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Abstract: Carbon long fiber/copper composites were prepared using electroless and electroplating
methods with copper metal for potential aerospace applications. Carbon fibers were heat-treated at
450 ◦C followed by acid treatment before the metallization processes. Three different methods of
metallization processes were applied: electroless silver deposition, electroless copper deposition and
electroplating copper deposition. The metallized carbon fibers were subjected to copper deposition
via two different routes. The first method was the electroless deposition technique in an alkaline
tartrate bath using formaldehyde as a reducing agent of the copper ions from the copper sulphate
solution. The second method was conducted by copper electroplating on the chemically treated carbon
fibers. The produced carbon fiber/copper composites were extensively investigated by Field-Emission
Scanning Electron Microscopy (FE-SEM) supported with an Energy Dispersive X-Ray Analysis (EDAX)
unit to analyze the size, surface morphology, and chemical composition of the produced carbon long
fiber/copper composites. The results show that the carbon fiber/copper composites prepared using
the electroplating method had a coated type surface morphology with good adhesion between the
copper coated layer and the surface of the carbon fibers. However, the carbon fiber/copper composites
prepared using the electroless deposition had a decorated type morphology. Moreover, it was
observed that the metallized carbon fibers using the silver method enhanced the electroless copper
coating process with respect to the electroless copper coating process without silver metallization.
The electrical conductivity of the carbon fiber/copper composites was improved by metallization of
the carbon fibers using silver, as well as by the electrodeposition method.

Keywords: carbon long fibers; copper composites; electroless copper deposition; electroless silver
deposition; copper electroplating; contact electrical resistivity

1. Introduction

Advanced materials and carbon-fiber composites are used extensively throughout revolutionary
aircrafts such as Boeing 787 Dreamliner and Airbus A350 family [1]. The stiffness, lightness, and toughness
of the carbon fiber allowed technologists to create a very-low-drag delta wing body and fuselage.
These advanced carbon fiber composites lead to not only lighter aircraft but also lower fatigue sensitivity,
which means they require less maintenance. The Boeing 787’s heavy maintenance interval was increased
from 6 to 13 years [1]. Carbon-fiber-reinforced plastics (CFRPs) constitutes more than 50 vol.% of these
aerospace mobile structures, as represented in Figure 1. CFRPs are micro-composites formed from
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a lightweight polymer binder (e.g., epoxy) with laid carbon fiber to manufacture structures having
extraordinarily high stiffness and strength-to-weight ratios.
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Figure 1. Materials analysis for a typical carbon-fiber-reinforced plastic (CFRP) aircraft.

This revolutionary technology (Figure 1) relies on the superlative combination properties of CFRPs
primarily contributed by carbon fibers [2–6]. Carbon fibers, containing more than 92% by weight of carbon,
have high strength, low density (1.8 g/cm3, light weight, high breaking strength (2–7 GP), high tensile
modulus (200–500 GPa), and a low thermal expansion coefficient (0.1–1.1 × 10−6 K−1) [3,7]. They are
also characterized by high resistance to acids, alkalis, and organic solvents. Carbon fibers have a low
coefficient of thermal expansion and a good electrical conductivity, as well as low x-ray absorption and
nonmagnetic properties [8–10]. The as-produced carbon fibers usually have relatively smooth surfaces,
low surface energy, low chemical reactivity, and lack of chemically active functional groups, which have a
significant effect on their mechanical properties and restrict their extensive applications [11,12].

Wing boxes, made of CFRP, are able to support the load imposed during flight and support the
whole aircraft aerodynamically while also strategically minimizing their overall contribution to the
weight of an aircraft. However, CFRPs, unlike like their aluminum counterparts, do not conduct
electricity. This makes them susceptible to lightning strike damage and to mitigate such a drawback,
an electrically conductive expanded copper foil layer is usually laid on the outer surface of the
composite structure layup [13]. If a lightning bolt strikes an unprotected composite structure, up to
200,000 amps of electricity seeks the path of least resistance and may vaporize metal control cables and
weld hinges on control surfaces or explode fuel vapors within fuel tanks if the current arcs through
gaps around fasteners [1]. High electrical conductivity is, therefore, required here to dissipate the high
current and heat generated by a lightning strike. However, expanded copper foil (ECF) layer possess
issues of its own. Temperature and atmospheric pressure variations (for instance, 50 ◦C to −50 ◦C
and 100 to 25 kPa, respectively) during the ground-to-air flight cycle can lead to the expansion and
reduction of the protective layer, which can damage the relatively less resilient epoxy matrix of CFRPs,
reducing the overall effectiveness of the composite substitution.

Here, we synthesized nano-copper-influenced carbon fibers as an alternate technology for the
ECF laid on top of the CFRP wing box. Carbon fibers, generally speaking, have poor wetting behavior
with metals such as copper and aluminum [12,14–17].
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It is necessary to modify the surfaces of carbon fibers to resolve this key issue. One of the widely
researched solutions is to coat the carbon fibers with metal layers. This method also reduces their
susceptibility to interfering with the matrix and avoids the interaction of carbon fibers with several
metals such as iron [18]. Metal-coated carbon fibers can also be used as a reinforcement phase in
different metal matrix composites for different applications such as electric contact materials and
electric brushes [16,19], as well as for the fabrication of fiber composites used automotive and aerospace
sectors and other electrical equipment [20]. Materials with high electrical and thermal conductivities
in combination with a low coefficient of thermal expansions are currently required for electrical and
electronic applications. Carbon fiber/Cu composites possess the properties of copper, i.e., the excellent
electrical and thermal conductivities, and the properties of carbon fiber, i.e., small coefficient of thermal
expansion. These composites can be used in electrical and electronic applications. The electrical
conductivity of carbon fiber/Cu composite materials is very important, particularly if these materials
are used for electrical and electronic applications. The materials for this application should possess
high electrical and thermal conductivities. Carbon fiber/Cu composites have successfully solved this
problem. In this type of material, carbon is utilized because of its good sliding and antifriction properties,
whilst copper is used because of its high electrical and thermal conductivities [16,19]. Various other
studies have been conducted to improve the wetting of carbon fibers to metals. An SnCl2/PdCl2
solution is used as activating solution by depositing Pd nanoparticles on the surface of the carbon
fibers before coating using the electroless deposition technique [21,22]. Electroless deposition can take
place after the surface has been activated by Pd particles via the autocatalytic reaction to deposit metal
nanoparticles on the surface of carbon fibers [23].

In another report, deposition of silver nanoparticles or films using electroless silver deposition was
used for obtaining surface activity and improving their electrical conductivity and physical properties.
Activation by silver aerosols and copper electrolyte deposition was also considered. After annealing,
silver-activated carbon fibers were effectively placed in a solution for electroplating copper, to obtain a
uniform copper coating on their surface [24]. Electroplating Cu was utilized to increase the thickness of the
interlayer and forming a coating layer with a good adhesion with the surfaces of the carbon fibers. The current
work utilizes a superlative combination of properties offered by carbon fiber (PAN: Polyacrylonitrile
type) with high electrical conductivities of copper to synthesize a nano-copper-decorated carbon fiber
nanocomposite via the coating route. To make these composites suitable for powder technology processing,
surface treatment of the carbon fibers was essential via thermal de-binding, acid treatments, and/or a
tin/silver metallization process before encapsulating the carbon fibers into the copper matrix using two
coating methods, (electroless or electrodeposition) to produce a continuous conductive coating with uniform
thickness. The contact electrical resistivity of the produced carbon fiber/Cu nanocomposites using either
electroless or electrodeposition techniques was measured as well.

2. Materials and Methods

2.1. Starting Materials

High-purity PAN-type long carbon fibers were provided by Mitsubishi Chemical Carbon Fiber and
Composites Ltd. (Sacramento, USA). Each bundle was composed of around 1000 fibers, which were
bonded together with an organic binder (sizing agent). Table 1 lists the physical and mechanical
properties of the carbon fibers used in this study. Copper sulfate pentahydrate was purchased from
Winlab Ltd., Leicester, UK. Silver nitrate and stannous chloride dihydrate were purchased from
BDH Chemicals Ltd., East Yorkshire, UK. Potassium sodium tartrate and potassium dichromate were
provided by Merck Ltd., Darmstadt, Germany. Formaldehyde and sodium hydroxide were purchased
from Panreac AppliChem, Barcelona, Spain. Acetone, hydrochloric acid, ammonia solution, nitric acid,
and sulfuric acid were provided by Riedel De-Haen, Seelze, Germany.
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Table 1. Physical and mechanical properties of PAN-type carbon fibers.

Property Value

Fiber diameter, µm 7
Density, g·cm−3 1.78

Tensile strength, GPa 3.0 ± 0.2
Tensile modulus, GPa 221 ± 4

Ultimate elongation, % 1.4
Specific heat, J·kg−1

·K−1 711
Thermal conductivity, W·m−1

·K−1 8
Electrical resistivity, Ω·cm 2.2 ± 0.5 × 10−3

2.2. Methods

2.2.1. Pretreatment of Carbon Fibers

Carbon fibers were treated as described in Figure 2. In brief, the bundles of as-received carbon
long fibers were cut into strands of around 6 cm in length and then heat-treated at 450 ◦C for 30 min in
an open oven (Figure 3) to remove any sizing, binding, and degreasing agents. They were then washed
in acetone for 15 min followed by washing with distilled water to remove any organic remained
contaminants. The obtained carbon long fibers were then acid-treated by concentrated nitric acid,
and then stirred in a freshly prepared chromic acid solution for 15 min (by dissolving 5 g of potassium
dichromate in 5 mL distilled water in the form of a paste, before adding 100 mL of 98% concentrated
sulfuric acid dropwise). This was then followed by washing thoroughly (at least three times in
deionized water) to remove any inorganic impurities on the surface of the carbon fibers. The obtained
carbon fibers were dried for 15 min at 110 ◦C.
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2.2.2. Metallization of Carbon Fibers Using the Tin/Silver Process

As elaborated in Figure 2, a batch of heat-treated and etched carbon fibers were further activated.
The activation process included two steps: sensitization and silver deposition. About 0.01 g of the
treated carbon long fibers were treated using tin sensitization solution. The sensitizing agent was
prepared by dissolving 0.1 g of SnCl2·2H2O in 10 mL of distilled water, and the pH of the solution was
adjusted to around 1.8 using hydrochloric acid. The solution was stirred using a magnetic stirrer for
30 min. The sensitized carbon fibers were then washed with distilled water to remove any residuals of
the sensitizing agent. The obtained sensitized carbon fibers were surface-activated using the silver
deposition method. About 0.2 g of silver nitrate was dissolved in 100 mL of distilled water, and the pH
of the solution was adjusted by ammonia to around 10.7. The sensitized carbon fibers were then added
and the solution was stirred using magnetic stirring for 15 min. Then, 20 mL of formaldehyde was
added to the solution. The reduction reaction was completed within 15 min, and then the activated
carbon fibers were washed with distilled water, filtered, and dried at 110 ◦C for 30 min.

2.2.3. Metallization of Carbon Fibers Using the Copper Deposition Processes

Two processes were used to metallize the chemically treated carbon fibers with copper (Figure 2).
The first method (electroless copper deposition) was conducted on the acid-treated carbon fibers in an
alkaline tartrate bath. The solutions included in the process were 70 g/L copper sulfate as a source
of copper, 170 g/L potassium sodium tartrate as a chelating agent of the copper ions, and 100 mL/L
formaldehyde as a reducing agent of the copper ions to copper in the metallic state. The pH of the
solution was adjusted to around 13, and the temperature was maintained at room temperature (~24 ◦C).
After completion of the copper deposition reaction, the metallized carbon fibers underwent washing
with distilled water, filtration, and drying at 110 ◦C for 30 min.

The second metallization process was the electrodeposition of copper nanoparticles on the surface
of the chemically treated carbon fibers. The acid-treated carbon long fibers (around 6 cm in length)
were stretched on a cathode frame made from plastic. The current and time were adjusted to get the
required copper deposition on the carbon long fibers. In brief, 120 g of copper sulfate pentahydrate
and 90 mL of sulfuric acid were dissolved in distilled water (via 30 min of magnetic stirring) to prepare
1 L of electrolyte solution. The copper electrodeposition on the surface of the carbon long fibers was
achieved by passing 8 µA current for 1 min.

2.2.4. Syntheses of Carbon Fiber/Copper Composites

The acid-treated and tin/silver-metallized carbon fibers were coated using an electroless copper
chemical reduction method to prepare 10 wt.% carbon fiber/copper composite samples (Figure 2).
About 0.35 g of copper sulfate pentahydrate was dissolved in 10 mL of distilled water, and the solution
was stirred using a magnetic stirrer. About 1.7 g of potassium sodium tartrate was added as chelating
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agent to prevent precipitation of copper as copper hydroxide at high pH of the alkaline solution.
Then, 0.5 g of sodium hydroxide was added to adjust the pH to 12.5. A calculated amount of ~0.01 g
equivalent to 10 wt.% carbon long fibers was added to the solution, and continuous magnetic stirring
at 500 rpm was used to disperse the fibers in the solution. Then, 10 mL of formaldehyde solution (38%)
was added as a reducing agent of the copper ion in the copper sulfate to copper metal. The reaction on
the surface of the treated carbon fiber was completed within 30 min. The solution was filtered, and the
obtained 10 wt.% carbon fiber/copper composite was dried at 110 ◦C.

On the other hand, the metallized carbon long fibers using copper electroplating were connected
to the negative electrode of the electroplating cell of the same composition as mentioned in Section 2.2.3,
where two copper plates were connected to the positive electrode. Direct current of density 12 µA/cm2

was passed through the electroplating cell at time intervals of 5 min.

2.2.5. Characterization of Carbon Fiber/Copper Composites

The as-received, heat-treated, and chemically treated carbon fibers and the activated, metallized,
and copper-coated carbon fibers underwent investigations using a field-emission scanning electron
microscope (FE-SEM, model JEOL JSM-7600F). The powders were sputter coated by a platinum JFC
1600 auto fine coater. The compositional analysis of the samples was determined using the Energy
Dispersive X-Ray Analysis (EDAX) unit connected with the FE-SEM.

The electrical resistivity of the prepared carbon fiber/Cu nanocomposites was measured using the
four-probe method with an Omega multimeter device. A fixed direct current (DC) current of 1 A was
passed through the test sample via two crocodile clips. For each test, the multimeter was zeroed with
no current passing the specimen, and then the measurement was carried out. The resistivity (ρ) was
calculated according to the following equation:

R = (ρ L)/A, (1)

where R is the resistance in Ω, L is the measured length in cm, A is the cross-section area in cm2, and ρ
is the resistivity in µΩ·cm. The dimensions of the fibers were calculated according to the data listed in
Table 1. Each bundle was composed of around 1000 fibers of diameter ~7 µm and length ~6 cm.

3. Results and Discussion

Figure 4 shows the SEM images of as-received carbon fibers. It was observed that the fibers had
diameters of approximately 6.7 µm, as roughly confirmed in Table 1.
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Carbon long fibers were heat-treated to remove some of the volatile organic materials such as
the sizing agents which were added to the fibers during the fabrication process. Figure 5 shows the
SEM images with different magnifications and the EDAX compositional analysis of the carbon fibers
after heat treatment. Comparing the surface morphology of the untreated carbon fibers (Figure 4)
with the surface morphology of the heat-treated carbon fibers (Figure 5), it was observed that the
layers of the sizing agent were partially removed as the carbon fiber surface in evident. Some other
impurities composed of Ba, K, Cr, and oxygen were detected through the EDAX analysis of heat-treated
carbon fibers due to the presence of remnants from the sizing agent. Figure 6 shows SEM images with
different magnifications of the treated carbon fibers after washing and treating them with chromic
acid. The results reveal that the diameter of the carbon fibers decreased from around 6.7 µm to around
5.1 µm due to heat and chemical treatments. The decrease in the diameter was due to the removal of the
binding, sizing, and degreasing agents which adhered to the surface of carbon fibers as a consequence
of heat and chemical treatments of the carbon fibers with acetone and chromic acid. A uniform
morphological roughening of the carbon fiber was observed (Figure 6). This process was conducted to
increase the bond strength of the applied deposits by increasing the surface roughness of the carbon
fiber substrate. However, a very rough surface such as that of etched fibers is not recommended
since it affects the smoothness and uniformity of the final deposits. Suitably rough surfaces create a
network profile to which the subsequent deposit can be physically anchored and produce a uniform
coating thickness.

Crystals 2020, 10, x FOR PEER REVIEW 8 of 17 

 

Figure 4. SEM images with different magnifications of the as-received carbon fibers. (a–d) Low to 
high resolutions. 

Carbon long fibers were heat-treated to remove some of the volatile organic materials such as 
the sizing agents which were added to the fibers during the fabrication process. Figure 5 shows the 
SEM images with different magnifications and the EDAX compositional analysis of the carbon fibers 
after heat treatment. Comparing the surface morphology of the untreated carbon fibers (Figure 4) 
with the surface morphology of the heat-treated carbon fibers (Figure 5), it was observed that the 
layers of the sizing agent were partially removed as the carbon fiber surface in evident. Some other 
impurities composed of Ba, K, Cr, and oxygen were detected through the EDAX analysis of heat-
treated carbon fibers due to the presence of remnants from the sizing agent. Figure 6 shows SEM 
images with different magnifications of the treated carbon fibers after washing and treating them 
with chromic acid. The results reveal that the diameter of the carbon fibers decreased from around 
6.7 μm to around 5.1 μm due to heat and chemical treatments. The decrease in the diameter was due 
to the removal of the binding, sizing, and degreasing agents which adhered to the surface of carbon 
fibers as a consequence of heat and chemical treatments of the carbon fibers with acetone and chromic 
acid. A uniform morphological roughening of the carbon fiber was observed (Figure 6). This process 
was conducted to increase the bond strength of the applied deposits by increasing the surface 
roughness of the carbon fiber substrate. However, a very rough surface such as that of etched fibers 
is not recommended since it affects the smoothness and uniformity of the final deposits. Suitably 
rough surfaces create a network profile to which the subsequent deposit can be physically anchored 
and produce a uniform coating thickness. 

 
Figure 5. Heat-treated carbon fibers at 450 °C: (a) SEM image at low resolution; (b) SEM image at high 
resolution; (c) Selected area for EDAX analysis; and (d) EDAX elemental analysis. 

Figure 5. Heat-treated carbon fibers at 450 ◦C: (a) SEM image at low resolution; (b) SEM image at high
resolution; (c) Selected area for EDAX analysis; and (d) EDAX elemental analysis.



Crystals 2020, 10, 1090 8 of 16
Crystals 2020, 10, x FOR PEER REVIEW 9 of 17 

 

 
Figure 6. SEM images with different magnifications of the carbon fibers surface-treated with chromic 
acid. (a–d) Low to high resolutions. 

The chemically treated carbon fibers were metallized using three different techniques, namely, 
electroless tin/silver deposition, electroless copper deposition, and copper electrodeposition. 

3.1. Metallization of Carbon Fibers Using Electroless Tin/Silver Deposition 

Some of the surface-etched carbon fibers were further sensitized and activated to impart a 
uniform conducting film on the fiber surfaces, ensuring uniform adhesion of subsequent 
metallization and further promoting better coating and plating. 

Tin/silver sensitization and activation were carried out to deposit nanosized silver particles onto 
carbon fibers prior to the electroless copper coating operations. Tin(II) ions were adsorbed onto the 
carbon fiber surfaces and silver(I) ions were reduced to metallic silver nanoparticles. Silver 
nanoparticles were deposited onto the surface of the carbon fibers in the second step as shown in the 
chemical reaction below. 

Sn++ (aq) + 2 Ag+ (aq) → Sn4+ (aq) + 2Ag0 (s)  (2) 

Tin(IV) ions were produced from the oxidation of tin(II) ions by silver(I) ions. Figure 7a,b show 
the SEM image of the silver-activated carbon fibers. Deposited silver nanoparticles in the range of 
around 40–130 nm could be observed. These deposited silver nanoparticles decorated and adhered 
to the surface of the carbon fibers. Figure 7c,d show the EDAX compositional area analysis of the 
silver-activated carbon fibers. It was observed from the results that silver particles were composed 
mainly of 2.04 wt.% Ag and 0.61 wt.% tin, as remnants from the sensitization process. 

Figure 6. SEM images with different magnifications of the carbon fibers surface-treated with chromic
acid. (a–d) Low to high resolutions.

The chemically treated carbon fibers were metallized using three different techniques, namely,
electroless tin/silver deposition, electroless copper deposition, and copper electrodeposition.

3.1. Metallization of Carbon Fibers Using Electroless Tin/Silver Deposition

Some of the surface-etched carbon fibers were further sensitized and activated to impart a uniform
conducting film on the fiber surfaces, ensuring uniform adhesion of subsequent metallization and
further promoting better coating and plating.

Tin/silver sensitization and activation were carried out to deposit nanosized silver particles onto
carbon fibers prior to the electroless copper coating operations. Tin(II) ions were adsorbed onto the
carbon fiber surfaces and silver(I) ions were reduced to metallic silver nanoparticles. Silver nanoparticles
were deposited onto the surface of the carbon fibers in the second step as shown in the chemical
reaction below.

Sn++
(aq) + 2 Ag+

(aq)→ Sn4+
(aq) + 2Ag0

(s) (2)

Tin(IV) ions were produced from the oxidation of tin(II) ions by silver(I) ions. Figure 7a,b
show the SEM image of the silver-activated carbon fibers. Deposited silver nanoparticles in the range
of around 40–130 nm could be observed. These deposited silver nanoparticles decorated and adhered
to the surface of the carbon fibers. Figure 7c,d show the EDAX compositional area analysis of the
silver-activated carbon fibers. It was observed from the results that silver particles were composed
mainly of 2.04 wt.% Ag and 0.61 wt.% tin, as remnants from the sensitization process.
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3.2. Metallization of Carbon Fibers Using Electroless Copper Deposition

The chromic-acid-treated carbon fibers were subjected to autocatalytic electroless copper deposition
on its surface in the alkaline tartrate copper sulfate solution. Figure 8a,b show the SEM images with
different magnifications of the deposited copper nanoparticles on the acid-treated carbon fibers. It was
observed from the results that the deposited copper nanoparticles had particle size range between
85 and 165 nm. The copper nanoparticles had polygonal particle shapes, and some agglomerated
particles were also observed. The deposited copper nanoparticles adhered to the surface of the
carbon fibers, imparting a decorative type copper layer. A good uniform deposition can be observed.
Figure 7c,d show the EDAX compositional analysis of the metallized carbon fiber by the deposited
copper nanoparticles. It was revealed that the copper nanoparticles were composed mainly of copper
metal. The appearance of the small oxygen peak may be due to the oxidation of the surface of some
deposited copper nanoparticles which were present in the aqueous solution during the process or due
to the technical limitations of the EDAX technology with respect to the detection of oxygen.
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elemental analysis.

The alkaline tartrate electroless copper solution used formaldehyde as a reducing agent of
the copper ions to the copper metal. The half-cell reaction for the electroless copper deposition is
shown below.

Cu++ + 2e−→ Cu0 E0 = +0.340 V (3)

The rate of copper deposition was affected by the variation of the pH of the solution. Electroless
copper solutions, using formaldehyde as a reducing agent, employed a high pH above 12. It was
reported that the E0 of formaldehyde depends on the pH of the solution [22], as shown below.

HCOOH + 2H+ + 2e−→ HCHO + H2O (pH = 0, E0 = +0.05 V) (4)

HOO− + 2H2 + 2e−→ HCHO + 3OH− (pH = 14, E0 = −1.07 V) (5)

As copper salts (copper sulfate pentahydrate) are insoluble at pH above 4, the use of alkaline
media necessitates the use of a complexing or chelating component, such as tartrate salts and
ethylenediaminetetraacetic acid (EDTA) [22]. The full electroless copper deposition process at pH ~12
can be written according to the redox reaction below.

Cu2+ + 2HCHO + 4OH−→ Cu0 + H2 + 2H2O + 2HCO2 (6)

3.3. Metallization of Carbon Fibers Using Copper Electrodeposition

Electrodeposition is a common way of depositing of metals and its alloys on the surface of
conductive materials. Copper is used in the electroplating process with either cyanide or sulfate
baths. However, cyanide solutions are hazardous and should be avoided for industrial practices.
An alternative approach is to use other acid baths to precipitate Cu. Chloride, oxalate, nitrate,
thiosulfate, glycolate, lactate, and acetate have been reported; however, sulfate baths are the most
commonly used [23].
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A conventional acid electrochemical copper cell was used to electroplate carbon long fibers.
This electrochemical cell consisted of copper sulfate and a sulfuric acid solution as the electrolyte.
Two high-purity copper plates were used as anodes. A cathode of carbon fibers was inserted between
the anodes in the solution. Copper ions of the copper sulfate were dissolved in the electroplating
solution. The remaining SO4

2− anion played no part in the reactions and, therefore, does not appear in
the equations [23]. The complete chemical reaction of the electroplating process of the carbon fibers
confirmed the transfer of copper ions from the anode to the cathode passing through the electrolyte
and depositing copper on the conductive carbon long fibers fixated on the cathode. It was assumed
that the total copper ion concentration in the electrolyte remained unchanged.

Figure 9 shows SEM images with different magnifications of the deposited copper nanoparticles
on the surface of the carbon long fibers upon passing a current of 8 µA for 1 min through the
electrodeposition cell. It was observed that polygonal copper nanoparticles ranging between 85 and
135 nm in size were homogeneously deposited on the surface of the treated carbon fibers, giving a
decorative morphology texture (Figure 9b).
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3.4. Syntheses of Carbon Fiber/Copper Composites

The acid-treated, tin/silver-metallized, and copper-metallized carbon fibers were used to fabricate
the 10 wt.% carbon fiber/copper composite via electroless coating and copper electroplating.

Figure 10a,b show SEM images with different magnifications of 10 wt.% carbon fibers coated
via electroless deposition of copper on silver-metallized carbon fibers. The surface of the fibers was
completely covered with multilayers composed of polygonal copper nanoparticles ranging in size from
50–100 nm. Figure 10c,d show the EDAX semiquantitative analysis of the produced 10 wt.% carbon long
fiber/copper composite via electroless deposition in the alkaline potassium sodium tartrate bath using
formaldehyde as a reducing agent. A compositional analysis of the copper-coated silver-metallized
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carbon fibers showed mainly copper and carbon. In addition, some silver and tin remained in the
copper-coated layers from the earlier tin/silver metallization process.Crystals 2020, 10, x FOR PEER REVIEW 13 of 17 
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Figure 11 shows SEM images with different magnifications for carbon fiber/copper composites
prepared via the electroplating method. The morphology (Figure 11) was achieved using 12 µA/cm2

current density for 5 min. Carbon fibers were completely coated and covered by a dense copper layer.
Fine copper particles were deposited on the surface of the carbon fibers. These particles appeared to be
growing laterally, simultaneously forming a network and eventually becoming a layer of bulky copper
clusters of particles. It was also noticed that the Cu deposits on the carbon fibers adhered very well to
the carbon fibers, and the degree of tightness was higher than the Cu-coated carbon fibers fabricated
via the electroless deposition method due to the absence of pores in the deposited layers. However,
Figure 12 shows that there were some regions where there was no coating. Such regions could create
some interfacial regions for the application discussed in this work. The EDAX compositional analysis of
the prepared carbon fiber/copper composites via the electrodeposition method with 12 µA/cm2 current
density is also shown in Figure 12. It was observed that the electrodeposited layer was composed
mainly of copper on the surface of the carbon fibers.
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3.5. Electrical Resistivity of Carbon Fiber/Copper Composites

The contact electrical resistivity for the fiber/deposit interface following electroless and electrolytic
deposition for each Cu deposit condition was measured. The correlation provided qualitative analysis
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on the bonding and adhesion of the deposit to the carbon fibers. For example, a higher void content at
the interface would result higher contact resistivity and lower adhesion. When measuring the contact
electrical resistivity of the carbon fiber/deposit interfaces of the investigated Cu-coated fibers, as shown
in Figure 13, it was found that the contact electrical resistivity of the carbon fiber/copper composites
fabricated via electrodeposition was lower than that of the carbon fiber/copper composites fabricated
via silver metallization and that of the non-metallized carbon fiber/copper composites fabricated
via electroless deposition. This was probably due to the high purity of the deposited copper when
using the electrodeposition method than the electroless one, as shown from Figures 10d and 12b,d.
Copper and carbon fibers have no mutual wettability and solubility. Accordingly, carbon fiber is
mechanically bonded to copper matrix solely due to the fiber’s roughness. Thus, the interfacial
adhesion between carbon fibers and the copper matrix remains weak. When carbon fibers are oxidized
with CrO3, greater surface roughness is produced, resulting in better adhesion properties between the
carbon fibers and Cu and leading to improved electrical conductivity. When the oxidized carbon is
surface-activated and metallized with Sn/Ag solution, Ag acts as the active center for Cu deposition,
consequently improving the carbon fiber/copper matrix interface and decreasing the percentage
porosity, thereby resulting in a higher electrical conductivity. In addition, the resistivity of all the
produced carbon fibers/copper composites was lower than that of the uncoated fibers (Figure 13).
This means that the conductivity of carbon fibers was improved by the contribution of copper in the
composite. Since copper is a face-centered cubic (FCC) crystalline material, it theoretically contributes
a free electron per atom to the conduction bond where it is available for conducting electrical current.
At any time, a certain number of free electrons can be at any given distance outside of the copper
surface. Carbon fibers, similar to copper, also possess free electrons, which are available for conduction.
In the case of two clean surfaces (i.e., carbon fiber and copper) placed together closely in an intimate
contact, the free electrons are able to exchange positions without interference [25].
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4. Conclusions

The present work provided an economical strategy highlighting the step-by-step synthesis
and morphological analysis of nano-copper-decorated carbon fibers for aerospace structural
applications. Carbon long fibers (PAN type) were successfully coated with copper using electroless
or electrodeposition methods. The loading of copper coating was about 90 vol.%. Electroless silver
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deposition, electroless copper deposition, and copper electroplating were used to produce and analyze
the conductive area coatings. The 10 wt.% carbon fiber/copper nanocomposites were subjected to heat
and acid treatments followed by stannous chloride sensitization and the silver deposition method
and/or electroless copper deposition and copper electroplating method, thereby producing continuous
and selective area coatings of copper. The coating protocol was optimized to achieve a high degree of
coating uniformity and conductivity as all samples were characterized for use in different conditions.
Silver and copper nanoparticles ranging in size from 40–170 nm were deposited/decorated and adhered
to the surfaces of treated carbon fibers. The morphology and thickness of conductive clusters of copper
could be manipulated by varying the electrochemical variables as demonstrated in this study. It was
concluded from the measurement of the electrical conductivity that the adhesion of the electrodeposited
Cu coating on carbon fibers was the highest, followed by silver-metallized/electroless copper-coated
carbon fibers and, lastly, electroless copper-coated carbon fibers. Such an optimization of variables
could alter the performance of lightning protection measures for the outer layers of aerospace structures
(e.g., wing box), which will be the subject of future research.
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