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Abstract—Given the capacity and performance boosts offered
by the 5G cellular networks, energy consumption at the base
stations (BSs) has increased tremendously. This paper proposes
a decentralized federated learning (DFL)-based intelligent BS
switching, integrated with explainable artificial intelligence (XAI)
methods, to mitigate the concerns for energy consumption in
dense 5G networks. This entails collaboration among distributed
but interconnected networks to learn the best policies for BS
switching without any central controller, so that knowledge shar-
ing can be ensured while privacy and communication efficiency
are maintained. Very importantly, we further researched the
XAI techniques to provide better transparency on the decision-
making of the switching control agent and create some trust in
the learned policies. Such explainability allows us to derive the
most important factors affecting BS switching decisions and how
these contribute in enabling energy savings while maintaining
quality of service (QoS). Extensive simulations conducted to
validate our proposed framework in presenting valuable XAI
analysis have elaborately provided the basis for understanding
the learned strategies and key factors driving energy-efficient BS
management.

Index Terms—Base Station Switching, Explainable AI, De-
centralized Federated Learning, Deep Reinforcement Learning,
Energy Efficient, 5G

I. INTRODUCTION

The growing 5G and beyond necessitate dense small base
station (SBS) networks for coverage and capacity, but raises
concerns about energy consumption [1], [2]. The large energy
footprint of these networks hinders infrastructure sustainabil-
ity. To mitigate, energy conservation through station switching
is suggested in several past studies [3], [4], however, it may
negatively impact service quality and user association with
inefficient base stations.

This paper proposes a novel explainable base station switch-
ing scheme using decentralized federated learning and deep
reinforcement learning, along with a new deep learning model
for traffic prediction, expanding our previous work [5]. The
scheme aims to maximize system performance by optimizing
energy efficiency and ensuring acceptable quality of service
(QoS) [6], thereby reducing energy consumption and improv-
ing total system cost compared to existing methods.

Crucially, we recognize the inherent complexity of deep re-
inforcement learning models, which necessitates explainability
and interpretability in their critical applications, such as 5G
networks [7]. Specifically, we address the ’black box’ problem

inherent in many DRL solutions, illuminating the reasoning
behind the agent’s actions. Explainability allows operators to
understand the decision-making process behind enabling or
disabling certain activities, fostering trust and transparency.
This is particularly important in dynamic 5G environments
where rapid adjustments are required. Thus, this study pri-
marily aims to integrate explainability into the proposed BS
switching architecture to build confidence and guide wise
judgments in energy-efficient 5G network operations, thereby
enhancing the understanding of the agent’s decision-making
process. We achieve this by implementing a novel method
for visualizing and quantifying the influence of different input
features on the agent’s actions, allowing for a detailed audit
trail of its decision-making.

II. RELATED WORKS

BS on/off switching is a promising technique to reduce en-
ergy consumption in 5G networks. However, optimal strategies
are computationally challenging [8]. Traditional rule-based
approaches [9], [10] have evolved to heuristic and greedy
methods [11]–[13], and more recently, reinforcement learning
(RL) [14]–[18] and deep reinforcement learning (DRL) [19],
[20] are used to handle dynamic environments and high-
dimensional spaces, incorporating traffic demand and forecast-
ing [8], [21], [22]. Essentially, a key challenge for learning-
based decision systems is ensuring trustworthy and dependable
decisions. In this respect, interpretability improves confidence,
accountability, and transparency, allowing users to understand
neural networks, identify weaknesses, and mitigate biases.
Thus, there has been a growing interest in interpretability
methods across AI disciplines like computer vision [23],
counterfactual reasoning [24], and decision support systems
[7] underscores the need for rationale in complex systems like
5G network management. Existing centralized control systems
for BS switching often overlook privacy, QoS impacts, and
single points of failure. This work proposes a DRL-based
distributed federated learning (DFL) framework with private
experience sharing, energy efficiency optimization, and QoS
degradation minimization. We also incorporate explainability
to provide insight into the DRL agent’s decisions, ensuring
transparent and reliable BS switching.



III. DFL TRAFFIC-AWARE BASE STATION SWITCHING
MANAGEMENT

Cellular networks manage fluctuating mobile traffic re-
quirements, but intermittent traffic can cause some BSs to
function under capacity, leading to energy inefficiency and
improper usage. The BSs must thereby possess dynamic oper-
ating modes to maximize energy consumption [8]. This paper
proposes a dynamic switching management framework for
BSs to address mobile traffic needs by altering BS operation
modes based on live traffic loads. We also use a coarse-
grained time discretization to reduce overhead of regular mode
changes within thirty-minute intervals. We also recognize that
the scheme must be transparent, providing insight into mode
changes for performance improvement and debugging in real-
world deployments.

A. Problem Formulation

Aiming to minimize long-term system costs, we modeled
the problem as a Markov Decision Process (MDP) J =<
S,A, T,C, γ >, with states S, actions A, transition probabil-
ities T , cost function C, and a discount factor γ ∈ [0, 1]. We
divide a 5G network into non-overlapping grid regions, each
served by a BS BSi ∈ B. At the time slot t, the BS state
st includes the predicted traffic volume (

∼
Pt, at−1) and the

previous mode (active/sleep). The action space A comprises
active or sleep modes, and the state transition probability is
defined by T (st+1|st, at). We define the overall system cost
at time slot t is by the following key components:

a) Energy Consumption: BS energy usage consists of
fixed (due to hardware, cooling) and load-dependent (power
amplification) components. We also consider a fixed energy
consumption Ei,t = Efixed sleep

i for when BSi is in sleep
mode. When active, the consumed energy is defined as Ei,t =

Efixed active
i + ω × ρi,t where Ei,t is the energy consumed

at time t, Efixed sleep and Efixed active are fixed energy
consumptions, ρi,t is the traffic load, and ω is the power
amplification factor.

b) QoS Degradation : Deactivating BSs negatively im-
pacts user QoS, increases delays and the load on remaining
BSs and wastes potential capacity, which could be used to
cover traffic demands. We define this degradation as Qi,t =
λ ∗ (trans cost+ 1

(Ci,t−ρi,t)
) where trans cost is the trans-

mission cost, and λ is a load-dependent penalty factor defined
by (wi × ρi,t).

c) BS Switching Cost: Assuming that the transition cost
from active to sleep mode is negligible, we define the switch-
ing cost of a BS from sleep to active mode as SWi.

Therefore, we define the overall cost for BSi at time t as
follows, considering the energy efficiency of the individual BS,
while ensuring the overall QoS and Switching cost: Ci,t =
ωei × Ei,t +

∑
i∈B ωQi

×Qi,t +
∑

i∈B ωSWi
× SWi where

ωE , ωQ, and ωSW are weights for energy, QoS, and switching
costs, respectively.

IV. PROPOSED FRAMEWORK

The architecture of our proposed framework is depicted in
Fig. 1. Each BS in this configuration carries a traffic prediction
model and a DRL decision maker for a decentralized BS
switching management module, both of which share weights
with other BSs in a DFL manner [5]. We discuss each
component in greater detail in the following sections.

Fig. 1: Overall architecture of the proposed framework

A. Attention-based Traffic Forecasting

The proposed traffic forecasting model employs BiLSTM
(Bidirectional Long Short-Term Memory), TCN (Temporal
Convolutional Network), and self-attention mechanisms within
a DFL framework. Two stacked BiLSTM layers, enhanced
with batch normalization and ReLU activation, capture se-
quential traffic patterns while mitigating vanishing gradients
[8], [25]. A TCN layer and self-attention mechanism extract
long-term dependencies and relevant features, respectively.
The model is trained collaboratively across BSs using DFL,
ensuring both enhanced prediction accuracy and data privacy.

B. Dynamic BS Switching

We propose a novel DRL framework for optimal BS switch-
ing, combining traffic predictions with a PDDQN (Prioritized
Double Deep Q-Network) architecture. To promote collabo-
ration, a decentralized weight and cost sharing mechanism is
implemented, which enables collaboration as well as adapt-
ability to varied traffic patterns. Exploration is enhanced via
an explore network, inspired by [8], sharing the network
structure but with perturbed weights (

∼
W = W +∆W , where

∆W = α · random(−1, 1) ·W ). Actions from both networks
are evaluated, and if the explore network’s result is superior,
its weights

∼
W are partially incorporated into the actor network

through W ′ = W+σ
∼
W , with a decreasing factor σ to facilitate

knowledge transfer.



C. Explainability

Here we talk about explainability for the proposed traffic
forecasting and DRL-based BS-switching units, aiming for
transparency and trustworthiness. We use attention mech-
anisms and action maps to scrutinize the model decision
process, enhancing the model understanding and supporting
the practical deployment.

1) Attention Mechanism: We use attention mechanism
in our traffic prediction architecture to emphasize influen-
tial traffic patterns. Attention weights are derived from two
average and max pooling layers applied after the TCN,
quantifying the importance of different temporal contexts,
namely the overall traffic trends, and peak values and sudden
fluctuations, respectively. As the TCN layer’s dilation of
[1, 2] yields two responses, we can assume capturing short-
term and long-term traffic patterns dependencies. Therefore,
for each time step, we have a 2 × 2 matrix of attention

weights:
[
Wavg,short Wmax,short

Wavg,long Wavg,long

]
where Wavg,short and

Wmax,short represent the average and max pooling output
relating to the short range temporal data, whileWavg,long and
Wmax,long refer to the long range temporal data.

2) Action Mapping: We use action mapping to explain the
deep Q-network’s (DQN) decision-making, derived from the
Q-value differentials. Given a network state s and predicted
traffic patterns, the DQN outputs Q-values Q(s, a) for each
possible action. As our objective is to minimize total cost, the
DQN selects the action that minimizes the expected cost, i.e.,
a = argmin

a
Q(s, a). To quantify the relative preference for

each action, we compute the Q-value difference, ∆Q, between
the activate and sleep actions ∆Q = |Q(s, activate)| −
|Q(s, sleep)|. The difference in Q values indicates the DQN’s
preference for an action, with negative ∆Q indicating sleep
preference and positive Q meaning activation preference, also
reflecting the confidence of the model.

D. Training

The model training process utilizes time steps and episodes,
updating DDQN and traffic forecasting components periodi-
cally. This includes 12-24 hour updates for actor and target
networks, and 48-hour time windows for traffic forecasting
training and weight sharing among BSs.

V. EXPERIMENTS

In the following evaluations, we primarily focus on in-
terpretability analysis rather than re-evaluating performance
metrics, referring to previous research for detailed experiment
settings, cost, and accuracy [5]. We use a real-world mobile
traffic dataset, collected by Telecom Italia in Milan, Italy,
in November 2013 [26]1, from 22:00, October 31, 2013, to
22:50, December 19, 2013, over 10 minutes. Experiments are
conducted on a 64-bit computer with 24 processing cores and
16 GB RAM using Python and PyTorch for implementation,

1Publically available on: https://ieee-dataport.org/documents/telecom-italia-
and-opnet-datasets-network-traffic-prediction

and splitting data by 0.6 for training and validation. The cost
values in this table are obtained from [8] and [27]. We have
made the software code for evaluations publicly available at
GitHub.

A. Performance Evaluation

This section briefly discusses the performance evaluation of
the proposed approach, regarding the traffic prediction accu-
racy and its effectiveness in reducing the total cost. Figure 2
depicts the performance evaluation results regarding the traffic
prediction and cost evaluations. Against ARIMA and CNN-
LSTM benchmarks, we assessed our suggested BiLSTM-
TCN-ATT traffic prediction model. Trained with Adam op-
timizer and MSE loss, the proposed model surpassed the
baselines with about 50% reduction in MSE (Mean Squared
Error), RMSE (Root Mean Squared Error), and MAE (Mean
Absolute Error), therefore showing its excellent precision
in traffic volume and extreme traffic conditions prediction
(Figure 2a). We assess the performance of our BS switching
control approach to various baseline approaches, including
traffic-oblivious switching (TO) [3], dynamic two-threshold
(TT) [28], [29], Q-learning, DDQN [27], [30], [31], and a
scenario with always active BSs. The findings indicate that our
approach surpasses the baseline methods, achieving noticeable
more energy savings, while maintaining lower switching and
total costs. This is particularly when there are numerous BSs,
which indicates its scalability.

(a) (b)

Fig. 2: Performance evaluation comparisons.

B. Traffic Prediction Insights

Figure 3 compares attention scores across BSs for different
traffic aspects, revealing distinct patterns for each BS. This
indicates capturing localized traffic characteristics, empha-
sizing varying factors for accurate predictions. For instance,
BS3 shifts focus from overall trends to peak loads around
time step 1120 (Figures 3b and 3a), while BS1 and BS2
show stable and fluctuating attention patterns, respectively,
suggesting different predictabilities. Analyzing visualizations
also reveals how BSs respond to traffic patterns. BS5 is highly
sensitive to recent traffic, shown by fluctuations in short-term
attention, while maintaining stable long-term focus (3a and
3c). BS1 displays consistently low scores for average traffic
trends (3a and 3b), while BS6 shows insensitivity to overall
short-term trends (3a) but focuses on recent peak events, with



a temporary shift between time steps 1100 and 1140. Figure
4 depicts attention patterns for individual BSs and the overall
average trend, highlighting significant variability and dynamic
focus adjustments. BS4 and BS9 rely on long-term trends,
with BS9 temporarily shifting to peak values between time
steps 1110 and 1150. BS8 shows high attention variability and
sensitivity to peak values. By contrast, the overall analysis
shows a balanced consideration of all attention types, with
a network-wide preference for long-term peak values and
recent trends around time step 1130. Visual representations
of attention scores can reveal model behavior, highlighting
dynamic patterns for each BS and network, system-wide shifts,
justifying predictions, and building trust due to adaptation to
local traffic.

(a) (b)

(c) (d)

Fig. 3: Attention score comparison of different BSs, regarding
traffic patterns and time-related factors

C. BS Switching Interpretation

We utilize action maps, showing Q-values, model confi-
dence (∆Q), and selected actions, to understand the DQN’s
decision-making in BS0 and BS3. These maps reveal how the
DQN balances energy efficiency and performance based on
local traffic conditions, selecting actions with lower Q-values
to minimize total cost.

Figure 5 compares action maps for two sample BSs, show-
ing a correlation between traffic and DQN decisions, with
increased activity during higher loads. BS0 displays a dynamic
map with generally high confidence periods. The varying
confidence levels imply potential dependence on particular
traffic types. By contrast, BS3 exhibits a single confidence
spike followed by lower levels, indicating varying certainty.
The actual network mode aligns with DQN actions, validating
control. Also, BS3 displays fewer active periods and shows
sleep modes covered by BS0 active modes, highlighting col-
laborative DFL.

(a) (b)

(c) (d)

Fig. 4: Comparing the attention scores for individual BSs

Therefore, action maps aid in understanding localized be-
haviors and identifying anomalies in switching management.
For example, both BSs are active from time steps 6460 to
6500 despite decreased traffic, suggesting potential energy sav-
ings through sleep mode. Confidence level fluctuations show
varying certainty, and network activation reveals sensitivity
to circumstances. Anomalies in confidence, actions, or traffic
patterns can trigger real-time monitoring and adaptive control
for network stability.

(a) (b)

Fig. 5: Evaluating action maps of two sample BSs, alongside
the traffic and model confidence

VI. CONCLUSION AND FUTURE WORKS

This paper expands on our previous framework’s
(EPDDQN) performance improvements in energy savings
and cost reduction by over 20%. It explores the explanation
of its decision-making through visualizations of attention
scores and action maps. Through evaluations, we showed
how the model dynamically changes network states and
localizes traffic patterns, emphasizing temporal dependencies.
This understanding improves openness and confidence,
highlighting the model’s interpretability, and making it a
promising solution for balancing service quality and energy



savings. Future studies aim to enhance the explainability
of the EPDDQN approach by addressing complex network
topologies and traffic patterns. We also intend to examine
how these techniques affect the interpretability of learned
representations and the effect of federated learning approaches
on convergence speed and model performance.
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