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Abstract—This article presents a comprehensive 
investigation, focusing on the prediction and formulation of the 
design equation of compressive strength of circular concrete 
columns confined with Fiber Reinforced Polymer (FRP) using 
advanced machine learning models. Through an extensive 
analysis of 170 experimental data specimens, the study 
examines the effects of six key parameters, including concrete 
cylinder diameter, concrete cylinder-FRP thickness, 
compressive strength of concrete without FRP, initial 
compressive strain of concrete without FRP, elastic modulus 
and tensile strength of FRP, on the compressive strength of the 
circular concrete columns confined with FRP. The predictive 
model and design equation of compressive strength is 
developed using a machine learning technique, specifically the 
artificial neural networks (ANN) model. The results 
demonstrates strong correlations between the compressive 
strength of the circular concrete columns confined with FRP 
and certain factors, such as the compressive strength of the 
concrete and compressive strain of the concrete column 
without FRP, elastic modulus of FRP, and tensile strength of 
FRP. The ANN model specifically developed using Neural 
Designer, exhibits superior predictive accuracy compared to 
other constitutive models, showcasing its potential for practical 
implementation. The study's findings contribute valuable 
insights into accurately predicting the compressive 
performance of circular concrete columns confined with FRP, 
which can aid in optimizing and designing civil engineering 
structures for enhanced performance and efficiency. 

Keywords—circular concrete columns confined with FRP,  
artificial neural networks, compressive strain, compressive 
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I. INTRODUCTION  

Over the past four decades, Fiber Reinforced Polymer 
(FRP) has emerged as a prominent material widely employed 
in diverse industries, such as Construction, Aerospace, 
Marine, Automotive, and more. Its popularity stems from its 
remarkable attributes, including high tensile strength, 
lightweight nature, excellent strength-to-weight ratio, 
impressive corrosion resistance, minimal impact on the shape 
and size of existing structures [1]. Additionally, FRP boasts 
non-magnetic and non-conductive properties, presents an 
aesthetically pleasing appearance, and adapts well to various 
environmental conditions [4].  In construction industry, FRP 
is used to reinforce and strengthen the concrete structures 

such as bridges, buildings, and tunnels, existing and new 
buildings and it can also be used to create prefabricated 
structural elements such as beams and columns as the usage 
of FRP has shown the increased the durability of the 
structure over the period.   

Researchers have explored the mechanical behavior of 
FRP-confined circular concrete columns through limited 
experimental studies. The confinement is achieved by 
wrapping FRP jackets around the columns or placing them 
inside FRP tubes with the help of bonding agents. These 
studies involved subjecting columns both with and without 
FRP to triaxial loading, revealing an increase in compressive 
strength due to the use of FRP. These FRP confined columns 
strength and durability is influenced by various factors, 
including the type and amount of FRP used the diameter, 
height, and confinement level of the column etc. Different 
researchers investigated parameters like the numbers of FRP 
ply and its thickness, as well as the tensile strength (ffrp), 
elastic modulus (Efrp), and ultimate tensile strain (efrp) of 
the FRP material. Properties of core concrete such as its 
diameter, compressive strength (fco), the strain (eco), had a 
control over the mechanical behaviors of circular concrete 
columns confined with FRP. Researchers subsequently put 
forward their compression models [1]. 

Experimental investigation is time consuming and is very 
expensive to carry out. However, Artificial Neural Networks 
(ANNs) have shown promising results in predicting the 
mechanical behavior of structural elements over the years. 
The main advantage of ANNs for structural behavior 
prediction is that they can be trained on a large amount of 
data, making them capable of capturing subtle patterns and 
nonlinear relationships that may be difficult to identify using 
traditional analytical or statistical methods. ANNs have 
demonstrated their effectiveness in predicting structural 
behaviors, ranging from structural response to damage 
detection and structural health monitoring. For instance, they 
have been successfully deployed to predict the deformation 
and stress distribution of concrete beams under diverse 
loading conditions, detect damage in bridges through sensor 
data, and forecast the remaining fatigue life of steel 
structures [22].  

In the realm of predicting the compressive behavior of 
FRP confined concrete circular columns, both experimental 
and artificial neural network (ANN) models have been 



proposed by researchers. However, a prevailing limitation in 
many of these models is their focus on parameters like 
compressive strength without FRP and confining pressure, 
while overlooking the significant correlation of the 
compressive strain parameter with the final compressive 
strength. This research seeks to overcome this limitation by 
incorporating the compressive strain parameter, while 
omitting the consideration of the confining pressure 
parameter. Addressing the inadequacy and insufficiency of 
current methods for predicting the compressive performance 
of these columns is the central problem tackled by this 
research. The research aims to enhance the accuracy and 
credibility of these methods through the development of an 
ANN based prediction model. 

Neural designer is one of the ANN software’s 
applications that enable users to create and train neural 
networks for data analysis and prediction. It is a powerful 
tool for machine learning and data mining applications that 
provides an intuitive graphical user interface (GUI) for 
building and training neural networks without the need for 
extensive programming skills. The software offers a range of 
features for creating and optimizing neural networks, 
including data preprocessing, feature selection, neural 
network design, training, and validation. It supports various 
types of neural networks, including feed forward, recurrent, 
and convolutional neural networks, and allows users to 
customize the network architecture and activation functions. 

One of the main advantages of Neural Designer is its ease 
of use, which makes it accessible to users with limited 
programming skills or experience in machine learning. The 
software provides a user-friendly interface for data import, 
data preprocessing, and neural network design, and allows 
users to visualize the data and the neural network 
architecture in real-time. Another advantage of Neural 
Designer is its flexibility and scalability. The software can 
handle large dataset and supports parallel processing to speed 
up the training and validation of neural networks. It also 
allows users to export the trained models in various formats, 
including Python, R, and MATLAB, for further analysis or 
deployment in other applications. 

Neural Designer has been used in various fields, 
including finance, healthcare, engineering, and social 
sciences, for applications such as prediction, classification, 
clustering, and optimization. The software has been 
evaluated in several studies, which have shown its 
effectiveness and efficiency in building and training neural 
networks for various data analysis and prediction tasks. Its 
ease of use, flexibility, and scalability make it a valuable tool 
for researchers, engineers, and analysts working in various 
fields. The main objective of the proposed research is to 
create an ANN-driven model for predicting the compressive 
performance of concrete circular columns confined with FRP 
while also gaining deeper insights into precise test data 
specimens. This model will present an efficient and time-
saving approach for designing and analyzing these columns, 
offering valuable benefits to structural and civil engineers 
and researchers in the relevant field.  

II. BACKGROUND 

Experimental investigations were carried out by various 
researchers to investigate the behavior of circular concrete 
columns with FRP in different loading conditions. Pessiki et 
al. (2001) presented the results of experiments on small-scale 

and large-scale concrete specimens and columns confined 
with FRP composite jackets. FRP encased concrete members 
have improved deformation and axial load carrying capacity 
when compared to the unjacketed ones. The study reported 
improved deformation capacity for FRP-jacketed concrete 
members compared to unjacketed ones. Factors affecting the 
axial stress-strain behavior, such as transverse dilation, were 
also studied. Lam and Teng (2004) compared ultimate tensile 
strains obtained from various experiments and concluded 
that the curvature of the FRP jacket, deformation localization 
of cracked concrete. Vincent and Ozbakkaloglu (2013) 
investigated the effect of concrete compressive strength and 
confinement method on high and ultra-high-strength concrete 
through axial compression tests. Their study included 55 
FRP-confined concrete specimens and indicated that the 
concrete strength increases  with decrease in axial 
performance of FRP-confined concrete decreases, while 
exhibiting highly ductile behavior. Jiang and Wu (2020) 
performed axial compression tests on FRP-confined concrete 
circular columns with varying levels of eccentric loading. 
Their findings indicated that FRP confinement improved the 
energy absorption capacity and ductility of the columns 
under eccentric loading. They also proposed an empirical 
formula to calculate the compressive strength of circular 
concrete columns confined with FRP considering 
confinement ratio, eccentricity ratio, and concrete strength.  

Along with Analytical and Numerical techniques 
Artificial intelligence (AI) techniques have also been applied 
to predict the compressive behavior of circular concrete 
columns confined with FRP using machine learning and deep 
learning algorithms. Abdulkadir Cevik et al. (2007) proposed 
the neural network model (NN) model for the design of 
strength enhancement of CFRP (carbon fiber reinforced 
plastic) confined concrete cylinders. S.M. Mousavi et al. 
(2010) modeled the compressive strength using a hybrid 
method coupling Genetic programming (GP) and Simulating 
annealing (SA) called GP/SA. The authors used numerical 
simulation data to train and validate the model and found that 
the model can provide accurate predictions of the 
compressive strength of FRP confined concrete circular 
columns under different loading conditions. 

Existing compression formulations for circular concrete 
columns confined with FRP are shown below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



III. NEURAL DESIGNER 

 
Neural networks serve as powerful tools for unveiling 

connections, identifying patterns, forecasting trends, and 
discerning associations within data. 

  
 
 
 
 
 
 

Fig. 1. Layout of Neural Designer 

The most common model for neural networks using 
Neural designer are Approximation model, Classification 
model and forecasting model.  

A. Approximation Model 

The approximation model in Neural Designer refers to a 
specific type of neural network model employed to 
approximate complex functions or mappings between input 
and output variables. By leveraging the power of neural 
networks, the approximation model enables the estimation 
and prediction of values within a given range, even in the 
absence of a precise mathematical equation. These models 
are constructed by training the neural network on a dataset 
comprising input-output pairs, allowing it to learn and 
capture the underlying patterns and relationships present in 
the data. 

During the training process, the neural network's internal 
parameters, also known as weights, are fine-tuned using 
iterative optimization algorithms like gradient descent. This 
optimization aims to reduce the difference between the 
predicted outputs and the actual values in the training 
dataset. As the training progresses, the approximation model 
gradually improves its ability to generalize and make 
accurate predictions on unseen data. 

Once the approximation model is trained, it can be 
utilized for various purposes, including function 
approximation, regression analysis, and prediction tasks. For 
example, it can be employed to estimate the behaviour of 
complex systems, simulate physical processes, or predict 
outcomes based on historical data. The approximation model 
in Neural Designer empowers users to gain valuable insights, 
make informed decisions, and solve problems across a wide 
range of domains, including engineering, finance, healthcare, 
and more. 

B. Classification Model:  

The classification model in Neural Designer harnesses 
the capabilities of neural networks to categorize or classify 
input data into distinct classes or groups based on their 
inherent characteristics or features. These models are built by 
training the neural network on labeled dataset, where each 
input is associated with a corresponding class label. During 
the training process, the neural network studies the 
underlying arrangements and relationships present in the 
data, enabling it to make precise predictions on unseen data. 

The training process entails modifying the neural 
network's internal parameters, or weights, by utilizing 

optimization algorithms like back propagation. The objective 
is to reduce the disparity between the predicted class labels 
and the actual class labels presented in the training dataset. 
Through iterative training, the classification model enhances 
its ability to generalize and correctly classify new instances. 

Once the classification model is trained, it can be 
employed to classify unseen data into their respective 
classes. The model takes input data and applies a series of 
mathematical operations to compute a probability 
distribution over the possible classes. The highest probability 
among the classes is chosen as the predicted class for the 
input data.. Neural Designer's classification model offers a 
wide range of capabilities, including handling multi-class 
classification problems, dealing with imbalanced dataset, and 
providing options for model evaluation and performance 
metrics. Users can fine-tune the model parameters, select 
different network architectures, and explore various 
preprocessing techniques to optimize the classification 
performance. 

With the classification model in Neural Designer, users 
can tackle complex classification tasks with ease, utilizing 
the power of neural networks to accurately categorize data 
and make informed decisions. Whether in image recognition, 
natural language processing, or fraud detection, the 
classification model empowers users to unlock valuable 
insights and drive impactful outcomes from their data. 

C. Forecasting Models:  

The forecasting models in Neural Designer uses the 
capabilities of neural networks to predict future values based 
on historical data. These models are specifically designed to 
analyze time series data and provide accurate forecasts for a 
wide range of applications. In Neural Designer, users have 
access to diverse neural network architectures, including 
Long Short-Term Memory (LSTM) networks and Recurrent 
Neural Networks (RNNs). These architectures are 
particularly adept at capturing patterns and temporal 
dependencies in time series data. These architectures allow 
the model to learn from past observations and make accurate 
predictions for future time steps. 

The forecasting models in Neural Designer undergo a 
rigorous training process. Users provide historical time series 
data as input, and the model learns from this data to optimize 
its internal parameters, known as weights, through 
sophisticated optimization algorithms. This training process 
involves minimizing the discrepancy between the actual 
values and predicted values in the training dataset. Once the 
forecasting model is trained, it can be deployed to make 
predictions on unseen or future time steps. By considering 
the historical patterns and trends learned during training, the 
model can estimate future values with a high degree of 
accuracy. Neural Designer provides features to assess the 
performance of the forecasting model, such as error metrics 
and visualization tools, allowing users to evaluate the quality 
of the predictions and fine-tune the model if necessary. 

Additionally, Neural Designer offers a range of 
preprocessing techniques to enhance the forecasting process. 
Users can apply data transformations, such as normalization, 
smoothing, or detrending, to preprocess the time series data 
and improve the accuracy of the forecasts. With the 
forecasting models in Neural Designer, users can effectively 
forecast future values in various domains, including finance, 

 



sales, demand planning, and resource allocation. These 
models enable users to make informed decisions, optimize 
strategies, and gain valuable insights from time series data, 
all while leveraging the power of neural networks to deliver 
accurate and reliable forecasts.  

The aim of the research is to estimate the compressive 
strength of circular concrete columns confined with FRP 
(fcc) based on five different input variables (x). The task at 
hand involves fitting a function to the given data, which 
aligns with the core goal of an approximation problem. 
Specifically, the objective is to create a model that 
effectively captures and represents the connection between 
the target variable (compressive strength) and the input 
variables. Thus, an approximation model is chosen as the 
appropriate approach to tackle this challenge. 

IV. DATASET 

A total of 200 test data specimens were collected for this 
study [2, 4-7]. Any missing data points were omitted. The 
collected data for this research project consisted of values 
that fall within a continuous range. Therefore, the variables 
used in the analysis can be classified as continuous variables. 
Continuous variables are quantitative in nature and can take 
on any numerical value within a specific range. By working 
with continuous variables, the research aims to capture the 
fine-grained variations and subtle changes in the data. This 
allows for a more precise modeling of the relation between 
the input and the target variables, which is the compressive 
strength of Circular concrete columns confined with FRP 
(fcc). Utilizing continuous variables in the analysis provides 
a more comprehensive understanding of the underlying 
patterns and trends that contribute to the compressive 
strength. It allows for a more nuanced examination of how 
variations in the input variables impact the target variable, 
enabling more accurate estimations and predictions. The 
collected data were preprocessed from the models learning 
the input target correlations to prepare it for use in the 
machine learning models. The preprocessing involved the 
selection of parameters, including the initial confined 
compressive strength of concrete column without FRP (fco), 
initial compressive strain of column (eco), Diameter to 
thickness ratio (D/t), Elastic modulus (Efrp) and Tensile 
strength (ffrp) of FRP, and compressive strain of FRP(efrp), 
Type of FRP, compressive strain (ecc) and the final 
compressive strength (fcc) of circular concrete column with 
FRP. Based on the analysis of input target correlations, the 
decision was made to omit parameters that had the least 
impact on the target variable. As a result, six parameters 
were selected for further consideration: D/t, εco, fco, Efrp, 
ffrp, εfrp and fcc. These parameters were deemed to have the 
most significant impact on the target variable and are 
therefore considered to be the most important for the 
analysis. As a result, there were 170 test data specimens that 
remained for further analysis. The processed data are further 
trained using Neural Designer. The database statistics for the 
variables used in this research are given in Table 3.  

The diameter to thickness ratio (D/t) ranges from 27.88 to 
1299.15, with a mean value of 369.157 and a deviation of 
417.131. Most of the values lied in the range of 900-1200. 
The compressive strength without FRP (fco) ranges from 24 
MPa to 112 MPa, with a mean value of 48.899 MPa and a 
deviation of 21.609. The highest data % lied in the range of 
30 MPa to 50 MPa. The compressive strain of concrete 

columns without FRP (eco) had a narrow range from 0.002 
to 0.021, with a mean value of 0.003 and a deviation of 
0.001. Maximum data points lied in the range of 0.0025-
0.003 while least data points occurred at 0.0035-0.004. The 
tensile strength of FRP (ffrp) had a wide range from 325 to 
4203, with a mean value of 2081.858 and a deviation of 
1647.188. Maximum number of ffrp lied  in the range from 
2000-4000 MPa. The elastic modulus of FRP (Efrp) had a 
wide range from 19.1 to 245.687, with a mean value of 
117.196 and a deviation of 100.104. No data points were 
observed in the range of 0.003-0.004. The strain of FRP 
(efrp) had a range from 0.014 to 0.047, with a mean value of 
0.022 and a deviation of 0.012. 

TABLE I.  DATA BASE STATISTICS 

Param
eters 

Statistics  

Minimum Maximum Mean Deviation 

D/t 27.88 1299.15 369.157 417.131 

fco 24 112 48.899 21.609 

eco 0.002 0.021 0.003 0.001 

Ffrp 325 4203 2081.858 1647.188 

Efrp 19.1 245.687 117.196 100.104 

efrp 0.014 0.047 0.022 0.012 

 
These statistics provide important information about the 

distribution and variability of the input variables used in the 
study, which can help in understanding the behavior and 
performance of concrete circular columns confined with 
FRP. 

For the training of the models, the data was randomly 
divided into three sets: 60% of test data specimens were used 
for training, 20% of the data were in selection sets, and the 
remaining 20% were used for prediction tests in Neural 
Designer. Correlation of the inputs was studied, error % was 
studied, and histograms were plotted to identify any patterns 
or trends in the data. 

V. DATA ANALYSIS 

The correlation analysis revealed that the compressive 
strength without FRP (fco) and the target output have a 
moderate positive correlation, indicating that an increase in 
compressive strength without FRP could result in a 
corresponding increase in the compressive strength of 
concrete circular columns confined with FRP. On the other 
hand, the tensile strength of FRP (ffrp) and elastic modulus 
of FRP (Efrp), the compressive strain of concrete columns 
without FRP (eco) and the strain of FRP (efrp) showed weak 
positive correlations with the target output, suggesting that 
these factors may have a minor influence on the compressive 
strength of concrete circular columns confined with FRP. 

The diameter to thickness ratio (D/t) exhibited a weak 
negative correlation with the target output, indicating that a 
decrease in the ratio may lead to a slight positive effect on 
the compressive strength of concrete circular columns with 
FRP.  

 

 



 

 

 

 

 

 

 

 

 

 

Fig. 2. fcc input-target correlations chart 

Overall, the correlation coefficients obtained through the 
ANN model indicate that the compressive strength without 
FRP has the strongest correlation with the compressive 
strength of circular concrete columns confined with FRP, 
followed by the tensile strength and elastic modulus of FRP, 
the compressive strain of concrete columns without FRP, and 
the strain of FRP while diameter to thickness ratio showed a 
weak negative correlation. 

Parametric Analysis of each parameter is shown in 
figures below. 

 

 

 

 

 

 

 

 

Fig. 3. Influence of D/t on Circular concrete columns confined with FRP 
compressive strength  

 

 

 

 

 

 

 

  

Fig. 4. Influence of fco on Circular concrete columns confined with FRP 
compressive strength  

 

 

 

 

 

 

 

 

 

 

 

  

Fig. 5. Influence of eco on Circular concrete columns confined with FRP 
compressive strength  

 

 

 

 

 

 

 

 

Fig. 6. Influence of ffrp on Circular concrete columns confined with FRP 
compressive strength 

 

 

 

 

 

 

 

Fig. 7. : Influence of Efrp on Circular concrete columns confined with 
FRP compressive strength  

 

 

 

 

 

 

 

  

Fig. 8. Influence of efrp on Circular concrete columns confined with FRP 
compressive strength  

The final compressive strengths increase with an increase 
in parameters such as fco, eco, ffrp, Efrp and εfrp. This 

 

 

 

 

 

 



suggests that higher values of these parameters contribute to 
enhanced compressive strength. 

On the other hand, with an increase in the D/t ratio the 
final compressive strength decreased. This indicates that as 
the ratio between the diameter and thickness of the 
component increases, the compressive strength tends to 
decrease. 

VI. MODEL EVALUATION 

The ANN models were validated by comparing their 
predicted values with the corresponding experimental data. 
The predicted values were compared with existing 
constitutive models given by Lam, Mander and Fardis which 
are widely used model. Lam model has the highest predictive 
accuracy among the existing models. The predicted values 
were obtained by inputting the parameters of the test set into 
the trained models. 

The results obtained from the machine learning models 
were subjected to statistical analysis to evaluate the 
reliability and accuracy of the prediction models. The 
statistical analysis involved calculating several metrics, 
including the mean square error (MSE), root mean square 
error (RMSE), Mean Absolute Error (MAE), and correlation 
coefficient (R²). R² measures the degree of correlation 
between the independent and dependent variables, where a 
higher value indicates a stronger relationship between the 
predicted and actual values. The Mean Squared Error (MSE) 
measures the average error between the predicted and actual 
values, with a lower MSE indicating a smaller deviation 
between the two. Similarly, the Mean Absolute Error (MAE) 
represents the average magnitude of errors, and a smaller 
MAE indicates a closer approximation of the predicted value 
to the actual value. These statistical analyses are widely used 
to assess the predictive accuracy of Neural Network models 
[1]. 

VII. MODEL CONSTRUCTION 

Based on the outcomes of the neuron selection algorithm, 
eight optimal numbers of neurons and their corresponding 
network architectures were chosen. The network architecture 
consists of a scaling layer with 6 neurons, two perceptron 
layers with 8 and 1 neurons respectively, an unscaling layer 
with 1 neuron, and a bounding layer with 1 neuron. The 
network has 6 inputs and 1 output. The optimal number of 
neurons was found to be 8, and the minimum selection error 
of 0.7895 was achieved. The minimum percentage error 
recorded was 0.188614%, while the maximum percentage 
error was 22.8476%. The mean percentage error was 
3.72352%. The results indicate that the neural network 
model has effectively fit the given data, enabling it to make 
accurate predictions and is shown in goodness fit chart. 

 
Fig. 9. Growing neurons errors plot 

 
 
 
 
 
 
 
 
 
 
 
Fig. 10. Network architecture with 8 neurons 

 
Fig. 11. Goodness of Fit chart 

VIII. MATHEMATICAL EXPRESSION 

The predictive model is in the form of a function that 
relates the outputs to the inputs, and it can be incorporated 
into other software for production purposes in production 
mode. 

scaled_D_div_t = (D_div_t-369.1570129)/417.131012     (1) 
scaled_fco = (fco-48.8987999)/21.60880089                     (2) 
scaled_eco = (eco-0.00280945003)/0.001461460022        (3) 
scaled_ffrp = (ffrp-2081.860107)/1647.189941                 (4) 
scaled_Efrp = (Efrp-117.1959991)/100.1039963               (5) 
scaled_efrp = (efrp-0.02169810049)/0.01154839993        (6) 
 
perceptron_layer_1_output_0 = tanh( 0.664428 + ((1)*-
0.717272) + ((2)*0.428432) + ((3)*0.631791) + ((4)*-
0.396432) + ((5)*-0.839921) + ((6)*0.814637) )               (7) 
perceptron_layer_1_output_1 = tanh( 0.922491 + 
((1)*0.110663) + ((2)*0.636034) + ((3)*-0.823965) + ((4)*-
0.763382) + ((5)*-0.787037) + ((6)*0.484072) )               (8) 
 
perceptron_layer_1_output_2 = tanh( -0.600252 + ((1)*-
0.0127548) + ((2)*0.0694091) + ((3)*0.516858) + ((4)*-
0.664627) + ((5)*0.0665895) + ((6)*-0.992946) )             (9) 
 
perceptron_layer_1_output_3 = tanh( -0.467709 + ((1)*-
1.47234) + ((2)*0.154972) + ((3)*0.376399) + ((4)*-
1.69545) + ((5)*1.98686) + ((6)*1.05936) )                    (10) 
 
perceptron_layer_1_output_4 = tanh( 0.479843 + 
((1)*0.996717) + ((2)*-0.182735) + ((3)*0.343448) + ((4)*-
1.01944) + ((5)*-0.166606) + ((6)*1.74639) )                 (11) 

 



 
perceptron_layer_1_output_5 = tanh( 0.556007 + 
((1)*0.231112) + ((2)*0.0314288) + ((3)*-0.416626) + 
((4)*-1.03645) + ((5)*-0.904588) + ((6)*0.0516162) )    (12) 
 
perceptron_layer_1_output_6 = tanh( 1.17147 + ((1)*-
0.6576) + ((2)*0.382531) + ((3)*-0.387669) + ((4)*-
0.671911) + ((5)*-0.415207) + ((6)*-1.0343) )                (13) 
 
perceptron_layer_1_output_7 = tanh( 0.626514 + ((1)*-
0.562423) + ((2)*0.579186) + ((3)*-0.891775) + ((4)*-
0.476279) + ((5)*0.939974) + ((6)*0.51672) )                (14) 
 
perceptron_layer_2_output_0 = (0.467827 + ((7)*-1.36211) 
+ ((8)*1.88085) + ((9)*0.803916) + ((10)*1.51679) + 
((11)*-1.06072) + ((12)*-0.145515) + ((13)*-1.12802) + 
((14)*0.373271))                                                             (15) 
 
unscaling_layer_output_0=(15)*31.89170074+75.24449921 

IX. RESULTS 

The study involved comparing the constructed ANN 
model with three other constitutive models (Fardis, Lam & 
Teng, and Mander) using statistical metrics such as MSE, 
RMSE, MAE, and R2. The results demonstrated that the 
ANN model outperformed the other three models in 
predicting the compressive behavior of FRP confined 
concrete circular columns. 

Specifically, the ANN model achieved lower values of 
MSE, RMSE, and MAE (863.83, 29.39, and 17.37, 
respectively) compared to the other models. Additionally, the 
ANN model obtained a higher R2 value of 0.45, indicating 
its ability to explain 45% of the variance in the data. The 
Fardis model showed the poorest fit with the highest MSE, 
RMSE, and MAE values (7417.57, 86.12, and 59.18, 
respectively). The Lam & Teng and Mander models 
performed better than the Fardis model but were still 
outperformed by the ANN model. The Lam & Teng model 
obtained an R2 value of 0.301, and the Mander model 
obtained an R2 value of 0.357.  

These results indicate that the developed ANN model is a 
powerful tool for predicting the compressive strength of 
concrete circular columns confined with FRP. It can be 
utilized in the design of concrete structures confined with 
FRP, enabling engineers to make accurate predictions of 
their compressive behavior. Furthermore, the study's findings 
may contribute to the advancement of latest constitutive 
models for FRP confined concrete structures.  

X. CONCLUSION AND RECOMMENDATIONS 

The study aimed to utilize ANN for predicting the 
compressive strength of circular concrete columns confined 
with FRP. A total of 170 test data samples were used, and the 
ANN model showed the best predictive accuracy with a 
MSE of 863.83, RMSE of 29.39, MAE of 17.37, and R2 of 
0.45. The ANN model revealed strong correlations between 
the compressive strength of circular concrete columns 
confined with FRP and various factors such as the 
compressive strength of columns without FRP, tensile 
strength and elastic modulus of FRP, and strains. The 
diameter to thickness ratio had a weak negative correlation 
with compressive strength.  

The ANN model can be used for product development, 
and engineers are recommended to incorporate it into the 
design process. Future studies should focus on enhancing the 
ANN model's accuracy and exploring other machine learning 
models. Additionally, increasing the sample size is 
recommended to improve understanding and design 
guidelines for circular concrete columns confined with FRP. 
The findings of such studies could be used to improve  
design guidelines for  circular concrete columns confined 
with FRP and enhance safety and performance of concrete 
structures. 
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