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Abstract— Smart cities rely on large-scale heterogeneous 
distributed systems known as Cyber-Physical Systems (CPS). 
Information systems based on CPS typically analyse a massive 
amount of data collected from various data sources that operate 
under noisy and dynamic conditions.  How to determine the 
quality and reliability of such data is an open research problem 
that concerns the overall system safety, reliability and security. 
Our research goal is to tackle the challenge of real-time data 
quality assessment for large-scale CPS applications with a 
hybrid anomaly detection system. In this paper we describe the 
architecture of HADES, our Hybrid Anomaly DEtection System 
for sensors data monitoring, storage, processing, analysis, and 
management.  Such data will be filtered with correlation-based 
outlier detection techniques, and then processed by predictive 
analytics for anomaly detection. 
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I. INTRODUCTION AND BACKGROUND 

Cyber-Physical Systems (CPS) are advanced information 
systems that integrate communication, computation and 
control with physical processes to add new capabilities to 
physical systems [1]. CPS are an active area of research in 
many crucial domains, such as manufacturing, health care, 
smart power grids, transportation, and smart cities [2]. CPS 
are the backbone of next-generation information technology 
of the fourth industrial revolution (Industry 4.0) [3] and have 
significant importance for smart cities development [4]. 

In smart cities, CPS form large-scale distributed 
information systems. In most cases, CPS have real-time 
requirements where data have to be sensed and processed in 
real-time: traffic control systems, energy management 
systems, transportation systems, water resources monitoring 
and control systems, logistics and disaster management 
systems [5][6], and environment monitoring systems all 
typically involve a large number of sensor nodes deployed in 
broad geographical territories to form large-scale real-time 
cyber-physical systems [7]. As CPS collect and analyse data 
in real-time, the quality of service provided by the system 
relies on the quality of the collected data [8]. The quality of 
data in CPS  is a significant concern, especially for 
applications which analyse a massive amount of data from 
various sources and operate under noisy and dynamic 
conditions [9]. Since CPS rely on sensor-nodes which are 
usually deployed in uncontrolled, remote environments, 
unexpected measurements may occur due to external noise, or 

due to issues in the sensor nodes themselves such as power 
failure, calibration and ageing. Thus, these unexpected 
measurements need to be carefully managed and interpreted 
based on domain knowledge and computational models [10]. 
For example, CPS applications such as environmental 
monitoring systems, typically involve a large number of 
sensor nodes deployed in a broad geographical territory to 
form a large-scale sensor-nodes network [7][11]. 

A sensor-nodes network may consist of few to thousands 
of small-size and low-cost sensor-nodes that do not have the 
computational power to execute complex analysis or 
calculations. Their only role is sensing and sending 
observations to another neighbour sensor-node, to the 
network, or directly to a central server [12]. Sensor-nodes 
cannot decide if the values of their observations are accurate 
or not: because of their limitation of resources, they cannot 
host built-in mechanisms for data quality assessment, that are 
particularly computationally intensive [13]. 

According to Shih et al. [14], ensuring data quality in 
cyber-physical systems is a challenge that has not been fully 
addressed yet. For example, more work is needed to tackle the 
issue of data lifetime, which has not been investigated enough, 
especially in applications in which data validity has a limited 
duration [14]. CPS are real-time systems and in case of data 
transmission delays, missing critical readings from sensors, or 
receiving incorrect observations, there might be life-
threatening consequences, due to compromised safety 
constraints [15]. 

In addition, more research is needed to interpret data 
quality standards and data quality assessment methods, 
especially for applications which analyse a massive amount of 
data from various resources [16]. Although the challenge of 
data quality management is as old as data itself [17], it has a 
higher level of impact now, especially considering real-time 
CPS applications which might involve telecom services [18], 
business corporations and government agencies [19]; data 
management can be even more difficult when considering 
mobile CPS [20] that may include smartphones data and user-
generated contents [21] that have short and volatile lifetime.  

In this paper we describe the architecture of HADES, 
(Hybrid Anomaly DEtection System) a software for sensors 
data monitoring, storage, analysis, and management.  Such 
data will be filtered with correlation-based outlier detection 
techniques, and then processed by predictive analytics for 
anomaly detection on large-scale Cyber-Physical Systems.  



II. SMART CITIES AS LARGE-SCALE CPS 

Smart cities are advanced information systems that rely on 
data coming from large-scale heterogeneous Cyber-Physical 
Systems to provide more automated and efficient services to 
improve the life quality of smart cities’ residents [22]. CPS 
rely on networks of distributed wireless connected sensor-
nodes known as wireless sensor networks (WSNs), which 
have been widely utilized, from building control to 
environmental monitoring systems [19]. 

A wireless sensor network typically consists of a group of 
a specialised micro-sensors usually deployed in the area of 
interest for monitoring physical or environmental phenomena 
such as temperature, humidity or seismic events [23]. Sensor-
nodes are the building blocks of wireless sensor networks, a 
low-cost monitoring tool with one major drawback which is 
the reduced power capacity which may limit their service 
lifetime [24] [25].  

WSNs have been employed successfully in many large-
scale applications which involve deploying sensor-nodes in 
remote and uncontrolled environments, such as for 
environmental monitoring and agriculture monitoring [26]. 
Unexpected measurements may occur due to external noise or 
may be caused by the sensor-node itself, e.g. due to power 
failure, calibration, or ageing.  

Large-scale CPS applications are typically based on 
components from different manufacturers and with different 
implementations; as they usually operate under noisy and 
dynamic conditions, their operation may involve data quality 
issues [9][6]. In general, data quality issues in CPS 
information systems can be classified into three types: 

• Errors in measurements caused by precision problems 
within the sensors. 

• Noise in the communication networks. 

• Loss of precision in sampling discrete measurements 
of continuous variables, related to both spatial and time 
parameters.   

The challenges of data quality assessment become greater 
in applications dealing with large volumes of data and having 
restricted requirements of data availability. Table I shows the 
main data quality characteristic and challenges in CPS 
application [27], [9]. 

TABLE I.  MAIN DATA CHARACTERISTICS AND CHALLENGES IN CPS 
APPLICATIONS. 

Characteristics Challenges 

Big Data 
Variety Interoperability 

Volume and 
Velocity 

Scalability 

Quality of 
Information 

Granularity 
Discrete measurements (spatial 

and time) 

Precision 
Device calibration, accuracy and 

adaptive sampling 

Accuracy 
Noise in communication 

networks 

Constraints 
Energy Context-aware data collection 

and processing Connectivity 

 

III. DATA QUALITY AND ANOMALY DETECTION 

Anomaly Detection is the process of identifying unusual 
patterns in data sets which do not comply with well-

established normal behaviour [28]. These atypical patterns in 
data sets are called anomalies or outliers. An observation from 
a sensor-node is considered to be an anomaly or outlier if its 
value significantly deviates from a pre-calculated threshold 
value [29]. 

Anomaly detection techniques can be grouped in two main 
categories: (i) correlation-based anomaly detection, and (ii) 
predictive analytics-based anomaly detection. 

A. Correlation-Based Anomaly Detection 

Correlation-based anomaly detection models rely on the 
assumption that the values of sensor-nodes observations are 
correlated spatially, temporally, or both spatial and temporal. 
However, this assumption is not necessarily always valid, 
especially in large-scale CPS applications where the 
correlation between sensor-nodes observations may be 
affected by many parameters such as the scale of deployment 
area and the geographical distribution of sensor-nodes [30]. 
Another limitation is the challenge of calculating threshold 
values of observations for each sensor-node based on the 
temporal model in a large-scale CPS application, which needs 
a relatively long time-series of anomaly-free data, which 
cannot be guaranteed in real-world scenarios.  

Correlation-based anomaly detection techniques aim at 
partitioning data into groups or clusters according to a chosen 
parameter(s) [31]. Once a cluster is defined, a centroid value 
(threshold value) would be calculated as representative of 
each cluster. Typically, clustering-based anomaly detection 
relies on comparing individual sensor-nodes observations 
with the centroid value of its cluster. It assumes that 
observations which belong to the same group or cluster are 
relatively similar at a particular point in time: this approach is 
justified by Tobler’s law of geography, which states that 
“everything is related to everything else, but near things are 
more related than distant things” [32].  

Clustering for anomaly detection 1) has no performance 
issues dealing with a high volume of data 2) does not need to 
analyse sensor-nodes time-series and 3) it can dynamically 
adapt to changes in the CPS network, like addition or removal 
of sensor-nodes [29].  

Clustering-based anomaly detection is sensitive to 
observations with extreme values which may be caused by 
faults in sensor-nodes or due to external noise [6]. Moreover, 
calculating the value of clusters centroid value may involve a 
level of uncertainty because it requires determining both the 
optimum number of sensor-nodes in each cluster and the 
centroid value for each cluster in real-time [29][27]. Assuming 
that spatially related observations of sensor nodes are always 
correlated is not always valid. Moreover, the calculation of the 
centroid value (threshold value) of a cluster may be affected 
by the profile of a single sensor-node.  

B. Predictive Analytics-Based Anomaly Detection 

Predictive analytics is a branch of data science that 
involves the process of mining current and historical data to 
identify patterns and to forecast the future values of time-
series [33], using statistical or machine learning methods [34]. 
Predictive analysis has been used in different industrial 
domains such as power management [35], transportations  
[36] and congestion and pollution control [37].  

Predictive analysis employs historical data to train a 
prediction model for forecasting future values. A temporal 
anomaly detection models typically require more time to be 



trained, which is a critical parameter, especially in real-time 
anomaly detection applications [6], [25]. 

Predictive analysis might provide an effective data quality 
assessment solution. However, this is not always possible, 
especially in large-scale CPS applications where hundreds or 
thousands of sensor-nodes stream data in real-time. Checking 
the time-series of each sensor-node in a large-scale CPS 
application before getting the next observation is a challenge, 
which needs high computational power and might not be 
practically possible. Typically, predictive analysis has a 
limited ability to adapt with the dynamically changing 
environment of large-scale CPS, because it requires to retrain 
the prediction system after any significant change in the CPS 
sensor-nodes network [29], [38], [39]. 

This research paper proposes HADES, a hybrid anomaly 
detection system which employs both correlation and 
predictive analysis as an anomaly detection technique: 

1) Correlation-based anomaly detection: as a filtering 
layer; it summarises and reduces the number of sensor-nodes 
to be passed to the next unit.  

2) Predictive-based anomaly detection: to perform 
temporal predictive analysis.  

IV. THE HADES ARCHITECTURE 

The HADES anomaly detection system consists of three 
layers, as shown in Fig. 1.  

HADES is able to collect sensor-nodes data streams 
effectively in real-time, and it collects data every T minutes. 
T is a dynamic parameter that may change based on the 
changes in the duty-cycles of the sensor nodes in the WSN, 
and it is smaller than the shortest duty-cycle of any sensor 
node in the sensor network. HADES can automatically react 
to changes in the sensor networks, which may lose some active 
sensor nodes or may have some sensor nodes added to it. 

A. The Sensor-nodes layer (Layer-1) 

Data related to physical processes or environmental 
phenomena such as temperature, humidity, air quality are 
collected and provided as input data to the HADES system. 
The data can be collected from industry, university (e.g. 
weather monitoring networks), or IT companies that collect 
observations from outsourced sensor-nodes networks.  

At this level, data of different environmental parameters 
such as temperature, humidity, water levels and air quality 
were collected and provided as input data to the system. The 
first source is an outsourced CPS data from a large-scale 
sensor nodes network. The second source of data will serve as 
benchmark values for ensuring the quality of data of the first 
data source. 

A benchmark data source is required to test and verify the 
accuracy and performance of the system before using it in 
real-world scenarios. The benchmark data source must be 
reliable and provide the same type of data parameters as the 
primary data source nearly at the same time and from the same 
geographical area.  

B. The Data warehousing and integration layer (Layer-2) 

HADES performs data integration processes at real-time, 
which, in this case, could be a challenge due to the relatively 
large amount of data collected in different formats and 
different structures. Data warehousing techniques were 
adopted to collected data and link them together or integrated 
them based on various parameters, such as observations 
timestamps, location and type. The data warehouse layer 
consists mainly of two databases (Fig. 1 Layer-2): the first 
database is the Integration Database, which hosts the data 
from two or more different CPS sensor-nodes networks. 

The Archive Database has the same structure of the 
Integration Database but contains historical data that have 
been transferred automatically from the Integration Database 
Data which are not being used anymore for decision making 
will be transferred from the integration database to the archive 
database and will be deleted from the integration database 
sequentially; this approach will keep the decision-making data 
insulated while keeping a continues time series for all the 
collected data in the archive database. Fig. 2 shows the high-
level sequence diagram of HADES data acquisition process. 

C. The Hybrid Anomaly Detection Layer (Layer-3) 

The Hybrid Anomaly Detection Layer consists of two 
main components: The Geospatial Clustering-Based Filtering 
unit and The Predictive Analytics-Based Anomaly Detection 
unit as shown in Fig.1 Layer-3.  

1) The Geospatial Clustering-Based Filtering Unit 
Observations from hundreds or thousands of sensor-nodes 

are divided into groups of observations which are spatially 
correlated to each other.  

Machine learning-based clustering algorithms can be used 
for this purpose. The clustering process is based on a data 
snapshot in time from the data stream, which is the most recent 
reading from sensor-nodes since the last duty-cycle.  

The number of the generated clusters is not relevant in this 
case, however, determining the optimum diameter of the 
clustering method automatically at real-time is a challenge 
especially considering that its value might vary based on the 
nature of the application and the minimum number of 
neighbour sensor-nodes (the density of the sensor-nodes in the 
targeted area) to form a cluster.  

This component of the Layer-3 is a filtering mechanism: it 
compares the observation from a sensor-node with the cluster 

 
Figure 1 The UML component diagram of HADES. 



centroid value. Sensor-nodes that their observations have a 
significant deviation from the centroid value are considered to 
be potential outliers and must be verified using its time-series. 

2) The Predictive Analytics-Based Anomaly Detection 
unit 

The second component of the third layer of the proposed 
system examines the time-series of each sensor-node filtered 
by the Geospatial Clustering-Based Anomaly Detection unit 
and sensor-nodes that do not fit in a cluster. 

This component is based on a predictive modelling 
approach. Statistical and machine learning-based predictive 
algorithms can be used to develop the predictive system.  The 
time-series of the filtered sensor-nodes are used to train the 
predictive model [28]. The data which will be used to train the 
predictive model is theoretically considered to be an open-
ended time-series because there is a relatively long sequence 
of observations. Using the whole time series may overfit the 
trained model and practically not possible. To tackle this issue,  
the sliding window modelling [28] will be used to select a part 
of the time-series only, the size of the sliding window will vary 
based on the application itself. 

Time series decomposition technique will be applied, 
combined with statistical and machine learning technique 
such as the Seasonal Autoregressive Integrated Moving 
Average, (SARIMA) as shown in Fig. 7. Artificial Neural 
Network (ANN) [17] or the Gaussian Process Regression 
(GPR) [40] will be adjusted regularly based on the continuous 
evaluation of the prediction accuracy. The high-level activity 
diagram of Layer-3 is shown in Fig. 3.  

V. LONDON CASE STUDY 

This section is to highlight some of the preliminary results 
of applying data analysis to validate the functionality of the 
HADES hybrid anomaly detection system.  

Two different data sources were used: the first is a 
benchmark sensor-nodes network consists of four high-quality 
wireless temperature sensor-nodes and a wireless Gateway 

 
Figure 2 The high-level sequence diagram of HADES data acquisition process. 

Figure 3. The UML sequence diagram of HADES data acquisition 
process. 



deployed at the University of East London. The second data 
source is a large-scale network of more than 400 sensor-nodes 
distributed around London (see Fig.4), accessing through the 
Thingful API1.  

HADES has been deployed on three Dell Workstations 
with Linux RHEL7 / Fedora 28: one for running the data 
acquisition process (layer-1), the second as a warehousing 
database server and the third for HADES anomaly detection 
processes (layer-3).  

HADES has been fetching data since May 2018 from more 
than 400 sensors every 10 minutes, from 4 data pipes, 
collecting more than 40 million observations in its database. 
Each entry in the database is one observation from 5 different 
data pipes: Environment, Energy, Bikes, Noise, and Air 
Quality. Each data pipe contains common data (like latitude 
and longitude of the sensor, and the timestamp of the 
observation) and a set of observations from different types of 
sensors.  

For example, the Environment data pipe contains: water 
level, water flow rate, and rainfall; while the Weather data 
pipe contains: sensor voltage, latitude and longitude, 
humidity, time-stamp, temperature, Noise level, WiFi 
networks count, atmospheric pressure, MSLP (Mean Sea 
Level Pressure), Nitrogen Dioxide (NO2) and Carbon 
Monoxide (CO) chemical concentrations.  

Many clustering algorithms were tested: K-Means[41], 
Density-Based Spatial Clustering of Applications with Noise 
(DBSCAN) [41] and Mean-shift [41]. All the tested clustering 
algorithms were able to identify centroid points of each cluster 
successfully as showing in Fig. 5. 

 Our preliminary tests showed that in real-world scenarios, 
sensor-nodes are not geographically uniformly distributed and 
the ones that are allocated in a low-density area might not fit 
in any cluster (Fig. 6, indicated by red arrows), while sensor-
nodes in the high-density area are clustered successfully. 

Thus, Geospatial Clustering-Based approach may produce 
less accurate results for remote sensor-nodes with no 
neighbour sensor-nodes around them. And support the 

                                                           
1 Thingful Ltd, a search engine for the internet of things. On-
line at https://www.thingful.net/ 

approach of using correlation-based anomaly detection as 
filtering mechanism rather than a real-world anomaly 
detection technique. 

Time series decomposition was used to analyse the time-
series of the filtered sensor-nodes by the correlation-based 
(clustering) algorithms. The time series decomposition 
showed that temperature has a trend which gradually increases 
or decreases over days of slow-changing and it has a clear 
daily seasonality where the temperature rises to the maximum 
during the mid-day and reduce to its minimum at the very 
early morning. Thus, predictive analysis can be used to 
forecast future observations and estimate its values to evaluate 
the quality of data. Holt-Winters Seasonal, ARMA, Non-
Seasonal ARIMA and Seasonal ARIMA Models were tested 
as statistical-based forecasting methods. ARMA, Non-
Seasonal ARIMA and Seasonal ARIMA were able to produce 
high accuracy predictions using the one-step-ahead 
forecasting method as shown in Fig. 7.  However, none of the 
ARMA based forecasting models was able to provide reliable 
predictions for extended intervals as the forecast confidence 

 
Figure 4 The geographic distribution of temperature sensor nodes 
(London) 

 
Figure 6 The density of the temperature sensor nodes in and around 
London (23-Jan-2020).  

 
Figure 5 Geospatial clustering of temperature sensor-nodes in London: 
the white dots are clusters centroids 



interval overgrows with time. More tests will be conducted in 
the context of this research to cover more analytics prediction 
methods using statistical and machine-learning techniques.  

VI. CONCLUSIONS AND FUTURE WORKS 

The challenge of data quality assessment becomes greater 
in large-scale CPS applications which typically deals with 
large volumes of data in real-time. This research paper 
proposes HADES, a hybrid anomaly detection system based 
on combining both correlation-based and predictive-based 
anomaly detection techniques. The correlation-based anomaly 
detection acts as a filtering mechanism that identifies sensor-
nodes with potential data quality issues.  The predictive-based 
anomaly detection unit performs temporal predictive analysis 
on the time-series of sensor-nodes identified by the 
correlation-based unit or sensor-nodes which do not fit into a 
cluster.  

With almost two years of sensors data collected, this 
approach could be used to develop  more efficient data quality 
assessment systems based on time-series analysis. The next 
step is to  validate the proposed system using machine learning 
and combining different prediction techniques to detect 
anomalies earlier. 
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NOTE 

In Greek and Roman mythology, Hades was the God of 
the Underworld: his name means the "The Unseen"; similarly, 
HADES aims at overseeing what is normally unseen, like 
sensors. 
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