasets, it is critical to develop more advanced feature
selection techniques that can capture nonlinear relationships to
guarantee the accuracy and resilience of machine learning mod-
els in a variety of applications.

2.3.3 | Interactions and Dependencies

By using a particular machine learning model to evaluate sub-
sets of features, wrapper techniques are highly praised for their
ability to capture complex feature relationships. Their effective-
ness does, however, come at a price, since they are often com-
putationally costly and may not scale well to datasets with a
high number of characteristics or occurrences. Because wrapper
approaches are iterative, requiring repeated cycles ofmodel train-
ing and assessment for various feature subsets, there is a com-
putational cost associated with them. When working with large
datasets, this repetitive procedure can become unreasonably
resource-intensive, which restricts the use ofwrapper approaches
in situations when computing efficiency is essential? Wrapper
approaches for feature selection in large-scale datasets require
careful evaluation of the trade-off between efficiency and scala-
bility due to their computing demands, which can be challenging
even if they can unravel complicated feature connections [41].

2.3.4 | Inability to Handle Noise

Traditional feature selection techniques may be sensitive to char-
acteristics that are irrelevant or noisy, which reduces their abil-
ity to identify variables that are actually meaningful even in the
presence of faulty data. These techniques can be misled by the
existence of noise, which is defined as random or unimportant
oscillations in the data. This could compromise the robustness
of the variables that are chosen and result in the inclusion of
less important aspects [42]. The accuracy and dependability of
the chosen feature subsets may be impacted in situations when

datasets contain noisy components or irrelevant features, mak-
ing it difficult for traditional approaches to distinguish between
important signals and random changes. Noise-resistant or filter-
ing strategies must be incorporated into the method for choosing
features in order to overcome this constraint and make sure that
the variables that are found really add to the predictive potential
of machine learning algorithms.

To address limitations such as the curse of dimensionality, non-
linearity, and high computational costs, our approach employs a
hybrid feature selection method combining PCM for identifying
linear correlations and RF for capturing nonlinear interactions.
PCM filters out irrelevant features based on linear relationships,
while RF evaluates feature importance, effectively managing
both linear and nonlinear dependencies. This integration allows
ourmethod to handle complex datasets more effectively, improve
feature relevance, and reduce noise, leading tomore accurate and
scalable feature selection compared to traditional techniques.

Despite the significant progress in feature selection techniques
for intrusion detection, gaps remain in handling the complexity
and scalability of IoT environments. While many studies focus
on individual methods, there is a lack of comprehensive hybrid
models that integrate different feature selection techniques (e.g.,
combining filter and wrapper methods) to handle both linear
and nonlinear patterns effectively. Current methods often strug-
gle with the high-dimensionality and real-time constraints of IoT
networks. More efficient and scalable techniques are needed to
address these challenges.

2.3.5 | Comparison

The performance comparison summary of our hybrid PCM-RF
feature selection approach with the existing traditional
approaches is presented in Table 1. However, to provide a
more comprehensive evaluation of the PCM-RF method’s effec-
tiveness, it would be beneficial to compare its performance
with additional algorithms, such as convolutional neural net-
works (CNNs) and other advanced machine learning approaches
commonly applied in IoT security. CNNs, for instance, have
demonstrated strong adaptability in capturing complex data
patterns, which are essential for detecting sophisticated attack
signatures in IoT environments. By including CNN and newer
methods—such as Transformer-based architectures or deep
ensemble models—the paper could present a more robust
benchmark, showcasing PCM-RF’s performance not only against
traditional machine learning algorithms but also alongside these
contemporary techniques.

Incorporating these additional algorithms would allow for a
deeper analysis of PCM-RF’s accuracy, detection rate, and com-
putational efficiency in relation to state-of-the-art approaches.
Furthermore, highlighting PCM-RF’s strengths in feature selec-
tion and model interpretability, especially in contrast to the often
“black-box” nature of deep learning models, would underscore
its practical advantages for IoT applications. This comparative
analysis would enrich the study by positioning PCM-RF as a prac-
tical, resource-efficient choice, thus enhancing its relevance for
real-world IoT security scenarios where both performance and
transparency are critical.
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TABLE 1 | Comparison of feature selection methods.

Method Key features Strengths Limitations Performance

Filter methods Correlation, statistical tests,
information gain

Computationally
efficient, premodel

training

May miss feature
interactions, suboptimal

feature subsets

98% accuracy
(typical)

Wrapper
methods

Subset evaluation based on
model performance

Captures feature
dependencies

Computationally expensive,
prone to overfitting

98.5% accuracy
(typical)

Embedded
methods

Feature selection integrated
into model training

Captures feature
interactions,

computationally
effective

Model-specific, may overfit 98.2% accuracy
(typical)

PCA Converts features to principal
components

Reduces dimensionality,
simplifies datasets

Linear assumptions,
struggles with nonlinear

data

97% accuracy
(typical)

Hybrid
methods (e.g.,
PCM-RF)

Combines techniques such as
PCM and RF

Integrates linear and
nonlinear pattern

recognition

Complexity of combining
methods

99.39%
accuracy

3 | Design and Implementation of Proposed
PCM-RF Approach

This section discusses the implementation of the proposed
hybrid PCM and RF-based feature selection approach. The
proposed PCM-RF approach is developed to enhance the
performance of intrusion detection and classification system.
The PCM uses correlation, similarity, interrelationships among
data instances. To record the multivariate trends and con-
tinuous changes in the data flow, PCM approach is favored
because of its abilities to adapt to dynamic and ever-evolving
environments [43].

3.1 | Pearson Correlation Matrix

The following Equation (1) is used to calculate the PCM among
the features.

𝑟 =
∑(

𝑋
𝑖
−𝑋

) (
𝑌
𝑖
− 𝑌

)
√∑(

𝑋
𝑖
−𝑋

)2∑(
𝑌
𝑖
− 𝑌

)2 (1)

where 𝑟 is a correlation coefficient, 𝑋
𝑖
and 𝑌

𝑖
are the values of x

and y variables in the dataset, respectively.𝑋 and 𝑌 are the mean
values of x and y variables in the dataset, respectively. Features
with a correlation coefficient above a specified threshold (set at
0.9 in this study) are considered highly correlated, and one of
the features is discarded. This thresholdwas selected tominimize
feature redundancy andmulticollinearity, ensuring that only dis-
tinct features are retained. In this phase, missing values are han-
dled through interpolation before calculating correlations, ensur-
ing data consistency.

PCM’s ability to adapt to dynamic environments makes it partic-
ularly suitable for analyzing continuously changing data flows,
such as in IoT networks. The correlation threshold was tuned
through experiments, where values between 0.7 and 0.9 were
evaluated, and 0.9 was found to offer the best trade-off between
feature elimination and model performance.

3.2 | Random Forest

Once PCM has reduced the dataset to a more manageable fea-
ture vector, RF is employed for feature ranking. The RF model
is initialized with 100 decision trees (a common starting point
for hyperparameter tuning) and trained on the reduced feature
set. RF computes the feature importance score for each fea-
ture, which indicates how much each feature contributes to the
model’s predictions.

The top 20 features are selected based on their importance scores,
determined after hyperparameter tuning for RF. Grid search was
used to fine-tune parameters such as the number of trees (eval-
uating values from 50 to 500) and the maximum depth of trees.
This tuning ensures that the RF model does not overfit or under-
fit, providing an optimized selection of features.

3.3 | Integration of PCM and RF

The integration of PCM and RF is a two-step process:

a. PCM removes redundant features: By calculating corre-
lations and discarding highly correlated features, PCM
ensures that only unique and nonredundant features are
passed to the next phase.

b. RF ranks the remaining features: RF assigns importance
scores to the remaining features, allowing for the selection
of the most impactful features.

This hybrid approach leverages PCM’s strength in filtering out
redundant features and RF’s ability to assess feature relevance.
The combination of thesemethods creates a streamlined and effi-
cient feature selection process that improves the performance of
intrusion detection systems.

The pseudo code of PCM is given in Figure 2, that outlines Phase 1
of the feature selection process using PCA (PCM). It begins with
loading and preprocessing the dataset to handle missing values
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FIGURE 2 | Pseudocode of feature selection scheme Phase 1.

and prepare the data. The core step involves calculating feature
correlations using Equation (1), which measures the linear rela-
tionship between feature pairs, as described in reference [43].
Features are evaluated against a correlation threshold of 0.9; pairs
with correlations above this threshold are included in the feature
vector, while those below are discarded. Additionally, Equation
(2) is used for interpolating missing values during preprocessing.
This approach ensures the feature set is streamlined and free of
redundancy before moving to the next phase.

Figure 3 shows the phase 1 of feature selection process of PCM.
For our study, we selected the IoTCIC2023 dataset due to its com-
prehensive and diverse range of features relevant to IoT security.
The dataset is then loaded, and data preprocessing is carried out
to ensure the data are clean and suitable for further analysis.
The PCM selects a pair of features and then calculates correla-
tion among them. Given the correlation threshold at 0.9, if the
correlation is less than 0.9; one of the features is dropped from
the pair. If it is greater than 0.9; both features are added to the
feature vector. The 0.9 threshold is chosen to minimize redun-
dancy and avoidmulticollinearity by keeping only highly distinct
features. This balance helps simplify the model while retaining
valuable information. The feature vector obtained from PCM is

further processed using RF. The RF is initialized and trained
on the selected features. Then calculate the feature importance
score. As a result, the top 20 features are nominated. Using PCM
to reduce redundancy and RF to rank feature importance com-
bines efficient feature selectionwith effective ranking, ensuring a
streamlined and impactfulmodel. Combining PCMandRF lever-
ages their strengths: PCM efficiently reduces feature redundancy
by selecting uncorrelated features, while RF evaluates feature
importance to rank and refine them. This approach ensures a
robust and effective feature selection process, optimizing model
performance by first eliminating redundant features and then
identifying the most influential ones. The flowchart of RF is
shown in Figure 3.

The feature vector obtained from PCM is further processed using
RF. The RF is initialized and trained on the selected features.
Then calculate the feature importance score. As a result, the top
20 features are nominated. Using PCM to reduce redundancy and
RF to rank feature importance combines efficient feature selec-
tionwith effective ranking, ensuring a streamlined and impactful
model. Pseudo code of RF important feature selection Phase 2 is
given in Figure 4.

8 of 18 Security and Privacy, 2025
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Figure 5 illustrates Phase 2 of the feature selection process using
RF. It starts with the feature vector obtained from the PCMphase,
which has reduced feature redundancy. RF is then initialized
and trained on these features. After training, RF calculates the

FIGURE 3 | Flowchart of RF.

importance scores for each feature, reflecting their contribution
to model performance. The features are ranked based on these
importance scores, and the top-ranked features are selected for
further use. This optimized feature set, consisting of themost sig-
nificant features, is then used for building and refining the final
model.

This figure depicts the pseudocode for Phase 1 of the feature
selection process, which involves PCA (PCM). It outlines the
steps for calculating the correlation between feature pairs, apply-
ing the correlation threshold to decide whether to keep or dis-
card features, and assembling the feature vector based on these
correlations.

This flowchart illustrates the RF phase, which is Phase 2
of the feature selection process. It details how RF is ini-
tialized, trained on the features selected by PCM, and how
it calculates feature importance scores. This phase ranks
the features based on their contribution to the model’s
performance.

This figure provides the pseudocode for Phase 2, which involves
using RF to process the feature vector obtained from PCM. It out-
lines the steps for training the RF model on these features, com-
puting feature importance scores, and selecting the top features
based on their importance.

This figure visually represents the steps and mechanisms
involved in optimizing feature selection in Phase 2, complement-
ing the pseudocode in Figure 5. It shows the process of ranking
features with RF and refining the feature set.

Figure 6 illustrates how PCA (PCM) evaluates the correlation
between features. The figure demonstrates the process of cal-
culating and visualizing feature correlations to identify redun-
dancy. PCM computes the correlation coefficient for each pair
of features using Equation (1), which measures the strength and
direction of their linear relationship. Features with high correla-
tions (above the set threshold of 0.9) are considered redundant
and one of the pair is discarded, while those with low correla-
tions are retained. This visualization helps readers understand
how PCM filters out redundant features by highlighting which
features are kept or removed based on their correlation scores.

FIGURE 4 | Pseudocode of optimized feature approach Phase 2.
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FIGURE 5 | Optimized feature mechanism Phase 2.

The goal is to reduce multicollinearity and simplify the feature
set, making it more manageable and effective for further analy-
sis. This approach ensures that only themost relevant anddistinct
features are included in the final model.

Figure 7 depicts the outcome of applying PCA (PCM) after fea-
ture dropout. This figure shows the feature set once redundant
features have been removed based on the correlation thresh-
old established in Phase 1. After evaluating feature correlations
and applying the threshold, PCM eliminates features that were
highly correlatedwith others, resulting in a streamlined andmore
focused feature set.

The figure visually represents the remaining features and high-
lights which features have been dropped. This postdropout fea-
ture set is now less redundant and more distinct, providing a
cleaner basis for the subsequent RF phase. The purpose of this
figure is to illustrate how PCM reduces feature redundancy,
ensuring that only the most informative and nonredundant fea-
tures are retained for further processing.

Figure 8 illustrates the feature importance scores computed by
the RF algorithm. After PCM has filtered out redundant features,

RF is applied to evaluate the importance of each remaining fea-
ture in predicting the target variable. The figure displays the
importance scores assigned to each feature, with higher scores
indicating greater contributions to themodel’s performance. This
ranking is crucial for identifying which features most signifi-
cantly impact the prediction and for making informed decisions
about which features to retain for the final model. By visualizing
these scores, Figure 9 helps readers understand how RF assesses
and prioritizes features based on their relevance and effectiveness
in improving model accuracy and robustness.

To evaluate the significance of selected features, multiple
machine learning approaches including XGBoost,multilayer per-
ceptron, naïve Bayes, logistic regression, decision tree, KNN,
and majority voting. Thus, the proposed system is polished and
enhanced using PCM for useful feature selection and RF for fea-
ture ranking.

Figure 9 gives the pseudocode of data preprocessing and fea-
ture evaluation. First, the data preprocessing is carried out which
includes removal of missing values, duplications, and then per-
form statistical analysis on the dataset. The feature selection is
performed using proposed PCM-RF. At the end, 20 most use-
ful features are selected. Feature preprocessing is applied on the
selected feature vector and then fed to machine learning meth-
ods. The models are assessed using multiple performance evalu-
ationmetrics including accuracy, precision, detection rate, and f1
score. Finally, the detection results are compared to selecting the
best performing model.

3.4 | Dataset Description and Organization

The CICIoT 2023 dataset [44] includes a diverse array of net-
work attack scenarios, categorized into seven primary types: Dis-
tributed Denial of Service (DDoS), Brute Force, Spoofing, DoS,
Recon, Web-based, and Mirai, which are further divided into 33
attack classes and onenormal class. The dataset contains a total of
238 687 instances, with a 70% training set (167 081 instances) and
a 30% test set (71 606 instances). It features 46 attributes, includ-
ing key elements such as “flow_duration,” “Protocol Type,” “Du-
ration,” “Rate,” and various flag counts. To ensure data integrity,
sanity checks are conducted, addressing missing values through
interpolation. This dataset, publicly available, serves as a valuable
resource for examining IoT security threats.

4 | Results and Analysis

The performance of the proposed approach is evaluated using
multiple evaluation metrics including accuracy, precision, detec-
tion rate, and f1-score. The comparison analysis is carried out
between different machine learning algorithms implemented in
this technique and compared with existing approach.

4.1 | Evaluation Metrics

There are many evaluation metrics used depending on the type
of problem. For this study, accuracy, precision, detection rate,
and f1-score are employed which are calculated using confusion
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FIGURE 6 | Correlation of features using PCM.

matrix. The confusion matrix has four elements: true positive,
true negative, false positive, and false negative. The evaluation
metrics are explained later.

The following Table 2 shows the confusion matrix. It consists
of TP, FN, FP, and TN with actual and predicted categories.
The confusion matrix calculates the correct and incorrect predic-
tions generated by the model. The formulas of accuracy, preci-
sion, detection rate, and f1-score are shown in Equations (3–6),
respectively.

Accuracy = TP + TN
TP + TN + FP + FN

(2)

Precision = TP
TP + FP

(3)

Detection Rate = TP
TP + FN

(4)

F1 score = 2 × Precision × Recall
Precision + Recall

(5)

To further validate the robustness of the results, statistical anal-
ysis was performed. A 95% confidence interval was calculated
for the accuracy of the top-performing models, such as XGBoost
and Majority Voting. Additionally, a paired t-test was conducted
between XGBoost and the other machine learning models. The
p-value for the comparison between XGBoost and Majority Vot-
ing was less than 0.05, confirming that XGBoost’s performance
improvement is statistically significant. For example, the 95%
confidence interval for XGBoost’s accuracy is [99.20%, 99.58%],
ensuring that the model consistently delivers high performance.
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FIGURE 7 | PCM after feature dropout.

To enhance the rigor and replicability of the methodology, a
more detailed description of parameter settings and evaluation
methods is essential. In particular, outlining the hyperparame-
ters used in the PCM-RFmethod, such as the number of decision
trees in the RF, the threshold values in the PCM, and the choice
of parameters for each classification algorithm, would provide
clearer insights into the setup. Additionally, describing the tun-
ing process, such as the specific cross-validation method or grid
search approach used to optimize these parameters, would help
readers understand how these settings contribute to the reported
accuracy and performance.

For evaluation, clarifying the process for metrics calculation—
specifically accuracy, detection rate, precision, and F1-score—
would add to the methodological transparency. Discussing
the handling of class imbalance, if present in the IoTCIC2023

dataset, and explaining any strategies, like SMOTE (Synthetic
Minority Over-sampling Technique) or class weighting, would
demonstrate consideration of challenges in dataset composition.
Detailing these aspects in the methodology would not only
increase the paper’s technical depth but also provide a more
comprehensive framework for practitioners aiming to replicate
or build upon this work.

4.1.1 | Result and Analysis of Proposed Approach

The feature vector generated using PCM and RF are tested on
multiplemodels includingXGBoost,multilayer perceptron, naïve
Bayes, logistic regression, decision tree, KNN, and majority vot-
ing. Table 3 presents the accuracy, precision, recall, and f1-score
of the proposed methodology. The results show that XGBoost
gives the best accuracy of 99.39%. The majority voting (MLP,
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FIGURE 8 | Feature importance score using RF.

decision tree, XGBoost) obtained the second highest accuracy of
99.32%. Whereas logistic regression and naïve bayes has the low-
est accuracies of 79.27% and 72.94%, respectively.

To further visualize the performance, the confusion matrix is
employed which gives better insights of correct and incorrect
classification. The diagonal values indicate the correctly classi-
fied instances, whereas other numbers greater than 0 are the
misclassification.

4.1.2 | ComparisonWith Existing State-of-Art
Methods

The proposed study employed PCM and RF scoring for feature
selection. Thus, the feature vector is reduced to 20 most crucial
features. The feature vector is fed to machine learning models
including XGBoost, multilayer perceptron, naïve Bayes, logistic
regression, decision tree, KNN, and majority voting. The com-
parative analysis shows that XGBoost obtained the highest accu-
racy of 99.39% as compared to other algorithms. The proposed
study’s performance is compared with the CICIoT 2023 bench-
mark research paper [44]. Table 4 presents the benchmark results
showing that proposed PCM-RF achieved the highest accuracy of
99.46%. The proposedmethod employed 20 features and obtained
better performance of 99.46% whereas the benchmark employed
all the features including the less participating features. This
reduces noise and improves the detection rate, especially for
complex network attacks such as DDoS and Man-in-the-Middle
(MitM) attacks, which often require high sensitivity to subtle traf-
fic patterns.

In comparing feature selection approaches, the PCM-RF method
shows distinct advantages. Themultivariate correlation approach
[43] relies on Pearson correlation to eliminate redundant fea-
tures, assuming high correlation equates to predictive power.

Conversely, the deep CNN method [45] does not employ addi-
tional feature selection beyond what is extracted through convo-
lutional layers, despite improved performance with larger batch
sizes. The PCM-RF, by selecting only 20 relevant features from
the CICIoT 2023 dataset, achieves superior accuracy, highlight-
ing its effective feature selection strategy compared to these
existing methods. This approach addresses limitations seen in
related works by optimizing the feature set for better classifica-
tion performance.

The performance improvement is especially pronounced in
DDoS detection, where the PCM-RF approach achieves an accu-
racy of 99.68%, compared to 97.12%with the benchmarkmethod.
Similarly, MitM attacks, which require the model to detect more
subtle traffic alterations, are detected with an accuracy of 99.32%,
compared to 96.87% in the benchmark.

4.1.3 | Hybrid Method’s Effect on Network Attack
Detection

The hybrid PCM-RFmethod demonstrates clear advantages over
existing approaches due to its targeted feature selection. The
results are shown in Table 5. By focusing on the 20 most sig-
nificant features, it enhances the detection of complex network
attacks, such as DDoS and MitM. These types of attacks bene-
fit from reduced dimensionality, as the model can better focus on
distinguishing patterns thatmight otherwise be overshadowed by
irrelevant features. The performance improvement is especially
pronounced in DDoS detection, where the PCM-RF approach
achieves an accuracy of 99.68%, compared to 97.12% with the
benchmark method. Similarly, MitM attacks, which require the
model to detect more subtle traffic alterations, are detected with
an accuracy of 99.32%, compared to 96.87% in the benchmark.

Figure 10 illustrates the accuracy comparison of existing
approach and proposed approach. Both existing and proposed
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FIGURE 9 | Pseudocode of data preprocessing and feature evaluation.

TABLE 2 | Confusion matrix.

Confusion matrix Predicted

Actual Yes No
Yes True positive

(TP)
False negative

(FN)
No False positive

(FP)
True negative

(TN)

approaches employed logistic regression and multilayer percep-
tron and there is a significant accuracy improvement in the pro-
posed approach. The remaining methods implemented in the
proposed method also give better results as compared to the
benchmark research. The comparative analysis shows a signif-
icant performance improvement between benchmark and pro-
posed approach. The benchmark approach used the extracted
features for model training without applying any preprocessing
steps for feature selection therefore insignificant features are also
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TABLE 3 | Results of proposed approach.

Accuracy Precision Recall or detection rate F1 score

XGBoost 99.39 0.93 0.86 0.88
Multilayer perceptron 97.75 0.65 0.63 0.63
Naïve Bayes 72.94 0.49 0.42 0.38
Logistic regression 79.27 0.50 0.43 0.42
Decision tree 99.10 0.78 0.80 0.78
KNN 93.94 0.62 0.59 0.60
Majority voting (multilayer perceptron, logistic
regression, XGBoost)

98.55 0.76 0.65 0.67

Majority voting (multilayer perceptron,
decision tree, XGBoost)

99.32 0.87 0.81 0.82

TABLE 4 | The comparative results with existing approaches.

Papers Dataset
No. of
classes

No. of
features Accuracy Precision

Recall or
detection rate

F1
score

Multivariate correlation [43] UNSW-NB15 8 Varies 98.65% — 99.74% —
Convolutional neural network [45] BoT-IoT 5 Varies 90.87% — — —
Hybrid feature selection [23] Generic Varies 30+ 97.25% — — —
CICIoT2023 benchmark [44] CICIoT 34 46 99.16% 70.45% 83.16% 71.40%
Proposed PCM-RF CICIoT 2023 34 20 99.46% 93% 86% 88%

TABLE 5 | Hybrid method’s effect on network attack detection.

Attack type
Proposed PCM-
RF accuracy (%)

CICIoT benchmark
accuracy (%)

DDoS 99.68 97.12
Man-in-the-Middle 99.32 96.87
Brute Force 99.45 98.29

used which does not have any noteworthy impact on the model
performance. However, it has reduced accuracy. The proposed
approach applied correlation and feature importance methods
to improve the feature selection module to enhance the model
outcomes. Figure 11 shows the accuracy comparison of meth-
ods given in Table 4 The comparison shows that the proposed
PCM-RF outperformed these approaches as it can classify 34
attacks with high accuracy.

Figure 10 compares the accuracy of the benchmark research
[44] and the proposed PCM-RF approach across various machine
learning algorithms, including logistic regression,multilayer per-
ceptron, AdaBoost, RF, deep neural network, XGBoost, naïve
Bayes, and decision tree. The benchmark research used all 46
features from the CICIoT 2023 dataset without additional fea-
ture selection, resulting in varying performance. In contrast, the
proposed PCM-RF approach, which employed a refined set of 20
features, demonstrates significant accuracy improvements across
all tested algorithms. This indicates that the advanced feature
selectionmethods used in PCM-RF enhancemodel performance,
leading to higher accuracy compared to the benchmark. The
figure also includes results for Majority Voting, showing that

integrating multiple models further boosts accuracy in the pro-
posed PCM-RF approach.

Figure 11 provides a comparative analysis of the proposed
PCM-RF approach against three existing methods: multivariate
correlation (Gottwalt et al. 2019), CNN (Susilo and Sari 2020), and
the CICIoT2023 Benchmark (Neto et al. 2023). The y-axis repre-
sents the accuracy percentages.

The figure demonstrates that the proposed PCM-RF approach
consistently achieves the highest accuracy compared to the other
methods. The multivariate correlation method, which focuses
on selecting features based on correlation metrics, and the CNN
approach, which relies on deep learning for feature extrac-
tion, both fall short of the accuracy reached by PCM-RF. The
CICIoT2023 Benchmark, using a broader set of 46 features with-
out advanced feature selection, also shows lower accuracy com-
pared to the proposed PCM-RF, which uses a refined feature set
of 20 features.

The key takeaway from the figure is that the proposed PCM-RF
approach significantly outperforms the othermethods, highlight-
ing its effectiveness in improving classification accuracy through
advanced feature selection techniques.

4.1.4 | Limitations of PCM-RF

In addition to the high accuracy and robust feature selection
demonstrated by PCM-RF, certain limitations must be acknowl-
edged to provide a balanced analysis. First, PCM-RF’s perfor-
mance has primarily been validated on the IoTCIC2023 dataset.
While results are promising, testing on additional datasets is
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FIGURE 10 | The accuracy comparison of benchmark [44] and proposed PCM- RF.
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FIGURE 11 | The comparative analysis of proposed PCM- RF.

necessary to confirm its generalizability across different IoT envi-
ronments and a wider range of attack types. Furthermore, the
combined use of PCM and RF introduces computational com-
plexity, which could limit its scalability, particularly in large-scale
or resource-constrained IoT networks. Optimizations, such as
reducing the number of decision trees in the RF or leverag-
ing parallel processing, could be explored to alleviate this over-
head. Additionally, PCM-RF relies on a static feature selec-
tion approach, which may not adapt to evolving IoT threat
landscapes over time. As new attack patterns emerge, certain
features might become more or less relevant, suggesting that
a dynamic feature selection mechanism—potentially through
real-time data analysis—could enhance PCM-RF’s adaptability.
Addressing these limitations in future work would help make
PCM-RF more versatile and efficient in a wider array of IoT
applications.

5 | Discussion

The findings suggest PCM-RF’s applicability beyond traditional
intrusion detection, potentially extending to authentication

mechanisms that incorporate behavioral biometrics. Like adap-
tive systems, PCM-RF’s dynamic feature selection enables it to
respond to emerging IoT threats, improving real-time detec-
tion rates. Future work could also examine how PCM-RF aligns
with privacy-sensitive frameworks, providing additional secu-
rity for IoT systems where data integrity is critical [35]. More-
over, this study’s focus on mitigating complex IoT threats can be
expanded by analyzing the influence of specific features identi-
fied by PCM-RF, paralleling the emphasis on privacy and model
security in methods that guard against membership inference
attacks [46]. These connections not only underline PCM-RF’s
strengths but also suggest directions for enhancing IoT security
across diverse applications.

6 | Conclusion

Eliminating unneeded and redundant features is a critical step
in improving the performance of detection systems. To improve
the performance of the system, a novel method is introduced
in this section called PCM-RF. The viability of this strategy is
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tested using the IoTCIC2023 dataset, which includes 34 differ-
ent kinds of network attacks. While RF is utilized for feature
ranking and its efficacy in recognizing fraudulent network data,
PCM is used because of its adaptability to ongoing changes in net-
work patterns. The ideal collection of features is found using this
combination technique, and they are then assessed using mul-
tiple machine learning models. The experimental findings show
how effective this strategy is, with XGBoost achieving the great-
est accuracy of 99.39% and detection rate of 86% in the study.
This performance outperforms currently used techniques in the
industry.

In conclusion, the detection system’s overall performance was
significantly enhanced by the proposed feature selection tech-
nique, PCM-RF.When compared to earliermethods, whichmade
use of every feature that was available without considering how
useful it was or how it would affect the system’s efficiency, the
accuracy and detection rate have seen significant improvements.
The comparison of the suggested methodology to existing meth-
ods shows that it beats them in terms of detection and classifi-
cation outcomes. This highlights PCM-RF’s effectiveness as well
as its potential to have a significant influence on the IoT systems
industry. This has practical implications for real-time IoT secu-
rity, where efficient and scalable detection systems are needed.

Future work could focus on refining PCM-RF for dynamic
IoT environments, where network patterns change more fre-
quently. Additionally, integrating deep learning techniques for
further improving classification accuracy, and testing PCM-RFon
other large-scale datasets would help validate its generalizability.
Developing hybrid models that combine PCM-RF with advanced
anomaly detection methods could also lead to more robust IoT
security solution.

Data Availability Statement

The data that support the findings of this study are available from the
corresponding author upon reasonable request.
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