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Supplementary Figure 1. Quality control analysis of RNAseq data for each strain included in 94 

this study. The following is reported across the six biological replicates per strain for each 95 

species when grown in RPMI and exposed to human sera: (A) the number of mapped reads; 96 

(B) read counts per million and (C) normalised read counts per million with boxplot markers 97 

indicating the median of the data, a box indicating the interquartile ranges, whiskers indicating 98 

the minimum and maximum values, and outliers highlighted by individual dots; (D) multi-99 



dimensional scaling plot visualising the separation in samples by growth in RPMI vs., exposure 100 

to human sera along the first dimension; (E) correlation plot of transcriptomic data; (F) 101 

detection of outlier samples with boxplot markers indicating the median of the data, a box 102 

indicating the interquartile ranges, whiskers indicating the minimum and maximum values, and 103 

outliers highlighted by individual dots; and (G) heatmap distribution of gene counts. 104 



 105 
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Supplementary Figure 2. Functional and metabolic pathway enrichment analysis to assess 107 

the shared transcriptome response to serum. Shapes and colours represent normalised 108 

enrichment scores and indicate up (blue) and down (red) regulated functions or pathways in 109 

serum. Only enriched Gene Ontology terms and KEGG metabolic pathways found to be 110 

significantly enriched in all strains of a species or 50% of all strains are represented. 111 
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 131 

Supplementary Figure 3. Carbamate kinase augments growth of S. pyogenes in human 132 

serum. (A) The arginine deiminase pathway catalyses the conversion of arginine to ornithine 133 

and carbamoyl phosphate, enabling carbamate kinase mediated ATP, carbon dioxide and 134 

ammonia production. (B) Growth rates of GAS 5448 wild type, GAS 5448ΔarcC, and GAS 135 

5448ΔarcC complemented with wild type arcC in human serum. The data corresponds with 136 

mean (± SEM) absorbance at 600 nm from three independent biological experiments 137 

undertaken in technical triplicate.  (C) Area-under-the-curve (AUC) for each growth curve was 138 

calculated using the R package Growthcurver to compute AUC. Significance testing was 139 



performed using Student’s unpaired, two-sided t-test, with the null with the null hypothesis (no 140 

difference between mean AUC values) rejected for p < 0.05 (*** p<0.001) (n=3). 141 
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 146 

Supplementary Figure 4. wcaF and carB gene expression enhances E. coli survival in 147 

human serum. Survival of (A) E. coli B36, B36carB, B36wcaF, and (B) E. coli EC958, 148 

EC958carB, EC958wcaF in human serum. The data represents the mean (± SEM) 149 

absorbance at 600 nm from three independent biological experiments undertaken in technical 150 

triplicate. 151 

 152 
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Supplementary Figure 5. Quality control analysis of metabolomic data for each strain 167 

included in this study. The following is reported across the six biological replicates per strain 168 



for each species when grown in RPMI and exposed to human sera: sample coefficient of 169 

variation, number of proteins per sample, samples plotted on PCA sample space, and 170 

normalised protein intensities with boxplot markers indicating the median of the data, a box 171 

indicating the interquartile ranges, whiskers indicating the minimum and maximum values, and 172 

outliers highlighted by individual dots.  173 
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Supplementary Figure 6. Scatter plots showing the correlation between the DDA and 192 

DIA/SWATH proteomic datasets of the 20 pathogens. The log2 fold changes of the two 193 

datasets are plotted against each other with the DDA datasets shown on the x-axis and the 194 

DIA/SWATH datasets on the y-axis. 195 
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Supplementary Figure 7. Data-independent acquisition/sequential window acquisition of all 216 

theoretical mass spectra (DIA/SWATH) mass spectrometry to assess the impact of serum 217 

exposure on proteome within the different species. (A) UpSet plots representing the shared 218 

and distinctive proteome responses across strains of the same species. Only proteins with 219 

significant differential expression after exposure to human serum are represented (FDR<0.05; 220 

|log2 fold change|>1). (B) Multidimensional scaling plots of the core-proteins responses across 221 

strains of the same species demonstrating a clear separation of serum exposed samples for all 222 

species. See Fig. 4 legend for more detailed explanation of the figures. 223 

  224 



 225 



Supplementary Figure 8. Functional and metabolic pathway enrichment analysis to assess 226 

the shared proteome response to serum (DDA mass spectrometry). Shapes and colours 227 

represent normalised enrichment scores and indicate up (blue) and down (red) regulated 228 

functions or pathways in serum (two-sided Fisher’s exact test). Only enriched Gene Ontology 229 

terms and KEGG metabolic pathways found to be significantly enriched in all strains of a 230 

species or 50% of all strains are represented. 231 
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Supplementary Figure 9. Functional and metabolic pathway enrichment analysis to assess 258 

the shared proteome response to serum (DIA/SWATH mass spectrometry). Shapes and 259 

colours represent normalised enrichment scores and indicate up (blue) and down (red) 260 

regulated functions or pathways in serum (two-sided Fisher’s exact test). Only enriched Gene 261 

Ontology terms and KEGG metabolic pathways found to be significantly enriched in all strains 262 

of a species or 50% of all strains are represented. 263 
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 266 

 267 

Supplementary Figure 10. Growth kinetics of S. aureus in 50% human serum using S. 268 

aureus strain JE2 wild type compared to the JE2 ΔisdI transposon mutant. (A) Growth in 269 

RPMI only. (B) Growth in RPMI with 50% heat-treated human serum (v/v). The data in (A) 270 

and (B) represents the mean (± SEM) absorbance at 600 nm from three independent biological 271 

experiments. (C) Comparison of mean area-under-the-curve (AUC) values for each of the three 272 
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biological replicates depicted in (B) showing a significant difference between mutant and wild 273 

type (two-sided Student’s unpaired t-test * p=0.03).  274 
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Supplementary Figure 11. Functional and metabolic pathway enrichment analysis to assess 278 

the shared metabolome response to serum (GC-MS). Shapes and colours represent normalised 279 

enrichment scores and indicate up (blue) and down (red) regulated functions or pathways in 280 

serum. Only enriched Gene Ontology terms and KEGG metabolic pathways found to be 281 

significantly enriched in all strains of a species or 50% of all strains are represented. 282 
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 303 

Supplementary Figure 12. Stress survival assays following exposure to serum. (A) K. 304 

pneumoniae KPC2; (B) S. pyogenes HKU419; (C) E. coli B36; (D) S. aureus BPH2900 were 305 

incubated in RPMI or serum (5 mL each) for 2 hrs. Cells were collected and then exposed to 306 

either (each graph, left) 150 mM NaCl (osmotic stress), (middle) 5 mM H2O2 (oxidative stress), 307 

or (right) 50 M deferoxamine (DF; iron limitation stress) for 1 hr at 37C, and survival 308 
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determined by enumeration of CFU. Error bars indicate the mean standard error from 6 309 

biological replicates for all strains and conditions test – except for S. aureus BPH2900 tested 310 

at 5 mM H2O2 in sera and RPMI which had 8 biological replicates – and statistical significance 311 

was determined using two-way ANOVA, * p <0.05;  ** p <0.01, ****p <0.0001; Holm-Šídák 312 

test.  313 
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 320 

Supplementary Figure 13. Quantification of the interaction of bacterial sepsis strains with 321 

cholesterol over time. Indicated bacterial strains were grown for 0 min, 5 min, 120 min or 322 

300 min in RPMI in the presence of 10M TopFluor-cholesterol (a fluorescent cholesterol 323 

analogue). (A-D) Overview (left panel) and close-ups (centre panel) of clinical strains E. coli 324 



B36 (A), K. pneumoniae KPC2 (B), S. aureus BPH2900 (C) and S. pyogenes HKU419 (D). 325 

Experiments were done at least in three independent biological replicates for time points at 326 

120 min for all strains. For the other time points (i.e., 0 min, 5 min, and 300 min) the 327 

experiment as performed with at least one independent biological replicate for K. pneumoniae 328 

KPC2, E. coli B36, and S. aureus BPH2900, and two independent biological replicates for S. 329 

pyogenes HKU419. TopFluor-cholesterol is shown in green (GFP), bacteria in red (alexa555) 330 

and nuclei in blue (DAPI). Right panel shows the histogram of the fluorescence intensity of 331 

one representative bacterium with the cross-section marked in the close-up image. Colours in 332 

the histogram are adjusted to microscope pictures with bacteria in red, nuclei in blue and 333 

TopFluor-cholesterol in green.   334 
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Supplementary Table 1. Primers used in this study. 337 
 338 

GAS 5448 
arcC deletion replacement 

Primers Sequence 5’→ 3’ 
CKF GGGAATTCCAGCTGTTGTCACTCAAGT       
CKR GGGGATCCACACCAGTCAGGG                   
CKF-Up  ATGACGAAACAAAAAATCGTAGTCGCA 
CKR-Down TTACCCTGCGATAATTTGTGTTCCAG 
ErmF  ATGAACAAAAATATAAAATATTCTCAAAAC 
ErmR  TTATTTCCTCCCGTTAAATAATAGATA 

arcC complementation 
Primers Sequence 5’→ 3’ 
arcC_F-Up GTCGTCAGACTGATGGGCCCCTAAAGATGCTCCCGATG  
arcC_R-Down CATAACCTGAAGGAAGATCTCATATTAACAACAAGGCCTTC 
arcC_F AGGAGTAATTATGACGAAACAAAAAATCG  
arcC_R ATCCTCTTGATTACCCTGCGATAATTTG 

E. coli B36 and E. coli EC958 
Primers Sequence 5’→ 3’ 
3518-2394wcaF-Fwsc AGCGAACCAGATAACGGTA 
3519-2394wcaF-Fwup ACTCGGGCGATATTTTTCAT 
3520-2394wcaF-Rvup GGAATAGGAACTAAGGAGGACGGCACCGAGAATCCACTTA 
3521-2394wcaF-Fwdn CCTACACAATCGCTCAAGACTAAATTCAAAAAATACAGAG 
3522-2394wcaF-Rvdn AACGGCGTGGTCTCTTTCTG 
3523-2394wcaF-Rvsc CCGTAGGATTCGCGGTAGTT 
11474_carB_Fwup GTCGCCTGACCATCGTTC 
11475_carB_Rvup GGAATAGGAACTAAGGAGGATGGCATGGCTCTTTTACTCC 
11476_carB_Fwdn CCTACACAATCGCTCAAGACGCGCAGATCAAATAATAGCG 
11477_carB_Rvdn CTGCTCGTAAGGCATCAGACT 
11478_carB_Fwsc CAAGGGAGCTGGACACTG 
11479_carB_Rvsc CAACTTCGTTACTTACGGCC 
3746-Cm.3a TCCTCCTTAGTTCCTATTCC 
3747-Cm.4a GTCTTGAGCGATTGTGTAGG 

 339 
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