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Abstract—The role of humans in time-pressured decision-
making processes within sports has been critically examined in
psychological research. This is particularly relevant in complex
movement sports such as Dressage, Gymnastics, and Olympic
Weightlifting. Not only are humans susceptible to bias, but they
also lack the necessary processing capacity to assess intricate
movements in real-time. Although some research has been
conducted in this space very few use Computer Vision based
approaches. To address this issue, this research proposes a novel
Computer Vision solution to automate the judging process in
Olympic Weightlifting. The solution incorporates LSTM-based
Gesture Recognition and Human Pose Estimation using
Mediapipe. The feasibility and effectiveness of the proposed
solution are assessed by leveraging a combination of videos from
the official Olympics YouTube channel and amateur recorded
videos captured from the perspective of the Olympic
Weightlifting Centre judge. The findings indicate a high degree
of success in achieving the research objective. The solution
achieved a validation accuracy of 96% and an average F1 score
of 0.91. These results demonstrate the plausibility and efficacy
of the proposed approach in automating the judging process
within Olympic Weightlifting. By automating this process, the
potential influence of human bias can be mitigated while
improving the real-time assessment of complex movements. The
implications of these findings extend beyond Olympic
Weightlifting and have the potential to enhance judging
processes in other complex movement sports as well.

Keywords—Olympic Weightlifting, Gesture Recognition,
Human Pose Estimation, LSTM, Bias, Judge/s, Snatch, Clean and
Jerk

I. INTRODUCTION

The exciting and dynamic sport of Weightlifting decides its
winners through allegedly ‘objective’ judge interpretations
and analysis of an athlete’s movement. The International
Weightlifting Federation (IWF) defines extremely detailed
rules and regulations around what counts as correct and
incorrect movement. Nonetheless, this judging system can be
flawed because it is ultimately left to human interpretation of
the rules. This poignant flaw introduces room for bias-induced
decision-making. We can assume that judges always try to
remain fair during a competition. Yet considerable evidence
exists within sports psychological research that “getting it
right” isn’t as easy as it sounds [1].

In highly complex movement sports, the demands on
judges’ information processing capacities far outweigh what
can reasonably be expected, considering time and social
pressures [1]. As a result, judges tend to fall back on bias-
induced schemas, including patriotism bias which suggests a
judge favouring an athlete from their own country, reputation
bias which suggests influence based on the athlete’s
reputation, rank order bias which refers to the tendency to
expect a good or bad performance based on which stage of the
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competition the performance takes place, conformity effect
bias which suggests that when judges can see the scores given
by their judging peers, either during or at the end of a
competition, they are likely to adapt their scoring to “fall in
line”. As a result, accurate performance evaluation within
complex movement sports like Weightlifting is a challenge.

When examining prior attempts to address bias in the
judging process of complex movement sports, there is a
scarcity of bespoke technological solutions that directly tackle
the problem. Even among the solutions that do exist, judges
continue to play a central role, making them susceptible to
bias-induced flaws in high-pressured environments similar to
sport judging [1].

This research proposes a novel Computer Vision solution
with two aims: (1) identify as objectively as possible if a
weightlifting movement can be classified as successful; (2)
provide the rationale behind the decision that was made.

II. RELATED RESEARCH

This section dives deeper into the psychology behind biased
decision-making and its prevalence in elite-level sports as well
as previous solutions which have attempted to tackle bias-
induced action quality assessment in sports.

A. Human Psychology Behind Bias in Sports Judging

Judges enforce the rules of a sport, however in moments of
controversy when critical split-second decisions need to be
made, the “human” element of refereeing comes to the fore
[1]. If judging mistakes occur, the effects are as significant as
an athlete winning or ending a competition with nothing.

A true evaluation of what constitutes bias in human
psychology is required to understand why it would occur in
the first place. As we proceed to do so, questions arise — what
are the variables within a human’s thought process before
making a subconsciously biased decision?

Perception is the first cognitive step when a person makes
a judgement. Perception is heavily influenced by the prior
knowledge an individual has accrued [1]. In Weightlifting,
this would be a judge’s perception of an athlete’s movement.
After gaining perception, a judge must assign meaning to the
performance they have witnessed by drawing on previous
memories — have they seen this movement before, have they
seen this athlete perform before, does the athlete have a good
track record of performing well, what types of performances
have previously been considered good or bad? All these
questions play major roles in the output decision.

When assessing performances, judges are required to
provide their verdict under increasing time and social pressure
to “get it right”. This can lead to judges taking shortcuts to get
to their decisions.



The snatch and clean and jerk contain several technical
and artistic elements which all need to be evaluated at once.
However, processing of such complex information exceeds
human capabilities. To conform to the social pressures,
timeframes, and expectations judges fall back on these
shortcuts which help them come up with a judgement that in
their mind accurately approximates actual performance levels.

B. Forms of Bias in Elite-Level Sports

Similar to fans, judges may overlook flaws in the
performance of a well-known athlete, such as a serial world
champion or Olympic gold medalist. For example, at the
London 2012 Olympics, Japanese gymnast Kohei Uchimura
was widely considered the greatest male artistic gymnast of all
time [2], earning himself the nickname ‘the king’ among
Japanese nationals [3]. During the men's team event,
Uchimura made an uncharacteristic error during his dismount
on the pommel horse apparatus, resulting in a lower score of
13.466 and a fourth-place finish for the Japanese team.
However, the Japanese coaching staff filed a request for a re-
evaluation, which was accepted. ‘King’ Kohei's score was
subsequently increased to 14.166, moving the Japanese team
up to second place surpassing Ukraine and Great Britain [4].
It can be deduced that Uchimura’s reputation played a
significant role in the decision to re-evaluate his performance.
This begs the question — would the same have happened if it
was a lesser-known athlete?

Another example is conformity bias, which is especially
poignant in a system where a judge can see other judges’
verdicts. This can be key in Weightlifting as all judges can see
the light which indicates the verdict of the others. As a result,
a judge is likely to modify their scoring for it to fall in line
with the decisions of the majority. If a judge missed a part of
a performance due to a lapse in concentration, they would
draw on the decisions made by other judges to come to a
decision of their own.

C. Existing Solutions to Tackle Bias in Sport Judging

1) Using Statistics to Judge the Judges
Heiniger and Mercier [5] implemented a statistical engine to
analyse the performance of gymnastics judges with three
objectives: (1) provide constructive feedback to judges,
executive committees, and national federations; (2) assign the
best judges to the most important competitions; and (3) detect
bias and persistent misjudging related to patriotism bias.

A model was developed to generate a judge’s marking
score which scales the difference between the mark of a judge
and the true performance level of a gymnast as a function of
the intrinsic judging error variability estimated from historical
data for each apparatus through Equation (1). Where e, is the
true judging error of judge j for performance p, ’c'fd(cp) is the
intrinsic judging error variability of discipline (apparatus) d,
8y, is the judging discrepancy of judge j for performance p,
Sp,j 18 the actual mark given by judge j for performance p, and
Cp is the control score obtained for performance p. The
marking score mp; quantifies the accuracy of a judge
compared to their peers. The marking score of a perfect judge
in this case would be 0.
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2) Hawk-Eye

Hawk-Eye is a vision system which traces an object’s
trajectory during any given period. It is currently one of the
most advanced officiating tools used across many sports like
Tennis, Football, Cricket, Volleyball, Ice Hockey, Horse
Racing and even NASCAR [6]. In Tennis, Hawk-Eye’s ultra-
motion cameras can work up to 340 frames per second to
render the trajectory, bounce mark, and contact areas of a
tennis ball to real video footage for instant feedback use when
an athlete challenges a judge’s line call [6].

It is important to know that applications of such
technologies also provide athletes with a clear explanation for
given decisions therefore reducing disruptions in competitions
due to player uproar and challenges. Former female world No.
1 Maria Sharapova stated “As a player, I want to know the line
calls are as accurate as technology will allow. In that sense,
[Hawk Eye] is great news for all players.” [7], further proving
benefits to using technology in reducing errors in judge
decision making.

D. Computer Vision Applications in Weightlifiing

A key area of Computer Vision that can be utilised to tackle
the problem statement is Human Pose Estimation. Human
Pose Estimation refers to the process of detecting the location
of a person within an image by recognizing, locating, and
tracking key points on a person [8]. As a result, Human Pose
Estimation can have 2 benefits within weightlifting: (1) it can
be applied for human action quality assessment as we can train
neural networks from identified poses to the IWF’s rules used
by judges for athlete performance evaluation; (2) Human Pose
Estimation can also provide a detailed feedback system to
athletes on how they can improve parts of their movements
and address any inefficiencies to polish up their technique for
improved future performance.

Human action quality assessment is activity classification
at its core and activity classification is itself a time series
problem. Time-series classification is a type of supervised
machine learning that is used to predict future values from past
data using statistical techniques [9]. Neural networks have
proven to be the most effective in achieving this.

1) Human Activity Recognition from sensor data using
Deep Neural Network
Clouthier et al. [10] aimed to use deep learning techniques to
automatically identify movements typically found in
movement screens and assess the feasibility of performing the
classification based on wearable sensor data. Movement
screens are used to assess the overall movement quality of an
athlete.

Data-driven approaches have the potential to improve the
repeatability of scoring and increase the ability to detect subtle
differences in movement patterns [10]. The use of wearable
sensors was an attractive alternative to optical motion capture
for motion analysis applications. Reference [10] had 2 aims;
(1) to use a deep neural network to identify when movements
typical of movement screens occur within motion data; (2) to
compare networks trained using optical motion capture data
with those trained using data available from wearable sensors.

The idea that the combination of CNNs to extract features
with long short-term memory (LSTM) recurrent networks to
capture temporal dependencies would improve classification
performance over CNNs alone was explored.

The results of this research achieved high classification
accuracy scores with an F1 score 0f=0.90.



2) Objectively Measuring Athlete Performance in
Olympic Weightlifting
Karunaratne et al. introduced a method to assess athlete
techniques in weightlifting by using skeleton-based human
action recognition [11].

Concepts from [12] formed a foundation in identifying the
crucial information required to assess the quality of
weightlifting movements. OpenPose was used to extract the
athlete key points within the movement as opposed to a Kinect
sensor. This means any camera can be used to capture the
athlete’s movement enabling them to implement the same
equations proposed by [12] to calculate barbell velocity,
barbell angles, and knee joint angles on the OpenPose key
points.

A scoring model was proposed using the Multilayer
Perceptron feed-forward neural network from Scikit-learn
built on top of the OpenPose CMU model - a 2D pose
estimation model.

This proposed model achieved a test data classification
accuracy of 93% using publicly available data from the
official Olympics YouTube channel of the 2016 Olympics.

E. Summary and Gap Analysis

After dissecting previous research on bias within judging
systems in sports and the proposed solutions to mitigate it, it
becomes evident that a universal solution is not achievable.

In Weightlifting, very little previous technologies have
plausible implementations. For example, the research
conducted in [10] requires data being extracted from sensors
that are attached to athletes for activity recognition. However,
the need to attach sensors to athletes may have negative effects
on an athlete’s performance. They may feel uncomfortable
and obstructed by the sensors. It would also introduce an extra
process of setting up the sensors leading up to an athlete
making their attempts which can also affect their mental state
before conducting their lift.

Chatzitofis et al. [12] also suggested that a weightlifting
attempt is considered successful when the bar is on top of the
athlete, and she/he keeps it balanced for some time. This
statement is flawed because there are many points of failure
during a lift despite reaching the end position of having the
barbell overhead in a stable position which would most
definitely result in the movement being classified as
unsuccessful. An example of this is during the catch position
of'a clean, if the athlete’s arms contact the legs despite getting
up with the barbell overhead the lift is classed as unsuccessful
because the IWF defines ‘Touching the thighs or the knees
with the elbows or the upper arms’ as prohibited [13].

This research aims to address the gaps in previous research
by introducing a novel Computer Vision solution using a
combination of 3D Human Pose Estimation and Gesture
Recognition techniques. This method will aim to mitigate the
effects of bias within the weightlifting judging process by
classifying whether an athlete’s attempt at completing the
weightlifting movements is successful or unsuccessful.

III. IMPLEMENTATION

All implementation steps were conducted on the following
hardware architecture: an AMD Ryzen 5600X CPU
overclocked from base 3.9GHz to 4.4 GHz, 16GB of GDDR6
RAM, and NVIDIA GeForce RTX 3060 Ti GPU.

A. Dataset

We conducted an extensive search for publicly available
weightlifting video/image datasets but none existed. We
created our datasets using a combination of videos from
official Olympic Weightlifting competitions (ranging from
London 2012 to Tokyo 2022) and amateur-recorded videos of
consenting gym-goers. The final video sample size was 858
videos which amounted to =180,000 frames. To ensure
consistency across the dataset, all video recordings were
captured with a focus on the centre judge’s viewpoint and a
resolution of 1080p with a frame rate of 30 fps.

We determined that there were 4 keys classes for a
Weightlifting movement: (a) complete snatch, (b) complete
clean and jerk, (c¢) incomplete snatch, (d) incomplete clean and
jerk. Where ‘complete’ is defined by the IWF as ‘the lifted
weight must be maintained in the final motionless position,
with the arms and legs fully extended and feet on the same line
and parallel to the plane of the trunk and the barbell” [13].

Fig. 1 illustrates the 4 aforementioned classes where
complete snatch is identified by the recovery phase poses that
are highlighted by the red box. The same applies for the
complete clean and jerk. 1f these highlighted poses are not
identified in a video sequence, then the video is classified as
incomplete snatch or incomplete clean and jerk respectively.
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Fig. 1. Illustration depicting the 4 classes mentioned above. Where the
complete movement classes are hightlighted in red boxes relative to the given
movement.

clean
& jerk

One of the key raw data preprocessing steps included
rescaling the videos’ lengths to a frame sequence length of 75
for efficient feature extraction and improved model training
times. This was achieved using a simple algorithm derived
from a custom code script described in Equation (2), where
the original video of length n is denoted as x and the desired
output length as y. If n > y, we skip frames in intervals
determined by the floor division of n by y, otherwise, the

original video is returned.
xiforiin [0, EIH(EI)] n>y } @)
X, otherwise

After raw video data preparation and pre-processing, we
applied transfer learning using the TensorFlow InceptionV3
CNN [14] to extract relevant features from each video. We
processed each frame from the newly rescaled videos while
preserving their sequential time-series nature. The output from
the final pooling layer of the network produced a 2048-
dimensional vector of features which is then compiled for each
video into a final sequence to form the input for the subsequent
classification task.

f(xp,y) = {

Fig. 2 and 3 show the dataset distribution for our 4 classes
in both training and validation dataset splits.



Distribution of Training Data Classes
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Fig. 2. Training Data Class Distribution — highlighting the spread of the
training data between the identified Olympic Weightlifting movement
classes

Distribution of Validation Data Classes

complete_snatch

complete_clean_jerk

incomplete_snatch

incomplete_clean_jerk

Fig. 3. Validation Data Class Distribution - highlighting the spread of the
validation data between the identified Olympic Weightlifting movement
classes

The final dataset split was 80/20 for training and validation
respectively with a further 80/20 split of the training data to
form a ftrain, test, validation split of 64%, 16%, 20%
respectively.

B. Gesture Recognition with a Long Short-Term Memory
Recurrent Neural Network

We implemented a shallow RNN with a single LSTM
layer and a dense layer with dropouts in between. LSTM was
the preferred choice due to its ability to capture temporal
dependencies in sequential data. Furthermore, LSTM has a
memory cell that can store and propagate information over
time, this enables the network to remember important context
from earlier frames even when there is a time gap between
relevant actions. This helps to capture long-term dependencies
between video frames, which are crucial for accurate
recognition of complex activities.

To improve the model results, we used KerasTuner - a
scalable hyperparameter optimization framework that
simplifies the usually cumbersome task of hyperparameter
tuning [15]. We focused on KerasTuner's GridSearch method,
where we provided search spaces and thresholds for key
parameters in our network, such as the LSTM units, dense
units, dropout rate, learning rate, decay, and regularisation
rate. KerasTuner then trained models on every possible
combination of hyperparameters within the provided search
space, using a subset of our data.

The best model based on model accuracy and loss, along
with the hyperparameters used for that model was — 1024
LSTM units with an initial drop-out rate of 0.2, 128 dense
units, an L2 regulariser with a penalty coefficient of 0.001, a
second drop-out layer with a rate of 0.2, and an optimizer with
a learning rate of 0.00001 and decay of 0.0001. We retrained
the final model on our entire dataset to ensure its robustness.

The resulting network architecture depicted in Fig. 4,
showcases an input dimension of (75, 2048) to represent the
2048 feature vectors for every rescaled 75-frame video. It also
shows the dense layer output which employs the softmax
activation function, enabling us to derive a probability value
for the video’s classification into each of the 4 gesture classes.

Istm_2_input | input | [(None, 75, 2048)]

[(None, 75, 2048)]

InputLayer | outpuk:

Y
lstm_2 mput:

LSTM | tanh

(None, 75, 2048)
(None, 1024)

output:

Y
batch_normalization 98 | input:

BatcliNommalization | output:

(MNone, 1024)
(None, 1024)

Y
denze_4 nput:
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dropout_2 | mput:

(None, 128)
(None, 128)
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BatchNormalization output:
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(None, 128)
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(None, 4)
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Fig. 4. LSTM Architecture — defining structure and parameters of the
LSTM network including dimensionality changes after each layer

The LSTM model used in our study incorporates several
noteworthy features, some of which are not captured in Fig. 3.
One of these features is L2 regularization, also known as
Ridge Regression. This technique is used to prevent
overfitting by adding penalties to the loss function of the
model. The penalty is proportional to the sum of the squares
of the weights in the model, as shown in Equation (3) where
MSE (Mean Squared Error) is a measure of the difference
between the model’s predicted and actual values, ypred is the
predicted values from the model, yorig is the actual values
from the dataset, n is number of samples in the dataset, X is
the regularisation rate, and mi is the weight parameter in the
model.. L2 regularisation encourages the model to learn
simpler weights that are closer to zero allowing the model to
better generalise to unseen data.

2
MSE = =32, (Vpred — Yorig) +AZi, m? (3)

C. Human Pose Estimation with OpenCV and Mediapipe

Mediapipe uses a pose graph algorithm to connect body
parts based on body part spatial relationships and human
anatomy constraints which can then be overlayed on an input



image. The resulting coordinates are 4 dimensional including
the x for horizontal representation, y for wvertical
representation, z for depth representation, and v to represent
the visibility of the body part in the image [16]. The landmarks
generated by Mediapipe can be found in Fig. 5. Pose
Estimation is paramount for this research because it allows the
system to accurately track and analyse the precise positioning
of an athlete's body during weightlifting movements. This
level of granularity provides an objective assessment of form,
balance, and overall execution which gesture recognition
alone cannot achieve.
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Fig. 5. Mediapipe Body Landmarks — shows all the landmarks that are
available to conduct biomechanical calculations with and the index to use in
order to access their coordinates

For the IWF rules we assessed, the important variables we
needed to keep track of were: (1) the velocity of the athlete’s
hands/wrists throughout the lifts; (2) their elbow, shoulder,
knee joint angles; (3) depth difference of the feet; (4) knee and
elbow joint proximity; (5) relative travelled distance of the
hip, wrist and shoulder; and (6) the time difference of which
they held specific poses. The formulas used to calculate the
joint angles and velocities are given by Equations (4) and (5)
respectively.

0 = arcos | ———
|aB||[[BC]|

)

In Equation (4), given 3 cartesian coordinates A, B, C, the
joint angle 0 of A—B—C is the inverse cosine function of the
dot product of the vectors AB, BC divided by the product of
the vector’s magnitudes.

landmarky,—landmarkyn_10

)

Equation (5) is used to calculate landmark velocity given
the distance travelled by the landmark in between 10 frame
intervals. Given that the Olympic lifts occur around the body’s
sagittal plane we only considered the displacement of the y
coordinates of the landmarks.

velocity = —

The final experimental design flow is seen in Fig. 6.
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Fig. 6. Final Experimental design flow — high level design flow detailing
the solution overview from data input to final pose estimation process

IV. RESULTS

We will focus on the performance of the solution in
identifying the 4 Weightlifting movement classes.

Fig. 7 shows the model’s learning curve after training for
150 epochs (a complete iteration of the dataset). The model
achieved an accuracy of 96% on the test subset of the data
whilst achieving a loss value of 0.39. The dark blue line
represents training data, the light blue line represents test data.

epoch_accuracy ¥ epoch_loss ¥

0 20 40 60 80 00 120 140

Fig. 7. LSTM Model Learning Curve Accuracy vs Loss — x-axis is the
number of epochs the model was training for and the respective y-axes are
the model’s accuracy and loss values.

Fig. 8 shows the classification report when comparing the
expected validation dataset labels to the predictions made by
the model. The classification report provides a summary that
includes the model’s prediction precision, recall, and fl
scores. Precision scores measure how well the model avoids
false positive predictions. Recall scores measure how well the
model can make true positive predictions. F1 score is the
balance between the precision and recall scores.

precision recall fl-score support

complete_clean_jerk @.96 e.98 .97 se
complete_snatch e.98 1.80 .99 55
incomplete_clean_jerk e.97 e.78 .87 37
incomplete_snatch e.86 e.97 @.91 37
micro avg e.94 8.94 e.94 179

macro avg @.94 8.93 8.93 179

weighted avg @.95 e.94 e.94 179

samples avg @.94 e.94 e.94 179

Fig. 8. Classification Report — providing granular information on the
LSTM’s classification performance with respect to each class of the data

Fig. 9 shows the Receiver Operating Characteristic (ROC)
Area Under the Curve (AUC) graph. ROC AUC graphs are
largely a graphical representation of the classification report’s
information. It notably focuses on the correlation between the
model’s true positive rate and false positive rate for each class.
This graph ties in well with Fig. 10 which shows more



granular information of the predictions the model made
against the different classes through a confusion matrix.
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Fig. 9. ROC AUC Graph - calculated from the validation split of the data
achieving by plotting the model’s TPR against its FPR lowest score of (.89
for the incomplete clean jerk class
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Fig. 10. Confusion Matrix marking the LSTMs performance comparing the
data’s true labels vs the model’s predictions

V. ANALYSIS AND EVALUATION

Despite the limited availability of data for the experiment, the
LSTM-based Gesture Recognition model exhibited training,
testing, and validation accuracies surpassing 90%. These
results exceeded performance expectations considering data
and compute constraints. Moreover, these results align with
the results in Karunaratne etal. (2021) further emphasizing the
effectiveness of employing LSTM for Gesture Recognition.

In this research, the official Olympic Weightlifting
YouTube videos were employed as the ground truth, serving
as a fundamental benchmark against which our model's
performance was evaluated. The utilization of the official
Olympic data as ground truth allowed us to establish a reliable
and objective reference for the assignment of expected
predicted gestures.

By adopting the official Olympic videos as the ground
truth, we ensured the credibility and accuracy of our computer
vision model's results. This approach enabled us to compare
the model's outputs with the scores and assessments provided
by expert human judges during the Olympic Weightlifting
events. Consequently, we could assess the extent to which our

automated judging system improved the human judging
process.

It is worth noting that the reliance on official Olympic
videos as the ground truth was complemented by the inclusion
of amateur-recorded videos in our dataset. By incorporating
videos from both official and amateur sources, we aimed to
enhance the robustness and generalizability of our model,
ensuring that it could effectively handle a diverse range of
scenarios and settings commonly encountered in real-world
judging situations.

Fig. 7 offers evidence of the model's near-optimal fit,
supported by two key characteristics. Firstly, the training and
validation loss curves consistently decrease and stabilize,
indicating that the model has reached its training capacity.
Additional iterations of the data would not substantially
enhance accuracy or loss values. Secondly, the generalization
gap, representing the disparity between training loss and
validation loss, measured 0.15. The generalization gap serves
as a critical indicator of the model's performance in predicting
unseen data, with an optimal fit model ideally exhibiting a gap
close to zero.

Although the model achieves high accuracy, a
comprehensive analysis of Fig. 8, 9, and 10 uncovers certain
limitations in the current solution. Notably, the recall score for
the incomplete clean and jerk class is significantly lower
compared to other classes in Fig. 8. This discrepancy arises
from the inherent challenge of distinguishing between
incomplete clean and jerk and incomplete snatch due to their
similarities. To alleviate this classification confusion,
extending the video sequence length beyond 75 frames would
provide more contextual information and facilitate
differentiation between the classes. Furthermore, Fig. 10
illustrates that the model erroneously identified 6 incomplete
snatches as incomplete clean and jerks. To enhance the overall
model’s performance, additional data is required.

When assessing the Human Pose Estimation process, the
results positively support the plausibility of the original
objective of this research in automating action quality
assessment. Fig. 11, 12, 13, 14, and 15 demonstrate an
analysis of selected results for key movement rules outlined
by the IWF.

Fig. 11. Press out rule detection due to athlete elbow below =180°

Fig. 11 shows a snapshot of an instance where a press out
was successfully detected by the system due to elbow joint
angles of the athlete being below =180°. IWF defines
‘Finishing with a press-out, defined as: continuing the
extension of the arms after the athlete has reached the lowest
point of his / her position in the squat or split for both the
Snatch and the Jerk’ [13] as incorrect movement.



tected from athletes Right Knee

Fig. 12. Body to floor contact detection due to athlete knee contact with
lifting platform at the bottom position of the snatch

Fig. 12 shows successful detection of body to floor contact
as a result of the athlete’s right knee touching the lifting
platform. IWF defines ‘“Touching the platform with any part
of'the body other than the feet during the execution of the lift’
as incorrect movement [13]. This positively demonstrates the
powerful potential of using Mediapipe for action quality
assessment.

7 Legs detected

Fig. 13. Arms and Legs contact detection due to arm and leg contact at the
bottom of the clean in a clean and jerk

Fig. 13 shows detection of contact between the arms and
legs during the clean of an athlete’s clean and jerk. IWF
defines “Touching the thighs or the knees with the elbows or
the upper arms’ as incorrect movement. This further
demonstrates how effective the solution is at assessing
different IWF movement rules.

movements detection

incorrect
demonstrating a critical need to asess multiple rules at once

Fig. 14. Multiple simultaneously

Fig. 14 depicts the ability of the solution to analyse and
detect multiple incorrect movements simultaneously without
any limitations on memory or storage capacity. In this case
arm and leg contact was detected in the same movement prior
to the snapshot detection of a jerk press out resulting in both
errors being logged on screen.

Fig. 15. False incorrect movement detection due to issues of clothing
occlusion, and environment lighting

Fig. 15 shows an instance where the solution struggles to
accurately identify all pose landmarks due to Mediapipe's
inaccuracy when detecting landmarks in unconventional or
challenging scenarios due to potential occlusion, clothing, or
varying brightness settings. Misplacement or absence of
certain pose landmarks can result in incorrect detection of rule
violations as can be seen with the above example where the
system incorrectly identified a violation of the 'floor contact'
rule based on the athlete's right finger, despite the athlete not
having initiated the lift yet.

To enhance this process, we can utilize higher frame rate
videos recorded with higher resolution cameras similar to the
high-speed cameras used within Hawk-Eye. We can also
minimize motion blur and establish a standardised lifting
environment where occlusion can be controlled, unlike in a
commercial gym.

Despite some landmark mapping and estimation errors
caused natively by the Mediapipe tool due to varying factors,
Fig. 11, 12, 13, 14, and 15. showcase the potential and
feasibility of our research in developing a robust and effective
model for reducing bias-induced decision-making in the
sports judging process, particularly in Olympic Weightlifting.

VI. FUTURE WORK AND CONCLUSION

Given the psychological context behind what forms the basis
of bias in decision-making, it is clear that relying solely on
human judgment and evaluation is inadequate for
guaranteeing fairness and precision in sports judging. This is
not to say technology should replace human judges entirely,
rather, technology can have a significant impact in expediting
the elimination of bias within sports judging.

To enhance the proposed system, future endeavours
should concentrate on expanding upon the neural network
architectures already examined in this research. Specifically,
addressing the notable limitations within the LSTM-based
Gesture Recognition model in accurately predicting
incomplete snatch and incomplete clean and jerk classes is
crucial. This improvement can be achieved by dedicating
efforts to collecting more data. This data may also incorporate
the perspectives of the 2 side judges as our data focused only
on the centre judge’s view. Considering that the primary
application of this solution would be within competitions,
enriching the data in this manner is crucial.

Additionally, further enhancements to this research could
involve evaluating the utilization of alternative 3D body pose
estimation frameworks. This comparative analysis would
enable a comprehensive assessment of which framework best
aligns with the research objectives in accurately and



objectively evaluating action quality even under challenging
conditions such as poor lighting or occlusion.

Our research presented a Computer Vision solution that
integrated Gesture Recognition and Human Pose Estimation,
aiming to automate the judging process in Olympic
Weightlifting. Though the proposed solution had limitations
that prevented its readiness for production, it demonstrated
significant success which signifies potential opportunities in
this pursuit to pave the way for a fairer and more unbiased
sports judging system.
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APPENDIX

Link to a demo of the final proposed solution can be found at
https://clipchamp.com/watch/QGDo2XyvZTB



