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Abstract—Spiking Neural Networks (SNN) are third 
generation neural networks and are considered to be the most 
biologically plausible so far. As a relative newcomer to the field of 
artificial learning, SNNs are still exploring their own capabilities, 
as well as dealing with the singular challenges that arise from 
attempting to be computationally applicable and biologically 
accurate. This paper explores the possibility of a different 
approach to solving linearly inseparable problems by using 
networks of spiking neurons. To this end two experiments were 
conducted. The first experiment was an attempt in creating a 
spiking neural network that would mimic the functionality of logic 
gates. The second experiment relied on the addition of receptive 
fields in order to filter the input. This paper demonstrates that a 
network of spiking neurons utilizing receptive fields or routing can 
successfully solve the XOR linearly inseparable problem. 
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I. INTRODUCTION 
This paper presents a comparison of two methods utilising 

spiking neural networks (SNN) for classification of the linearly 
inseparable logical exclusive OR (XOR) problem. We explore 
the possibilities of classification using either only networks of 
spiking neurons or with the addition of receptive fields (RF), and 
compare the results for effectiveness and plausibility. The 
objective of the exercise was to successfully classify the XOR 
set by creating a SNN in Matlab through implementation of the 
leaky integrate and fire (LIF) spiking neuron model. 

This paper is organised as follows. Section 2 discusses the 
main components of the networks, i.e. the LIF neurons, RFs and 
Boolean logic. The first experiment of a SNN model which can 
produce the functionality of an AND gate is outlined in Section 
3 while Section 4 presents the second experiment which 
successfully classifies the XOR input set using SNNs together 
with RFs. Lastly, in Section 5 we present our conclusions. 

II. SPIKING NEURAL NETWORKS (SNNS) 
SNNs are third generation neural networks and as such are a 

relative newcomer to the field of machine learning. In the past it 
has been presumed that neurons communicate by passing 
information encoded in firing rates, called frequency coding, 
where only the rate of spike intervals is used for the encoding of 
the information [7, 16]. However, more recent advances in the 
study of neural communication have revealed that the precise 
timing of spikes plays a deciding role [4]. Pougam-Moisy and 
Bohte [15] described the biological basis of SNNs, where each 
spike represents an action potential, the electric impulse that 
travels to the neuron and acts upon it by raising its membrane 
potential. In the biological neuron, the membrane potential is the 
difference in charge between the negative, potassium charged 
inside, and the sodium positively charged outside [20]. One of 
the most significant ways SNNs differ from the second 
generation artificial neural networks is that the network does not 
fire with each individual input. Instead, pre-synaptic neurons fire 
series of action potentials which raise the membrane potential of 
the receiving neuron, also called the postsynaptic neuron. If the 
membrane potential reaches a set threshold, the neuron fires by 
emitting a series of spikes itself [5]. Figure 1 depicts a simplified 
biological neuron with a series of input spikes, the membrane 
potential of the neuron and the corresponding output spike. 

Even though all neurons seem to function on the same 
principle, variations in the behaviour of the neurons have 
provided the basis for different models [7]. One of the more 
popular neuron models is the LIF, which is the basis of our SNN 
and discussed next. 
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Fig. 1. Model of a biological neuron. Input spikes are traveling down dendrites 
towards the soma. Inside the soma they combine and upon reaching the threshold 
the soma discharges an action potential, an output, which travels down the axon 
[7] 

A. Leaky Fire and Integrate (LIF) Neuron Model 
According to Pougam-Moisy and Bohte [15], the LIF model 

is a neuron model that has been derived from the Hodgkin-
Huxley model, a complex SNN model that aims to re-create the 
function of the giant nerve fibre in the squid [9, 10]. However, 
the LIF model has an advantage over the Hodgkin-Huxley 
model in that is simpler and easier to manipulate. 

The role of the leakage in the LIF model is to insure that the 
neuron does not retain accumulated voltage in cases when it has 
not reached the threshold and fired, as doing so would produce 
false results when a later group of inputs arrives. The LIF model 
combines computational simplicity with efficiency which makes 
it popular with the research community and our model of choice 
[14]. The LIF model follows the formula: 

𝜏
𝑑(𝑣)

𝑑(𝑡)
= −𝑣(𝑡) + 𝑅𝐼(𝑡)  (1) 

where τ represents the membrane time constant, v is the 
membrane potential, R is the membrane resistance with the input 
I(t). Once v reaches a threshold, the membrane potential is reset 
to a basic initial value called the reset potential. This is followed 
by a refractory period which is a time period immediately 
following the release of the action potential during which the 
neuron will be unresponsive to any stimulus. 

B. Receptive Fields (RF) 
According to Alonso and Chen [2] in the context of neural 

stimulation, RFs have first been described by Heartline [8] in 
work discussing the response of nerve fibres to light simulation. 
He observed that when the light falls within a certain region of 
the retina, stimulation occurs. As Glackin [6] explains, we now 
know that RFs consist of two fields of influence, an ‘inner’ 
region facilitates stimulation while the ‘outer’ region inhibits the 
inputs that it receives, see Figure 2. 

The purpose of this process is to isolate the distinctive 
properties of the input set. Each input has a RF attached which 
enables designated frequency detection. This is significant as 
certain frequencies will be representative of a particular attribute 
and the receiving neuron will become a detector of said attribute. 
Bohte, La Poutre and Kok [3] comment that the possible number 
of distinct inputs in a SNN with RFs is only limited by the fields 

filtering ability. This can become clearer if we look at the RF 
formula: 

𝑘𝑖𝑗 = 𝑒−((𝑥𝑚−𝑦0)/𝑑𝑚)2   (2) 

where kij is a scalar variable which will modify the output 
spike train frequency of the related neuron, xm is the operating 
frequency of the RF, yo is the input spike train frequency to the 
RF and dm denotes the width of the RF. By narrowing the width 
of the RF it is possible to increase the number of RFs in the 
network which enables the network to isolate a greater number 
of specific frequencies. RFs can be successfully employed as a 
part of the solution for linearly inseparable sets, as demonstrated 
by Stromatias [20] and later in this paper where we describe a 
network which will rely on RFs to successfully classify the 
linearly inseparable set XOR. 

C. Boolean Logic 
The basis of all computer operations is Boolean logic and is 

based on only two values: zero (off) and one (on) [12]. Logic 
gates control current flow and can be organised in configurations 
which help to solve given problems. These configurations can 
be very complex, but they all consist of some basic building 
blocks. This is a powerful concept and our intention is to see 
whether the principles of Boolean logic can be combined with 
SNNs. 

In first generation artificial neural networks, the threshold is 
a simple binary step function, an artificial neuron in its simplest 
form. Rosenblatt [17] improved on this design by creating a 
single-layer perceptron which has non-fixed weights and is 
capable of learning. Minsky and Papert [13] highlighted the 
shortcomings in this solution by demonstrating its limitations. In 
particular, it was shown that a single layer perceptron is not 
capable of solving linearly inseparable problems, such as the 
XOR problem. A linearly inseparable outcome is the set of 
results, which when plotted on a 2D graph cannot be delignated 
by a single line. A classic example of a linearly inseparable 
problem is the XOR function and this has resulted in XOR 
becoming a benchmark problem for testing neural network 
capabilities in solving complex problems. 

There have been some attempts to integrate binary logic and 
logic gates with SNNs. Vogels [22] explored the accidental 
creation of logic gates in unsupervised network models which 
use synfire chain propagation, a synchronized excitation of 
multiple neurons in a feed-forward network with many layers 
[1]. This work is interesting from the standpoint of proving the 
possibility that Boolean logic is acting itself out in neural 
systems and would merit further investigation by the process of 
reversed engineering. On the other hand, Tam [20] discusses the 
differences between binary encoding and encoding information 
in time-dependent spiking frequencies. Tam’s mathematical 
work proposes substitution of multi-input AND-gates and multi-
input OR-gates with a new concept of the MIN-gate, which is 
based on the majority/minority rule voting system. It is a 
promising concept, but the significance of the paper lies more in 
the correct identification of some of the challenges which lie in 
translating binary code to spiking code and furthering the 
understanding of how these challenges can be overcome. While 
Tam [21] successfully explores the problem theoretically this 
paper outlines the challenges encountered during the practical 
implementation of the concept. 



3 | P a g e  

 
Fig. 2. RF model [6] Left: A 3D model of the RF where the middle conical 
region is the excitatory field and the surrounding depression the inhibitory area. 
The input which falls within the excitatory region is promoted, while the input 
that falls outside it is depressed. Right Top view: The same RF viewed from the 
above. The circle with the plus sign is the area covering the desired frequency, 
while the surrounding area with the minus sign corresponds to frequencies 
outside the specified range. Right Side view: Cross-section of the RF model 

III. SNN MODEL OF THE AND FUNCTION 
As XOR is considered one of the most challenging Boolean 

logic functions, we chose the AND function as the starting point 
for testing the possibility of creating a network of spiking 
neurons to perform logic gate operations in order to, ultimately, 
correctly classify the XOR data set. Fig. 3 is the visual 
representation of the design of this SNN with two inputs, A and 
B. The inputs will carry frequencies representative of the 
Boolean values Zero and One. Even though it would be possible 
to model an AND neuron which will fire only if two inputs arrive 
simultaneously, we have opted to explore a specific 
representation of these values using assigned frequencies. The 
values we have chosen are 51Hz to represent the Boolean One 
and 25Hz to represent the Boolean Zero. These values are 
chosen as they are decisively different from each other and can 
be clearly represented visually. Other frequencies can be used in 
the future. The input frequencies are encoded into linear spike 
trains, i.e. the value of the distance between the action potentials, 
known as the inter spike interval (ISI), is a constant. The 
network was designed to take advantage of the precise timing 
between action potentials. If the ISIs throughout spike train input 
A is in synch with the ISIs in input B, this will signify that both 
inputs have the same frequency. 

 
Fig. 3. Network diagram for the AND SNN which consists of two spike train 
inputs, A and B, each of which can be encoded to represent a Boolean value 

In our experiments, we use linear inputs as they are 
computationally easier to process, and give more predictable 
results even though they are not realistic representations of 
neural inputs [6]. The parameters of the network were set to 
ensure that the neuron should produce an output which 
corresponds to the assigned frequencies for the Boolean values. 
Once the network was implemented, we tested the proposed 
solution on the four different scenarios as outlined in Table 1. 

TABLE I. AND NETWORK RESULTS 

AND 
inputs 

Encoded 
inputs (Hz) 

AND 
output 

SNN 
output Comments 

(1,1) (51Hz, 
51Hz) 1 51Hz Successful 

classification 

(1,0) (51Hz, 
25Hz) 0 25Hz Successful 

classification 

(0,1) (25Hz, 
51Hz) 0 51Hz Network failed to 

classify 

(0,0) (25Hz, 
25Hz) 0 25Hz Successful 

classification 

The network has successfully classified all inputs except (0, 
1). The reason for this is that the network is capable of successful 
identifying whether the inputs are identical, while it is not 
capable of distinguishing which input is the highest. As the 
network defaults without screening to input B if A and B are not 
synchronized, the result is a classification error in the set (0, 1). 
This means that the network that identifies AND based on the 
comparison of the two inputs has not given us the desired results 
as it can successfully identify only one feature of the set, and 
that is whether the inputs are identical. For successful 
classification of any of the Boolean logic gates it is necessary to 
identify at least two features. It would be possible to introduce a 
static variable for comparison, but this kind of solution is not 
biologically justified. However, this experiment has not been in 
vain as it has helped us to identify the requirements for the 
successful representation of the XOR logic gate using SNNs. 
Furthermore, in its simplified form this network can be used to 
identify identical spike trains, i.e. a coincidence detector. 
Coincidence detection is present in biological processes such as 
the detection of a sounds onset [19]. König, Engel and Singer 
[11] propose that in biological neurons, coincidence detection 
possibly has even higher significance than signal integration as 
it is directly related to the signals temporal properties, is more 
accurate and is faster at producing results. 

IV. SNN MODEL OF THE XOR FUNCTION WITH RFS 
Solving even the simplest Boolean logic gates can present a 

serious challenge. What we have identified with the previous 
experiment is that we need to find a way to filter the inputs in a 
way that will assist the neuron in identifying a specific feature 
of the set we are classifying. To do this, we identified the RF as 
a recognized, biologically plausible way to do just this. 

Fig. 4 shows the topology of our fully connected, feed 
forward SNN consisting of two inputs of linear spike trains. For 
consistency reasons, as well as clarity, we have decided to 
continue using the frequency values of 51Hz and 25Hz 
representing the Boolean values One and Zero respectively. 
Furthermore, we set the width of the RFs to ensure they did not 
overlap. As can be seen from the topology diagram, the RFs are 
positioned on the connections between the input and the hidden 
layer neurons. 
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Fig. 4. SNN topology for classification of the XOR data-set using RFs. Input 
neurons A and B can be encoded in any combination of 0 and 1. The numbering 
of the hidden layer neurons represents the input combinations that each neuron 
is set to recognize. The winner takes all method is used for classification in both 
the hidden and the output layer 

All neurons are again encoded using the LIF model. The 
hidden layer neurons classify the data and the winning neuron 
(the neuron with the strongest output) is the one that signifies the 
class of the input at this stage. The output layer receives this 
signal after it is processed through its own layer of RFs and 
produces the output spike trains for each output neuron 
representing the Binary output of Zero or One. The output does 
not need to correspond to the input frequencies of 51Hz and 
25Hz, the neuron with highest number of spikes is the winner 
and provides classification. 

In Fig. 4 we can see that each hidden layer neuron can 
receive two possible values from the input neurons A and B. 
These inputs will be either 51Hz or 25Hz, but the RFs on the 
hidden layer neurons will filter the inputs that are outside their 
defined frequencies. For example, the RF on input A for neuron 
01 has an operating frequency of 25Hz. Similarly, the RF on 
input B for neuron 01 has an operating frequency of 51Hz, 
producing an optimized scaled output for the correct set of input 
frequencies. Any other combination of spike train frequencies 
passing through these RFs will be diminished before being 
routed to the hidden layer neurons for processing. 

In the interest of comparison, we repeated the same test 
scenarios we ran on the AND network. Table 2 summarises the 
inputs, outputs and the successfulness of the XOR classification 
network. All combinations of XOR inputs were successfully 
classified by the SNN. Fig. 5 demonstrates the output spike 
trains produced by each hidden layer neuron when all were 
passed the input (1, 1) which is equivalent to 50Hz spike trains 
from both input neurons. The figure demonstrates the correct 
hidden layer neuron produces the highest firing frequency. 

Furthermore, Fig. 4 shows that the output layer neurons 
receive values from all the hidden layer neurons. These inputs 
have no predetermined value so the RFs on the output layer 
neurons are set in the following manner: RFs for the neuron 1 
will inhibit inputs outside values that hidden layer neurons 01 
and 10 produce, while output neuron 0 will do the same for the 
hidden layer neurons 00 and 11. For example, the RF on input 
01 for neuron 1 has an operating frequency equal to the neuron’s 
01output frequency. In this network, as learning is not needed 
for implementing XOR, the thresholds and weights have to be 
fine-tuned manually. This is possible as the network is small but 
in a larger network, learning would need to be implemented to 
bring about the appropriate set of weights. We have used the 
work from Glackin [6] as a starting point for further exploration. 
However, the difference between Glackin’s topology and the 
topology we used is in the connections between the hidden and 
the output layer. While Glackin implements supervised learning 
at this point, our experiment inserts RFs. 

TABLE II. XOR NETWORK RESULTS 

XOR 
Inputs 

Encoded 
inputs (Hz) 

XOR 
output 

SNN 
Output Comments 

(1,1) (51Hz, 51Hz) 0 0 Successful 
classification 

(1,0) (51Hz, 25Hz) 1 1 Successful 
classification 

(0,1) (25Hz, 51Hz) 1 1 Successful 
classification 

(0,0) (25Hz, 25Hz) 0 0 Successful 
classification 

As it has been demonstrated, this SNN network has 
successfully solved the problem of linear inseparability and 
correctly classified the XOR set. This has shown that RFs are 
effective at filtering inputs, a very useful feature in SNN 
processing and can be used as a standalone solution. However, 
the solution is not perfect. As it stands it is effective for one set 
of frequencies and to change that would require manual 
adjustment of the weights. For a successful result, generalizable 
across a range of input frequencies, we plan to combine both 
RFs and learning as our next step, in particular spike-timing-
depended-plasticity (STDP). STDP is a learning algorithm 
where the connection between firing neurons is strengthened or 
weakened depending on the correlation of the firing times. It has 
been shown that STDP is able to cope with both linear and more 
complex Poisson inputs [23]. The use of STDP would allow for 
an increase in set-size, as well as a variation in input types. 
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Fig. 5. Outputs of all four hidden layer neurons after the input of 51Hz from neuron A and neuron B. This equates to Boolean input (1, 1). The hidden layer has 
correctly identified the input the neuron 11 as the winner with the highest output firing frequency 

V. CONCLUSION 
The first SNN implementation of the AND logic function did 

not produce the results we expected, but it did sow the seeds for 
further exploration of non-linear schemes which was the 
ultimate aim of this work. It also helped crystallize our ideas, 
and bring into focus the requirements for the XOR network. On 
the positive side, the AND SNN did work as a coincidence 
detector, which play a significant role in auditory bilateral 
synchronization detection. 

The second SNN implementation of the XOR logic function 
did achieve its goal and was successful at classifying this 
linearly inseparable problem. We have shown that RFs are a 
powerful aid in the implementation of SNNs and it would be 
interesting to test their range and effectiveness further, as well 
as find their limitations. The solution we have presented is 
scalable, and it can be applied to other datasets, such as the 
Fisher Iris data set. However, the network is not flexible as the 
weights have to be fine-tuned. It is our plan to combine RFs with 
learning as that would create a much more pliable network, 
capable of adapting itself to solving a wide range of frequencies 
and problems. 
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